当前位置:文档之家› 化工原理实验——填料吸收实验

化工原理实验——填料吸收实验

化工原理实验——填料吸收实验
化工原理实验——填料吸收实验

实验六填料塔流体力学特性实验

一、实验目的

1、了解填料塔的构造、流程及操作

2、了解填料塔的流体力学性能。

3、学习填料吸收塔传质能力和传质效率的测定方法。

4、掌握以 Y为推动力的总体积吸收系数K Y a的测定方法。

二、实验内容

(一)、填料塔流体力学性能测定

1、测量干填料层(ΔP/Z)-u关系曲线

2、测量某喷淋量下填料层(ΔP/Z)-u关系曲线:选择液相流量,在该液相流量下于最小和最大气体流量之间选择不同的值测定塔的压降,得到塔压降与空塔气速的关系,确定出液泛气速。

(二)传质实验:固定液相流量和入塔混合气氨的浓度,在液泛速度以下取两个相差较大的气相流量,分别测量塔的传质能力(传质单元数和回收率)和传质效率(传质单元高度和总体积吸收系数)。

三、实验装置

(一)、实验装置流程及示意图

空气由鼓风机送入空气转子流量计,空气通过流量计处的温度由温度计测量,空气流量由放空阀调节。氨气由氨瓶送出,经过氨瓶总阀进入氨气转子流量计,氨流量由流量计调节,氨气通过转子流量计处温度由实验时大气温度代替。氨气进入空气管道与空气混合后进入吸收塔底部。水由自来水管经水转子流量计进入塔顶,水的流量由水转子流量计调节。分析塔顶尾气浓度时靠降低水准瓶的位置,将塔顶尾气吸入吸收瓶和量气管。?在吸入塔顶尾气之前,予先在吸收瓶内放入5mL已知浓度的硫酸用于吸收尾气中氨。塔底吸收液可用三角瓶于塔底取样口取样。填料层压降用U形管压差计测定。

图1 填料吸收塔实验流程示意图(第一套)

图2 填料吸收塔实验流程示意图(第二套)

1-鼓风机;2-空气流量调节阀;3-空气转子流量计;4-空气温度;5-液封管;6-吸收液取样口;7-填料吸收塔;8-氨瓶阀门;9-氨转子流量计;10-氨流量调节阀;11-水转子流量计;12-水流量调节阀;13-U型管压差计;14-吸收瓶;15-量气管;16-水准瓶;17-氨气瓶;18-氨气温度;20-吸收液温度;21-空气进入流量计处压力。

(2)、设备参数:

(1)鼓风机:XGB型漩涡气泵;最大压力1176Kpa;最大流量75m3/h。

(2)填料塔:材质为硼酸玻璃管,内装10×10×1.5瓷拉西环,填料层高度Z=0.4m,填料塔内径D=0.075m

(3)空气转子流量计: 型号:LZB--25 流量范围:2.5-25m3/h 精度:2.5%

(4)水转子流量计: 型号:LZB--6 流量范围:6-60L/h 精度:2.5%

(5)氨转子流量计: 型号:LZB--6 流量范围:0.06-0.6m3/h 精度:2.5%

四、试剂

1、硫酸溶液:约为0.005mol。用于塔顶尾气吸收。实际浓度以标定值为准。

2、硫酸溶液:约为0.05mol。用于滴定塔底吸收液。实际浓度以标定值为准。

3、甲基红指示剂

五、实验方法及操作

(一)、填料塔流体力学性能测定

1、测量干填料层(ΔP/Z)-u关系曲线:

先全开调节阀2,后启动鼓风机。用阀2调节进塔的空气流量,按空气流量从小到大的顺序读取填料层压降ΔP(第二套装置还要读取对应的空气流量压强降)、转子流量计读数和流量计处空气温度。然后在对数坐标纸上以空塔气速u为横坐标,以单位高度的压降ΔP/Z 为纵坐标,标绘干填料层(ΔP/Z)-u关系曲线。

2、测量某喷淋量下填料层(ΔP/Z)-u关系曲线:当水喷淋量为40L/h时,用上面相同方法读取填料层压降ΔP、转子流量计读数和流量计处空气温度,并注意观察塔内的操作现象,一旦看到液泛现象时记下对应的空气转子流量计读数。在对数坐标纸上标出液体喷淋量为40L/h下的(ΔP/Z)-u曲线,确定液泛气速并与观察的液泛气速比较。

(二)、传质实验

1)吸收过程

(1)、选择适宜的空气流量和水流量(建议水流量为30L/h)根据空气流量计算出进塔的氨气流量使混合气体中氨组分为0.02-0.03左右摩尔比。

(2)、先调节好空气流量和水流量,打开氨气瓶总阀8(开度不易过大,以满足氨流量为准),用氨转子流量计调节氨流量,使其达到需要值,在空气、氨气和水的流量不变条件下,操作一定时间,系统基本稳定后,记录各流量计读数和温度,记录塔底排出液的温度,并分析塔顶尾气及塔底吸收液的浓度。

