当前位置:文档之家› 用希尔伯特黄变换(HHT)求时频谱和边际谱

用希尔伯特黄变换(HHT)求时频谱和边际谱

用希尔伯特黄变换(HHT)求时频谱和边际谱
用希尔伯特黄变换(HHT)求时频谱和边际谱

用希尔伯特黄变换(HHT)求时频谱和边际谱

1.什么是HHT?

HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert 变换,得到信号的时频属性的一种时频分析方法。

2.EMD分解的步骤。

EMD分解的流程图如下:

3.实例演示。

给定频率分别为10Hz和35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t)

(1)为了对比,先用fft对求上述信号的幅频和相频曲线。

function fftfenxi

clear;clc;

N=2048;

%fft默认计算的信号是从0开始的

t=linspace(1,2,N);deta=t(2)-t(1);1/deta

x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);

% N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi;

%

x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*deta).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t);

y = x;

m=0:N-1;

f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的

%下面计算的Y就是x(t)的傅里叶变换数值

%Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后[-2,2]之间的频谱值Y=fft(y);

z=sqrt(Y.*conj(Y));

plot(f(1:100),z(1:100));

title('幅频曲线')

xiangwei=angle(Y);

figure(2)

plot(f,xiangwei)

title('相频曲线')

figure(3)

plot(t,y,'r')

%axis([-2,2,0,1.2])

title('原始信号')

复制代码

(2)用Hilbert变换直接求该信号的瞬时频率

clear;clc;clf;

%假设待分析的函数是z=t^3

N=2048;

%fft默认计算的信号是从0开始的

t=linspace(1,2,N);deta=t(2)-t(1);fs=1/deta;

x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);

z=x;

hx=hilbert(z);

xr=real(hx);xi=imag(hx);

%计算瞬时振幅

sz=sqrt(xr.^2+xi.^2);

%计算瞬时相位

sx=angle(hx);

%计算瞬时频率

dt=diff(t);

dx=diff(sx);

sp=dx./dt;

plot(t(1:N-1),sp)

title('瞬时频率')

复制代码

小结:傅里叶变换不能得到瞬时频率,即不能得到某个时刻的频率值。Hilbert变换是求取瞬时频率的方法,但如果只用Hilbert变换求出来的瞬时频率也不准确。(出现负频,实际上负频没有意义!)

(3)用HHT求取信号的时频谱与边际谱

function HHT

clear;clc;clf;

N=2048;

%fft默认计算的信号是从0开始的

t=linspace(1,2,N);deta=t(2)-t(1);fs=1/deta;

x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t);

z=x;

c=emd(z);

%计算每个IMF分量及最后一个剩余分量residual与原始信号的相关性

[m,n]=size(c);

for i=1:m;

a=corrcoef(c(i,:),z);

xg(i)=a(1,2);

end

xg;

for i=1:m-1

%--------------------------------------------------------------------

%计算各IMF的方差贡献率

%定义:方差为平方的均值减去均值的平方

%均值的平方

%imfp2=mean(c(i,:),2).^2

%平方的均值

%imf2p=mean(c(i,:).^2,2)

%各个IMF的方差

mse(i)=mean(c(i,:).^2,2)-mean(c(i,:),2).^2;

end;

mmse=sum(mse);

for i=1:m-1

mse(i)=mean(c(i,:).^2,2)-mean(c(i,:),2).^2;

%方差百分比,也就是方差贡献率

mseb(i)=mse(i)/mmse*100;

%显示各个IMF的方差和贡献率

end;

%画出每个IMF分量及最后一个剩余分量residual的图形figure(1)

for i=1:m-1

disp(['imf',int2str(i)]) ;disp([mse(i) mseb(i)]);

end;

subplot(m+1,1,1)

plot(t,z)

set(gca,'fontname','times New Roman')

set(gca,'fontsize',14.0)

ylabel(['signal','Amplitude'])

for i=1:m-1

subplot(m+1,1,i+1);

set(gcf,'color','w')

plot(t,c(i,:),'k')

set(gca,'fontname','times New Roman')

set(gca,'fontsize',14.0)

ylabel(['imf',int2str(i)])

end

subplot(m+1,1,m+1);

set(gcf,'color','w')

plot(t,c(m,:),'k')

set(gca,'fontname','times New Roman')

set(gca,'fontsize',14.0)

ylabel(['r',int2str(m-1)])

%画出每个IMF分量及剩余分量residual的幅频曲线figure(2)

subplot(m+1,1,1)

set(gcf,'color','w')

[f,z]=fftfenxi(t,z);

plot(f,z,'k')

set(gca,'fontname','times New Roman')

set(gca,'fontsize',14.0)

ylabel(['initial signal',int2str(m-1),'Amplitude'])

for i=1:m-1

subplot(m+1,1,i+1);

set(gcf,'color','w')

[f,z]=fftfenxi(t,c(i,:));

plot(f,z,'k')

set(gca,'fontname','times New Roman')

set(gca,'fontsize',14.0)

ylabel(['imf',int2str(i),'Amplitude'])

end

subplot(m+1,1,m+1);

set(gcf,'color','w')

[f,z]=fftfenxi(t,c(m,:));

plot(f,z,'k')

set(gca,'fontname','times New Roman')

set(gca,'fontsize',14.0)

ylabel(['r',int2str(m-1),'Amplitude'])

hx=hilbert(z);

xr=real(hx);xi=imag(hx);

%计算瞬时振幅

sz=sqrt(xr.^2+xi.^2);

%计算瞬时相位

sx=angle(hx);

%计算瞬时频率

dt=diff(t);

dx=diff(sx);

sp=dx./dt;

figure(6)

plot(t(1:N-1),sp)

title('瞬时频率')

%计算HHT时频谱和边际谱

[A,fa,tt]=hhspectrum(c);

[E,tt1]=toimage(A,fa,tt,length(tt));

figure(3)

disp_hhs(E,tt1) %二维图显示HHT时频谱,E是求得的HHT谱pause

figure(4)

for i=1:size(c,1)

faa=fa(i,:);

[FA,TT1]=meshgrid(faa,tt1);%三维图显示HHT时频图

surf(FA,TT1,E)

title('HHT时频谱三维显示')

hold on

end

hold off

E=flipud(E);

for k=1:size(E,1)

bjp(k)=sum(E(k,:))*1/fs;

end

f=(1:N-2)/N*(fs/2);

figure(5)

plot(f,bjp);

xlabel('频率/ Hz');

ylabel('信号幅值');

title('信号边际谱')%要求边际谱必须先对信号进行EMD分解function [A,f,tt] = hhspectrum(x,t,l,aff)

error(nargchk(1,4,nargin));

if nargin< 2

t=1:size(x,2);

end

if nargin< 3

l=1;

end

if nargin< 4

aff = 0;

end

if min(size(x)) == 1

if size(x,2) == 1

x = x';

if nargin< 2

t = 1:size(x,2);

end

end

Nmodes = 1;

else

Nmodes = size(x,1);

end

lt=length(t);

tt=t((l+1):(lt-l));

for i=1:Nmodes

an(i,:)=hilbert(x(i,:)')';

f(i,:)=instfreq(an(i,:)',tt,l)';

A=abs(an(:,l+1:end-l));

if aff

disprog(i,Nmodes,max(Nmodes,100))

end

end

function disp_hhs(im,t,inf)

% DISP_HHS(im,t,inf)

% displays in a new figure the spectrum contained in matrix "im" % (amplitudes in log).

%

% inputs : - im : image matrix (e.g., output of "toimage")

% - t (optional) : time instants (e.g., output of "toimage")

% - inf (optional) : -dynamic range in dB (wrt max)

% default : inf = -20

%

% utilisation : disp_hhs(im) ; disp_hhs(im,t) ; disp_hhs(im,inf)

% disp_hhs(im,t,inf)

figure

colormap(bone)

colormap(1-colormap);

if nargin==1

inf=-20;

t = 1:size(im,2);

end

if nargin == 2

if length(t) == 1

inf = t;

t = 1:size(im,2);

else

inf = -20;

end

end

if inf>= 0

error('infdoitetre< 0')

end

M=max(max(im));

im = log10(im/M+1e-300);

inf=inf/10;

imagesc(t,fliplr((1:size(im,1))/(2*size(im,1))),im,[inf,0]);

set(gca,'YDir','normal')

xlabel(['time'])

ylabel(['normalized frequency'])

title('Hilbert-Huang spectrum')

function [f,z]=fftfenxi(t,y)

L=length(t);N=2^nextpow2(L);

%fft默认计算的信号是从0开始的

t=linspace(t(1),t(L),N);deta=t(2)-t(1);

m=0:N-1;

f=1./(N*deta)*m;

%下面计算的Y就是x(t)的傅里叶变换数值

%Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后[-2,2]之间的频谱值Y=fft(y);

z=sqrt(Y.*conj(Y));

复制代码

4.总结。

(1)边际谱与傅里叶谱的比较:

意义不同:边际谱从统计意义上表征了整组数据每个频率点的累积幅值分布,而傅里叶频谱的某一点频率上的幅值表示在整个信号里有一个含有此频率的三角函数组分。

作用不同:边际谱可以处理非平稳信号,如果信号中存在某一频率的能量出现,就表示一定有该频率的振动波出现,也就是说,边际谱能比较准确地反映信号的实际频率成分。而傅里叶变换只能处理平稳信号。

(2)HHT与Hilbert变换的比较:

Hilbert变换只是单纯地求信号的瞬时振幅,频率和相位,有可能出现没有意义的负频率;HHT变换先将信号进行EMD分解,得到的是各个不同尺度的分量,对每一个分量进行Hilbert变换后得到的是有实际意义的瞬时频率。

PS:运行上面的程序需要装时频工具箱,我仅将用到的emd分解的程序贴到下面。

希尔伯特的23个问题-精选教学文档

希尔伯特的23个问题 希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的希尔伯特23个问题。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。

下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔 集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973

希尔伯特23个数学问题7大数学难题

世界数学十大未解难题 (其中“一至七”为七大“千僖难题”;附录“希尔伯特23个问题里尚未解决 的问题”) 一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数 13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。 二:霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 三:庞加莱(Poincare)猜想

几种时频分析方法综述2——希尔伯特黄变换

几种时频分析方法综述2——希尔伯特—黄变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:希尔伯特—黄变换由经验模态分解(empirical mode decomposition ,简称EMD )和Hilbert 谱分析两部分组成。经验模态分解方法是一种自适应的、高效的数据分解方法。由于这种分解是以局部时间尺度为基础,因此,它适应于非线性、非平稳过程。通过经验模型分解,任何复杂的数据集都可以被分解为个数有限的、而且常常是为数不多的几个固有模函数(intrinsic mode functions ,简称IMF)的线性叠加。通过分解得到IMF 后,就可以对每一个分量做希尔伯特变换,得到其瞬时频率和幅度。本文详细对Hilbert-Huang Transform 的过程进行了阐述,并用算例分析指出了其优势所在。 关键词:希尔伯特—黄变换;时频分析技术; 1 希尔伯特—黄变换(Hilbert-Huang Transform ) 1.1 希尔伯特变换与瞬时频率(Hilbert Transform and instantaneous frequency ) 对于任意一个时间序列X(t),它的希尔伯特变换具有如下形式: -1 ()(t)=,-X Y P d t ττπτ ∞∞? 其中,P ——积分的柯西主值; 希尔伯特变换对于任何属于L p 空间中的函数都存立,即上式中X(t)∈L p (— ∞,+∞)。 通过上述定义,X(t)和Y(t)成为一组复共轭对,同时能够构造一个实部和虚部分为X(t)和Y(t)的解析信号(Analytic Signal)Z(t),Z(t)表示为: ()()(t)=(t)(t)=a ,i t Z X iY t e θ+ 其中, ()()1/222 (t)a =(t)+(t),arctan .X(t)Y t X Y t θ????= ????? 理论上讲有无数种方式去定义虚部,但是希尔伯特变换是唯一能够得到解析 信号结果的方法。 X(t)的Hilbert 变换实质上是将X(t)与函数1/t 在时域上做卷积,这就决定了通过X(t)的Hilbert 变换能够考察其局部特性。得到X(t)的瞬时相位函数后,其瞬时频率为: ()() (t).d w t dt θ= 1.2 经验模态分解与固有模态函数(Empiricalmode decomposition/EMD and Intrinsic mode function/IMF ) 固有模态函数需要满足两个条件:(1)极值与零点的数量必须相等或最多相差一个;(2)由局部极大值包络和局部极小值包络定义的平均包络曲线上任何一点的值为0;