(3)加大或减少空气流量,相应地改变氨流量,使混合气体中氨的浓度与第一次实验

相同,水流量与第一次实验也应相同,重复上述操作,测定有关数据。

(4)实验完毕后,关闭进水阀门,关闭风机,并将所有仪器复原。 2) 尾气分析方法:

a 、排出两个量气管内空气,使其中水面达到最上端的刻度线零点处,并关闭三通旋塞。

b 、用移液管向吸收瓶内装入2ml 浓度约为0.005M 左右的硫酸及3ml 蒸馏水并加入1-2滴甲基红指示液。

c 、将水准瓶移至下方的实验架上,缓慢地旋转三通旋塞,让塔顶尾气通过吸收瓶,旋塞的开度不宜过大,以能使吸收瓶内液体以适宜的速度不断循环流动为限。

从尾气开始通入吸收瓶起就必需始终观察瓶内液体的颜色,中和反应达到终点时立即关闭三通旋塞,在量气管内水面与水准瓶内水面齐平的条件下读取量气管内空气的体积。

若某量气管内已充满空气,但吸收瓶内未达到终点,可关闭对应的三通旋塞,读取该量气管内的空气体积,同时启用另一个量气管,继续让尾气通过吸收瓶。塔顶尾气滴定至少进行2次,并取2次滴定量气管内体积读数的平均值用于计算。

d 、用下式计算尾气浓度Y2

因为氨与硫酸中和反应式为:2NH 3+H 2SO 4=(NH4)2SO 4

所以要达到化学计量点(滴定终点)时,被滴定的摩尔数n NH3、滴定剂的摩尔数n H2SO4之比为:n NH3:n H2SO4=2:1

n NH3=n H2SO4=2M H2SO4·V H2SO4 Y 2242430222.4

()

H SO H SO NH M V n T N V T ??=

=

?空气

量气管量气管

式中符号说明见试验原理部分.

3) 塔底吸收液的分析方法:

a 、当尾气分析吸收瓶达终点后,即用锥形瓶接取塔底吸收液样品,约200ml 并加盖。

b 、用移液管吸取塔底溶液10ml 置于另一个锥形瓶中,加水50ml ,加入2滴甲基红指示剂。

c 、将浓度约为0.05mol 的硫酸置于酸滴定管内,用以滴定锥形瓶中的塔底溶液至终点。塔底吸收液的滴定分析至少进行2次,并取2次滴定时所消耗硫酸体积的平均值用于计算。

六、数据处理

1 、干填料塔流体力学性能测定(干填料时)

由U 形管压差计读得ΔP ,计算单位填料层高度上的压降ΔP/Z ,塔中空气流速(空塔气速)为

2

)4

(

3600D V u n

π

=

因为空气流量计处温度不是20℃,需要对读数进行校正,空气实际体积流量V n 为: 第一套装置空气实际流量

20

273t 273++=转

V V n (m 3

/h)

第二套装置空气实际流量

()()实

读实P P

V V ?+?+?

=20273t 273 (m 3

/h)

在对数坐标纸上以u为横坐标,ΔP/Z 为纵标坐图,标绘ΔP/Z ~ u关系曲线。 2、湿填料塔流体力学性能测定

在一定的液体喷林密度下进行试验,测定液体在塔截面上的喷林密度,其他试验测定数据和数据处理的方法及要求与干填料塔流体力学性能测定时相同。

喷淋密度U=]

[]

/[2

3m h m 塔截面积流体流量 3、传质实验 (1)空气实际流量 第一套装置空气实际流量

20

273t 273++=转

V V n (m 3

/h )

第二套装置空气实际流量

()()实

读实P P

V V ?+?+?

=20273t 273 (m 3

/h )

(2)氨气实际流量为:实

氨气空气读

t 27320273++?=ρρV V n (m 3

/h ) a) 塔底气相浓度 Y 1 =

氨气流量

空气流量

(kmol 氨气/ kmol 空气)

注意空气流量、氨气流量的单位相同. ;

b)塔顶气相浓度Y 2=

2424

2()22.4

H SO H SO M V T V T ??÷量气管量

(kmol 氨气/ kmol 空气)

式中:M H2SO4------滴定所用标准硫酸溶液的摩尔浓度, mol/l ; V H2SO4------滴定时所消耗标准硫酸溶液的体积, L ; V 量气管-----滴定时量气管中的体积变化值, L ; T 量------操作条件下量气管中的绝对温度, K ; T 0------标准状态时绝对温度, T 0=273.2K ;

22.4-----气体在标准情况下的常数, 22.4L /mol c)塔底液相浓度X 1=

2424

32100018

H SO H SO NH M V V ??