希尔伯特的二十三个数学问题

希尔伯特的二十三个数学问题 1900年,德国数学家D.希尔伯特在巴黎第二届国际数学家大会上作了题为《数学问题 》的著名讲演,其中对各类数学问题的意义、源泉及研究方法发表了精辟的见解,而整个 讲演的核心部分则是希尔伯特根据19世纪数学研究的成果与发展趋势而提出的23个问题。 ①连续统假设1963年,P.J.科恩证明了:连续统假设的真伪不可能在策梅洛-弗伦克尔公理系统内判明。 ②算术公理的相容性1931年,K.哥德尔的“不完备定理”指出了用希尔伯特“元数学”证明算术公理相容性之不可能。数学相容性问题尚未解决。 ③两等高等底的四面体体积之相等M.W.德恩1900年即对此问题给出了肯定解答。 ④直线作为两点间最短距离问题希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 ⑤不要定义群的函数的可微性假设的李群概念A.M.格利森、D.蒙哥马利和L.齐平等于1952年对此问题作出了最后的肯定解答。 ⑥物理公理的数学处理公理化物理学的一般意义仍需探讨。至于希尔伯特问题中提到的概率论公理化,已由А.Н.柯尔莫哥洛夫(1933)等人建立。 ⑦某些数的无理性与超越性1934年,A.O.盖尔丰德和T.施奈德各自独立地 解决了问题的后半部分,即对于任意代数数□≠0,1,和任意代数无理数□证明了□□的超越性。 ⑧素数问题包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想最佳结果属于陈景润(1966),但离最终解决尚有距离。 ⑨任意数域中最一般的互反律之证明已由高木□治(1921)和E.阿廷(1927)解决。 ⑩丢番图方程可解性的判别1970年,□.В.马季亚谢维奇证明了希尔伯特所期望的一般算法不存在。 11 系数为任意代数数的二次型H.哈塞(1929)和C.L.西格尔(1936,1951)在这问题上获得重要结果。 12 阿贝尔域上的克罗内克定理推广到任意代数有理域尚未解决。 13 不可能用只有两个变数的函数解一般的七次方程连续函数情形于1957年由В.И.阿诺尔德解决。解析函数情形则尚未解决。 14 证明某类完全函数系的有限性1958年,永田雅宜给出了否定解决。 15 舒伯特计数演算的严格基础代数几何基础已由B.L.范·德·瓦尔登(1938~1940)与A.韦伊(1950)建立,但舒伯特演算的合理性仍待解决。 16 代数曲线与曲面的拓扑对该问题的后半部分,И.Г.彼得罗夫斯基曾声明证明了□=2时极限环个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。

希尔伯特23个数学问题及其解决情况

希尔伯特23个数学问题及其解决情况 已有 95 次阅读2011-10-3 21:02|个人分类:Mathematics&Statistics|系统分类:科研笔记|关键词:数学世纪亚历山大希尔伯特全世界 希尔伯特(HilbertD.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪 的数学家们去研究,这就是著名的“希尔伯特23个问题”。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项 就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: (1)康托的连续统基数问题。 1874年,康托猜测在可数集基数和实数集基数之间没有别的基数,即著名的连续统假设。1938年,侨居美国的奥地利数理逻辑学家哥德尔证明连续统假设与ZF 集合论公理系统的无矛盾性。1963年,美国数学家科恩(P.Choen)证明连续统假设与ZF公理彼此独立。因而,连续统假设不能用ZF公理加以证明。在这个意义下,问题已获解决。 (2)算术公理系统的无矛盾性。 欧氏几何的无矛盾性可以归结为算术公理的无矛盾性。希尔伯特曾提出用形式主义计划的证明论方法加以证明,哥德尔1931年发表不完备性定理作出否定。 根茨(G.Gentaen,1909-1945)1936年使用超限归纳法证明了算术公理系统的

emd 希尔伯特黄变换程序

(一)简单的EMD程序 function imf = emd(x) % Empiricial Mode Decomposition (Hilbert-Huang Transform) % imf = emd(x) % Func : findpeaks x = transpose(x(:));%转置 imf = []; while ~ismonotonic(x) %当x不是单调函数,分解终止条件 x1 = x; sd = Inf;%均值 %直到x1满足IMF条件,得c1 while (sd > 0.1) | ~isimf(x1) %当标准偏差系数sd大于0.1或x1不是固有模态函数时,分量终止条件 s1 = getspline(x1);%上包络线 s2 = -getspline(-x1);%下包络线 x2 = x1-(s1+s2)/2;%此处的x2为文章中的h sd = sum((x1-x2).^2)/sum(x1.^2); x1 = x2; end imf{end+1} = x1; x = x-x1; end imf{end+1} = x; % FUNCTIONS function u = ismonotonic(x) %u=0表示x不是单调函数,u=1表示x为单调的 u1 = length(findpeaks(x))*length(findpeaks(-x)); if u1 > 0, u = 0; else, u = 1; end function u = isimf(x) %u=0表示x不是固有模式函数,u=1表示x是固有模式函数 N = length(x); u1 = sum(x(1:N-1).*x(2:N) < 0); u2 = length(findpeaks(x))+length(findpeaks(-x)); if abs(u1-u2) > 1, u = 0; else, u = 1; end function s = getspline(x) %三次样条函数拟合成元数据包络线 N = length(x); p = findpeaks(x); s = spline([0 p N+1],[0 x(p) 0],1:N);