(kmol 氨气/ kmol 水)

式中:V NH3-----为滴定所准确吸取的塔底流出液的体积 , ml ; M H2SO4------滴定所用标准硫酸溶液的摩尔浓度, mol/l ; V H2SO4------滴定所用标准硫酸溶液的体积, ml ; d)求△Y m

平衡浓度:Y 1*=mX 1 平衡浓度:Y 2*=mX 2 ΔY 1=Y 1-Y 1* ΔY 2=Y 2-Y 2*

平均浓度差 ΔY m = (△Y 1-△Y 2)/㏑(△Y 1/△Y 2) (kmol 氨气/ kmol 空气) 气相总传质单元数 N oG =(Y 1-Y 2)/△Y m 气相总传质单元高度 OG OG

Z

H N = (m ) 空气的摩尔流量 0360022.4h V T

V T

=?? ( kmol/s)

塔的横截面积 24

D π

Ω=

(m 2)

气相总体积吸收系数 Ya OG V K H =

〔kmol/(m 3

.S)〕

回收率 12

1

Y Y Y -η=

附:相平衡常数m与温度T关系曲线

本实验为低浓度吸收,当操作温度压力一定时,m为常数。

液相浓度在5%以下时,系统的相平衡常数与温度的关系如下:

七、注意事项:

(1)、启动鼓风机前,务必先全开放空阀2。

(2)、做传质实验时,水流量不能超过40L/h,否则尾气的氨浓度极低,给尾气分析带来麻烦。

(3)在进行平行滴定时,必须保持系统中各流量稳定。

八、计算实例

计算实例:以第一组数据为例。 一、计算干填料塔流体力学性能

△P=6.0 △P/Z=6.0/0.4=15.0。 空塔气速(m/s ) 其中:D —塔径(m) 0.075

Vn —空气实际体积流量m 3/h

t —空气流量计处空气温度℃ 17.5

二、在对数坐标系中绘制干填料塔△P/Z —u 曲线。见下图 三、同理,完成湿填料塔流体力学性能计算及绘图。

31

.0)4(36002

==D

V u n

π98.420273t 273=++=转V V n

实验内容二、填料塔传质实验

以第二组数据为例

空气实际体积流量:

氨气实际流量:

查表P327,ρ

氨气0℃

=0.771,ρ

空气0℃

=1.293

1、塔底气相浓度 Y 1=氨气流量/空气流量=0.362/12.1= 0.03

2、塔顶气相浓度Y 2:

3、塔底液相浓度X1:

NH 3—H 2O 系统的平衡常数m 与温度T 的回归公式:y = 0.0009x 2 + 0.0045x + 0.3173 塔底液相的温度17℃,平衡常数m=0.654 4、求△Ym

平衡浓度:Y 1*=mX 1=0.654*0.000837=0.00547 平衡浓度:Y 2*=mX 2=0.654*0=0 ΔY 1=Y 1-Y 1*=0.03-0.00547=0.02448 ΔY 2=Y 2-Y 2*=0.0027-0=0.00270 平均浓度差 ΔY m = (△Y 1-△Y 2)/㏑(△Y 1/△Y 2)

=(0.02448-0.0027)/ln(0.02448/0.027)= 0.00988

5、求气相总传质单元数 N OG =(Y 1-Y 2)/△Y m =(0.03-0.0027)/0.00988=2.76

6、求气相总传质单元高度 H OG =Z/N OG =0.4/2.76=0.145

7、空气的摩尔流量V=(空气流量/22.4)*(T 0/T)=(12/22.4)*273/(273+25)=0.491 8、求气相总体积吸收系数 Kya =V/(H OG *Ω)=0.491/0.145*0.00442=767 其中:塔的横截面积 Ω= (π/4)*D 2 = (3.14/4)*0.0752= 0.00442 9、求回收率 η%=(Y1-Y2)/Y1=(0.03-0.0027)/0.03=0.91

1

.122027325

273*1220273t 273=++=++=转V V n 362.01627320

273*771.0293.1*278.0t 27320273=++=++?=实

氨气空气读

ρρV V n 00270

.0)

16273/(273*4494

.22*5*005111.0*24.22/**20

24242=+==量

量气管T T V V M Y SO H SO H 000837

.018/1000*102

.46*0503.0*218/1000**2342421===HN SO H SO H V V M X

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工原理实验—超全思考题答案

实验6 填料吸收塔流体力学特性实验 ⑴ 流体通过干填料压降与式填料压降有什么异同? 答:当气体自下而上通过填料时产生的压降主要用来克服流经填料层的形状阻力。当填料层上有液体喷淋时, 填料层内的部分空隙为液体所充满,减少了气流通道截面,在相同的条件下,随液体喷淋量的增加,填料层所持有的液量亦增加,气流通道随液量的增加而减少,通过填料层的压降将随之增加。 ⑵ 填料塔的液泛和哪些因素有关? 答:填料塔的液泛和填料的形状、大小以及气液两相的流量、性质等因素有关。 ⑶ 填料塔的气液两相的流动特点是什么? 答:填料塔操作时。气体由下而上呈连续相通过填料层孔隙,液体则沿填料表面 流下,形成相际接触界面并进行传质。 ⑷ 填料的作用是什么? 答:填料的作用是给通过的气液两相提供足够大的接触面积,保证两相充分接触。 ⑸ 从传质推动力和传质阻力两方面分析吸收剂流量和吸收剂温度对吸收过程的影响? 答:改变吸收剂用量是对吸收过程进行调节的最常用的方法,当气体流率G 不变时,增加吸收剂流率,吸收速率A N 增加,溶质吸收量增加,则出口气体的组成2y 减小,回收率增大。当液相阻力较小时,增加液体的流量,传质总系数变化较小或基本不变,溶质吸收量的增加主要是由于传质平均推动力m y ?的增大引起,此时吸收过程的调节主要靠传质推动力的变化。当液相阻力较大时,增加液体的流量,传质系数大幅度增加,而平均推动力可能减小,但总的结果使传质速率增大,溶质吸收量增加。对于液膜控制的吸收过程,降低操作温度,吸收过程的阻力a k m a K y y = 1将随之减小,结果使吸收效果变好,2y 降低,而平均推动力m y ?或许会减小。对于气膜控制的过程,降低操作温度,过程阻力a k m a K y y = 1不变,但平均推动力增大,吸收效果同样将变好 ⑹ 从实验数据分析水吸收氨气是气膜控制还是液膜控制、还是兼而有之? 答:水吸收氨气是气膜控制。 ⑺ 填料吸收塔塔底为什么要有液封装置? 答:液封的目的是保证塔内的操作压强。 ⑻ 在实验过程中,什么情况下认为是积液现象,能观察到何现象? 答:当气相流量增大,使下降液体在塔内累积,液面高度持续上升,称之为积液。 ⑼ 取样分析塔底吸收液浓度时,应该注意的事项是什么? 答:取样时,注意瓶口要密封,避免由于氨的挥发带来的误差。 ⑽ 为什么在进行数据处理时,要校正流量计的读数(氨和空气转子流量计)? 答:流量计的刻度是以20℃,1atm 的空气为标准来标定。只要介质不是20℃,

化工原理试验试题集

化工原理实验试题3 1、干燥实验进行到试样重量不再变化时,此时试样中所含的水分是什么水分?实验过程中除去的又是什么水分?二者与哪些因素有关。 答:当干燥实验进行到试样重量不再变化时,此时试样中所含的水分为该干燥条件下的平衡水分,实验过程中除去的是自由水分。二者与干燥介质的温度,湿度及物料的种类有关。 2、在一实际精馏塔内,已知理论板数为5块,F=1kmol/h,xf=0.5,泡点进料,在某一回流比下得到D =0.2kmol/h,xD=0.9,xW=0.4,现下达生产指标,要求在料液不变及xD 不小于0.9的条件下,增加馏出液产量,有人认为,由于本塔的冷凝器和塔釜能力均较富裕,因此,完全可以采取操作措施,提高馏出物的产量,并有可能达到D =0.56kmol/h ,你认为: (1) 此种说法有无根据?可采取的操作措施是什么? (2) 提高馏出液量在实际上受到的限制因素有哪些? 答:在一定的范围内,提高回流比,相当于提高了提馏段蒸汽回流量,可以降低xW ,从而提高了馏出液的产量;由于xD 不变,故进料位置上移,也可提高馏出液的产量,这两种措施均能增加提馏段的分离能力。 D 的极限值由 DxD

化工原理实验模拟试题4教学内容

化工原理实验模拟试 题4

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上? A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体? A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。

C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管? A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力 不再减小的管子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理实验思考题答案

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门? 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么? 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗?为什么? 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: Z l P l ? :?g =Z2 P2;g,当P l = P2 时,Z I = Z2 (4 )怎样排除管路系统中的空气?如何检验系统内的空气已经被排除干净? 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘? 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。 (6)你在本实验中掌握了哪些测试流量、压强的方法?它们各有什么特点? 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换 成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测 大流量下的压强差。 (7 )读转子流量计时应注意什么?为什么? 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误^^。 (8)两个转子能同时开启吗?为什么? 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9 )开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯?答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么? 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。 (11)假设将本实验中的工作介质水换为理想流体,各测压点的压强有何变化?为什么?答:压强相等,理想流体u=0,磨擦阻力F=0,没有能量消耗,当然不存在压强差。 Z j +P/? +uj/2g =Z2 +u;/2g , T d1=d2 二U1=U2 又T Z1=Z2 (水平管)P1 = P2 (12)离心泵送液能力,为什么可以通过出口阀调节改变?往复泵的送液能力是否也可采用同样的调节方法?为什么? 答:离心泵送液能力可以通过调节出口阀开度来改变管路特性曲线,从而使工作点改变。往复泵是正往移泵 流量与扬程无关。若把出口堵死,泵内压强会急剧升高,造成泵体,管路和电机的损 坏。 (13)本实验用水为工作介质做出的入一Re曲线,对其它流体能否使用?为什么?

化工原理期末试题及答案

模拟试题一 1当地大气压为 745mmHg 测得一容器内的绝对压强为 350mmHg 则真空度为395 mmH?测得另一容器内的表压 强为1360 mmHg 则其绝对压强为 2105mmHg _____ 。 2、 流体在管内作湍流流动时,在管壁处速度为 _0 _______,临近管壁处存在层流底层,若 Re 值越大,则该层厚度 越薄 3、 离心泵开始工作之前要先灌满输送液体,目的是为了防止 气缚 现象发生;而且离心泵的安装高度也不能 够太高,目的是避免 汽蚀 现象发生。 4 、离心泵的气蚀余量越小,则其抗气蚀性能 越强 。 5、 在传热实验中用饱和水蒸汽加热空气,总传热系数 K 接近于 空气 侧的对流传热系数,而壁温接近于 饱和水蒸汽 侧流体的温度值。 6、 热传导的基本定律是 傅立叶定律。间壁换热器中总传热系数K 的数值接近于热阻 大 (大、小)一侧的:?值。 间壁换热器管壁温度t w 接近于:.值 大 (大、小)一侧的流体温度。由多层等厚平壁构成的导热壁面中,所用材料的 导热系数愈小,则该壁面的热阻愈 大 (大、小),其两侧的温差愈 大 (大、小)。 7、 Z= (V/K v a. Q ) .(y 1 -丫2 )/ △ Y m 式中:△ Y m 称 气相传质平均推动力 ,单位是kmol 吸 收质/kmol 惰气;(Y i — Y 2) / △ Y m 称 气相总传质单元数。 8、 吸收总推动力用气相浓度差表示时,应等于 气相主体摩尔浓度 和同液相主体浓度相平衡的气相浓度之 差。 9、 按照溶液在加热室中运动的情况,可将蒸发器分为循环型和非循环型两大类。 10、 蒸发过程中引起温度差损失的原因有:溶液蒸汽压下降、加热管内液柱静压强、管路阻力。 11、工业上精馏装置,由精馏^_塔、冷凝器、再沸器等构成。 12、分配系数k A 是指y A /X A ,其值愈大,萃取效果 量传递相结合的过程。 1、气体在直径不变的圆形管道内作等温定态流动,则各截面上的( 6、某一套管换热器,管间用饱和水蒸气加热管内空气(空气在管内作湍流流动) 13、萃取过程是利用溶液中各组分在某种溶剂中 溶解度的差异 而达到混合液中组分分离的操作。 14、在实际的干燥操作中,常用 干湿球温度计来测量空气的湿度。 15、对流干燥操作的必要条件是 湿物料表面的水汽分压大于干燥介质中的水分分压 ;干燥过程是热量传递和质 越好。 A. 速度不等 B.体积流量相等 C. 速度逐渐减小 D.质量流速相等 2、装在某设备进口处的真空表读数为 -50kPa ,出口压力表的读数为 100kPa , 此设备进出口之间的绝对压强差为 A. 50 B . 150 C . 75 D .无法确定 3、离心泵的阀门开大时,则( B )。A ?吸入管路的阻力损失减小 .泵出口的压力减小 C .泵入口处真空度减小 .泵工作点的扬程升高 4、下列(A )不能实现对往复泵流量的调节。 A .调节泵出口阀的开度 ?旁路调节装置 C .改变活塞冲程 ?改变活塞往复频率 5、已知当温度为 T 时,耐火砖的辐射能力大于铝板的辐射能力,则铝的黑度( )耐火砖的黑度。 A.大于 .等于 C .不能确定 D .小于 ,使空气温度由20 C 升至80 C,

化工原理实验模拟思考题

离心泵特性曲线的测定 1.泵壳的作用是:汇集液体 2.轴封的作用是:减少高压液体漏出泵外 3.密封环的作用是:减免高压液体漏回吸入口 4.叶轮的作用是:传递机械能 5.离心泵是由:_叶轮、泵壳、密封环、轴封装置_、和_平衡盘装置五个主要部件所组 成的。 6.离心泵的流量又称为:送液能力 7.泵能给予(1牛顿)_液体的能量称为泵的扬程。 8.每秒钟泵对(输送液体)所作的功,称为有效功率。 9.泵若需自配电机,为防止电机超负荷,常按实际工作的最大流量计算轴功率N,取 (1.1-1.2)N作为选电机的依据。 10.离心泵性能的标定条件是:20℃,101.3kPa的清水 11.为了防止电机烧坏现象发生,启动离心泵时必须先关闭泵的出口阀。 12.由离心泵的特性曲线可知:流量增大则扬程_减少 13.对应于离心泵特性曲线_____的各种工况下数据值,一般都标注在铭牌上。效率最大。 14.根据生产任务选用离心泵时,一般以泵效率不低于最高____的90%为合理,以降低能 量消耗。效率 15.根据生产任务选用离心泵时,应尽可能使泵在____点附近工作。效率最大 孔板流量计校验实验 1.孔板流量计前后压力: 前>后 2.孔板流量计的孔流系数与流动形态的关系:随Re的减小而减小 3.下列关于孔板流量计的说法正确的是: 构造简单、制造安装方便 流体阻力实验 1.流体流过管件的局部阻力系数主要与下列哪些条件有关:管件的几何形状、流体的Re 数 2.同一直管分别按下列位置摆放 (1)垂直 (2)水平 (3)倾斜同样的流体流动状 态下摩擦阻力关系是:倾斜=水平=垂直 3.在本实验中必须保证高位水槽始终有溢流,其原因是:只有这样才能保证位压头的恒 定 4.本实验中首先需排除管路系统中的空气,是因为:空气的存在,使管路中的水成为不 连续的流体、测压管中存有空气,使测量数据不准确、管路中有空气则其中水的流动不再是单相的流动

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理实验思考题及答案

化工原理实验思考题及 答案 标准化管理部编码-[99968T-6889628-J68568-1689N]

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。

17.在双对数坐标系上求取斜率的方法为:需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为:先将手动旋钮旋至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到~,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。

《化工原理》(上)模拟试卷

《化工原理》(上册)模拟试卷 一、判断题(对的打√,错的打×,每题1分,共15分) 1. 因次分析的目的在于用无因次数群代替变量,使实验与关联工作简化。 2. 边长为0.5m的正方形通风管道,其当量直径为0.5m。 3. 根据流体力学原理设计的流量计中,孔板流量计是恒压差流量计。 4. 当计算流体由粗管进入细管的局部阻力损失时,公式中的流速应该取粗管中 的流速。 5. 离心泵的轴功率随流量的增大而增大。 6. 当离心泵的安装高度超过允许安装高度时,将可能发生气缚现象。 7. 对于低阻输送管路,并联优于串联组合。 8. 为了获得较高的能量利用率,离心泵总是采用后弯叶片。 9. 间歇过滤机一个操作周期的时间就是指过滤时间。 10. 过滤介质应具备的一个特性是多孔性。 11. 过滤常数K与过滤压力无关。 12. 滴状冷凝的给热系数比膜状冷凝的给热系数大,所以工业冷凝器的设计都按 滴状冷凝考虑。 13. 多层平壁定态导热中,若某层的热阻最小,则该层两侧的温差也最小。 14. 对于温度不宜超过某一值的热敏性流体,在与其他流体换热过程中宜采用逆 流操作。 15. 实际物体的辐射能力总是小于黑体的辐射能力。 二、选择题(每题1个正确答案,每题2分,共20分)

1. 当不可压缩流体在水平放置的变径管路中作稳定的连续流动时,在管子直径 缩小的地方,其静压力()。 A. 不变 B. 增大 C. 减小 D. 不确定 2. 水在内径一定的圆管中稳定流动,若水的质量流量保持恒定,当水温度升高 时,Re值将()。 A.变小 B.变大 C.不变 D.不确定 3. 如左图安装的压差计,当拷克缓慢打开时,压差计中 的汞面将()。 A. 左低右高 B. 等高 C. 左高右低 D. 无法确定 4. 离心泵铭牌上标出的流量和压头数值是()。 A. 最高效率点对应值 B. 操作点对应值 C. 最大流量下对应值 D. 计算值 5. 操作中的离心泵,将水由水池送往敞口高位槽。若管路条件不变,水面下降(泵能正常工作)时,泵的压头、泵出口处压力表读数和泵入口处真空表读数将分别()。 A. 变大,变小,变大 B. 变小,变大,变小 C. 不变,变大,变小 D. 不变,变小,变大 6. 在重力场中,固粒的自由沉降速度与下列因素无关() A.粒子几何形状 B.粒子几何尺寸 C.粒子及流体密度 D.流体的流速 7. 当其他条件都保持不变时,提高回转真空过滤机的转速,则过滤机的生产能 力()。 A.提高 B.降低 C.不变 D.不一定 8. 当间壁两侧流体的对流传热系数存在下列关系α1<<α2,则要提高总传热系 数K应采取的有效措施为()。 A.提高α1 B.提高α2 C.提高α1,降低α2 D.不确定 9. 根据因次分析法,对于强制对流传热,其准数关联式可简化为() A. Nu=f(Re,Pr,Gr) B. Nu=f(Re,Gr) C. Nu=f(Pr,Re) D. Nu=f(Pr,Gr)

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

化工原理实验模拟试题4.doc

流体流动阻力实验 一、在本实验中必须保证高位水槽中始终有溢流,其原因是: A、只有这样才能保证有充足的供水量。 B、只有这样才能保证位压头的恒定。 C、只要如此,就可以保证流体流动的连续性。 二、本实验中首先排除管路系统中的空气,是因为: A、空气的存在,使管路中的水成为不连续的水。 B、测压管中存有空气,使空气数据不准确。 C、管路中存有空气,则其中水的流动不在是单相的流动。 三、在不同条件下测定的直管摩擦阻力系数…雷诺数的数据能否关联在同一条曲线上? A、一定能。 B、一定不能。 C、只要温度相同就能。 D、只有管壁的相对粗糙度相等就能。 E、必须温度与管壁的相对粗糙度都相等才能。 四、以水作工作流体所测得的直管阻力系数与雷诺数的关系能否适用于其它流体? A、无论什么流体都能直接应用。 B、除水外什么流体都不能适用。 C、适用于牛顿型流体。 五、当管子放置角度或水流方向改变而流速不变时,其能量的损失是否相同。 A、相同。 B、只有放置角度相同,才相同。 C、放置角度虽然相同,流动方向不同,能量损失也不同。 D、放置角度不同,能量损失就不同。 六、本实验中测直管摩擦阻力系数时,倒U型压差计所测出的是: A、两测压点之间静压头的差。 B、两测压点之间位压头的差。 C、两测压点之间静压头与位压头之和的差。 D、两测压点之间总压头的差。 E、两测压点之间速度头的差。 七、什么是光滑管? A、光滑管是绝对粗糙度为零的管子。 B、光滑管是摩擦阻力系数为零的管子。 C、光滑管是水力学光滑的管子(即如果进一步减小粗糙度,则摩擦阻力不再减小的管 子)。 八、本实验中当水流过测突然扩大管时,其各项能量的变化情况是: A、水流过突然扩大处后静压头增大了。 B、水流过突然扩大处后静压头与位压头的和增大了。 C、水流过突然扩大处后总压头增大了。 D、水流过突然扩大处后速度头增大了。 E、水流过突然扩大处后位压头增大了 BCECAAAA

化工原理实验思考题及答案汇总

化工原理实验思考题(填空与简答) 一、填空题: 1.孔板流量计的Re ~C 关系曲线应在 单对数 坐标纸上标绘。 2.孔板流量计的R V S ~关系曲线在双对数坐标上应为 直线 。 3.直管摩擦阻力测定实验是测定 λ 与 Re_的关系,在双对数坐标纸上标绘。 4.单相流动阻力测定实验是测定 直管阻力 和 局部阻力 。 5.启动离心泵时应 关闭出口阀和功率开关 。 6.流量增大时离心泵入口真空度 增大_出口压强将 减小 。 7.在精馏塔实验中,开始升温操作时的第一项工作应该是 开循环冷却水 。 8.在精馏实验中,判断精馏塔的操作是否稳定的方法是 塔顶温度稳定 9.在传热实验中随着空气流量增加其进出口温度差的变化趋势:_进出口温差随空气流量增加而减小 。 10.在传热实验中将热电偶冷端放在冰水中的理由是 减小测量误差 。 11.萃取实验中_水_为连续相, 煤油 为分散相。 12.萃取实验中水的出口浓度的计算公式为 E R R R E V C C V C /)(211-= 。 13.干燥过程可分为 等速干燥 和 降速干燥 。 14.干燥实验的主要目的之一是 掌握干燥曲线和干燥速率曲线的测定方法 。 15.过滤实验采用悬浮液的浓度为 5% , 其过滤介质为 帆布 。 16.过滤实验的主要内容 测定某一压强下的过滤常数 。 17.在双对数坐标系上求取斜率的方法为: 需用对数值来求算,或者直接用尺子在坐标纸上量取线段长度求取 。 18.在实验结束后,关闭手动电气调节仪表的顺序一般为: 先将手动旋钮旋

至零位,再关闭电源。 19.实验结束后应清扫现场卫生,合格后方可离开。 20.在做实验报告时,对于实验数据处理有一个特别要求就是: 要有一组数据处理的计算示例。 21.在阻力实验中,两截面上静压强的差采用倒U 形压差计测定。 22.实验数据中各变量的关系可表示为表格,图形和公式. 23.影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等. 24.用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空气流速(2)在空气一侧加装翅片(3)定期排放不凝气体。 25.在精馏实验数据处理中需要确定进料的热状况参数q 值,实验中需要测定进料量、进料温度、进料浓度等。 26.干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。 27.在本实验室中的精馏实验中应密切注意釜压,正常操作维持在0.005mPa,如果达到0.008~0.01mPa,可能出现液泛,应减少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 28.流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 29.在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起)为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封液封高度如何计算 答:保证塔内液面,防止气体漏出,保持塔内压力. 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量为宜。 (2)测定填料塔的流体力学性能有什么工程意义 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制 (5)当气体温度和液体温度不同时,应用什么温度计算亨利系数 答:液体温度。因为是液膜控制,液体影响比较大。

2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升高,从而制冷量会降低。而且由于冷凝压力的升高致使排气压力升高,还会减少压缩机的使用寿命。应把握好空气的进入,和空气的质量。 3.答:冷凝水不及时排走,附着在管外壁上,增加了热阻,降低传热速率。 在外管最低处设置排水口,及时排走冷凝水。 4.答:靠近蒸气温度因为蒸气冷凝传热膜系数远大于空气膜系数。 5. 答:基本无影响。因为α∝(ρ2gλ3r/μd0△t)1/4,当蒸汽压强增加时,r 和△t均增加,其它参数不变,故(ρ2gλ3r/μd0△t)1/4变化不大,所以认为蒸汽压强对α关联式无影响。 3、离心泵特性曲线测定 1、关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。 2、离心泵不灌水很难排掉泵内的空气,导致泵空转而不能排水;泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 3、用出口阀门调解流量而不用崩前阀门调解流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 4、当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 5、不合理,安装阀门会增大摩擦阻力,影响流量的准确性 6、本题是研究密度对离心泵有关性能参数的影响。由离心泵的基本方程简化式可以看出离心泵的压头,流量、效率均与液体的密度无关,但泵的轴功率随流体密度增大而增大即:密度增大N增大,又因为其它因素不变的情况下Hg↓而安装高度减小。 4、流体流动阻力的测定 1、是的,因为由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 2、在流动测定中气体在管路中,对流动的压力测量产生偏差,在实验中一定要排出气体,让流体在管路中流动,这样流体的流动测定才能准确。当流出的液体无气泡是就可以证明空气已经排干净了。

化工原理实验试卷

1 化工原理实验试卷 注意事项:1.考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上; 3 ?考试形式:闭卷; 4. 本试卷共四大题,满分100分,考试时间90分钟。 一、填空题 1. 在阻力实验中,两截面上静压强的差采用倒U形压差计测定。 2. 实验数据中各变量的关系可表示为表格,图形和公式. 3. 影响流体流动型态的因素有流体的流速、粘度、温度、尺寸、形状等 4. 用饱和水蒸汽加热冷空气的传热实验,试提出三个强化传热的方案(1)增加空 气流速(2)在空气一侧加装翅片(3)定期排放不 凝气体。 5. 用皮托管放在管中心处测量时,其U形管压差计的读数R反映管中心处的静压头。 6. 吸收实验中尾气浓度采用尾气分析装置测定,吸收剂为稀硫酸,指示剂为甲基红。 7. 在精馏实验数据处理中需要确定进料的热状况参数q值,实验中需要测定进料量、进料温度、进料浓度等。 8. 干燥实验操作过程中要先开鼓风机送风后再开电热器,以防烧坏加热丝。

9. 在本实验室中的精馏实验中应密切注意釜压,正常操作维持在,如果达到?, 可能出现液泛,应减 少加热电流(或停止加热),将进料、回流和产品阀关闭,并作放空处理,重新开始实验。 10. 吸收实验中尾气浓度采用尾气分析装置测定,它主要由取样管、吸收盒和湿式体积流量计组成的,吸收剂为稀硫酸,指示 剂为甲基红。 11. 流体在流动时具有三种机械能:即①位能,②动能,③压力能。这三种能量可以互相转换。 12. 在柏努利方程实验中,当测压管上的小孔(即测压孔的中心线)与水流方向垂直时,测压管内液柱高度(从测压孔算起) 为静压头,它反映测压点处液体的压强大小;当测压孔由上述方位转为正对水流方向时,测压管内液位将因此上升,所增加的液 位高度,即为测压孔处液体的动压头,它反映出该点水流动能的大小。 13. 测量流体体积流量的流量计有转子流量计、孔板流量计和涡轮流量计。 14. 在精馏实验中,确定进料状态参数q需要测定进料温度,进料浓度参数。 15. 在本实验室的传热实验中,采用套管式换热器加热冷空气,加热介质为饱和水蒸汽,可通过增加空气流量达到提高传热系 数的目的。 16. 在干燥实验中,要先开风机,而后再打开加热以免烧坏加热丝。 17. 在流体流动形态的观察实验中,改变雷诺数最简单的方法是改变流量。 18. (1)离心泵最常用的调节方法是出口阀门调节;(2)容积式泵常用的调节方法是旁路调节。 19. 在填料塔流体力学特性测试中,压强降与空塔气速之间的函数关系应绘在双对

相关主题
相关文档 最新文档