希尔伯特23个问题

连续统假设
提示:本条目的主题不是连续体假设。 在数学中,连续统假设(英语:Continuum hypothesis,简称 CH)是一个猜想, 也是希尔伯特的 23 个问题的第一题,由康托尔提出,关于无穷集的可能大小。 其为:
在一个基数绝对大于可列集而绝对小于实数集的集合。
康托尔引入了基数的概念以比较无穷集间的大小, 也证明了整数集的基数绝对小 于实集的基数。康托尔也就给了出连续统假设,就是说,在无限集中,比自然数 集{0,1,2,3,4......}基数大的集合中,基数最小的集合是实数集。而连续 统就是实数集的一个旧称。 更加形式地说,自然数集的基数为 为 。而连续统假设的观点认为实数集的基数
。由是,康托尔定义了绝对无限。
等价地,整数集的序数是 出不存在一个集合 使得
("艾礼富数")而实数的序数是
,连续续假设指
假设选择公理是对的, 那就会有一个最小的基数 连续统假设也就等价于以下的等式:
大于
, 而
连续统假设有个更广义的形式,叫作广义连续统假设(GCH),其命题为:
对于所有的序数 ,
库尔特·哥德尔在 1940 年用内模型法证明了连续统假设与 ZFC 的相对协调性, 保罗·柯恩在 1963 年用力迫法证明了连续统假设不能由 ZFC 推导。也就是说连 续统假设成立与否无法由 ZFC 确定。
作为希尔伯特第一问题
主条目:希尔伯特的 23 个问题

1900 年, 大卫· 希尔伯特以 “连续统假设是否成立” 作为 “希尔伯特第一问题” 。 Kurt Godel 和 Paul Cohen 确定了连续统假设在 ZFC 系统下,加上了选择公理, 也不能证明或证否。 Cohen 的结果并没有被广泛认同作为连续统假设问题的解决,而希尔伯特的问题 依然为当代研究的热门课题。(见 Woodin 2001a).
集合的大小
主条目:基数 要正式地列出这个猜想, 我们需要一些定义:假如两个集合 S 与 T 之间存在着一 个双射,我们会说这两个集合拥有相同的基数。直观的意思是在“T 的每个元素 只能配上仅仅一个 S 的元素,反之亦然”这个前提下,把 S 与 T 的元素拿出来配 对是可能的。因此,集合{蕉, 苹果, 橙}与集合{黄, 红, 绿}拥有相同基数。 当情况去到如整数集或有理数集等无穷集的情况时,事件就变得复杂得多。当考 虑所有有理数的集合时, 有些门外汉可能会天真地认为有理数理所当然地多于整 数,而有理数又显然少于实数,因此把连续统假设证否。但透过简单集合论的方 法, 我们能证明有理数集能与整数集形成一双射,因此有理集跟整数集有着一样 的大小, 而它们都被称为可列集。 对角论证法则证明了整数集跟连续统 (实数集) 的基数并不一样。 连续统假设亦指出,实数集中每一个子集,要么和整数集有相同的基数,要么和 实数集有相同的基数。
证明或证否的不可能性(在 ZFC 系统下)
康托尔相信连续统假设是对的,花了很多年尝试证明它,结果徒劳无功。它成为 了希尔伯特那重要难题名单中的第一条,并在 1900 年巴黎的国际数学家大会上 宣布此事。在那个时候,还没有公理化集合论的概念。 库尔特·哥德尔在 1940 年指出连续统假设不能在 ZFC 系统下证否,即使接受了 选择公理为前提。这个定理称为哥德尔定理。Paul Cohen 在 1963 年证明了连续 统假设同样不能在 ZFC 下被证明。因此,连续统假设“逻辑地独立于”ZFC。这 些结果都是以 ZFC 的公设系统本身并不存在自相矛盾(相容性)为假设大前提, 而这个大前提是被广泛接受为对的。 连续统假设并非被证明跟 ZFC 互相独立的第一个命题。 哥德尔不完备定理一个立 即的结论在 1931 年被发表,那是“‘存在着一个正式命题表达 ZFC 的相容性’ 乃独立于 ZFC”。有别于纯粹数学的,这个一致的命题乃是有着在数学之上的特 性。连续统假设和选择公理乃是最先被证明跟 ZF 集合论独立的命题。在 Paul Cohen 在 1960 年代发展出力迫法以前,这些独立性的证明并没有完成。

希尔伯特_黄变换谱及其在地震信号分析中的应用

第34卷第2期福州大学学报(自然科学版)Vol.34No.2 2006年4月Journal of Fuzhou University(Natural Science)Apr.2006 文章编号:1000-2243(2006)02-0260-05希尔伯特-黄变换谱及其在地震信号分析中的应用 陈子雄,吴琛,周瑞忠 (福州大学土木建筑工程学院,福建福州350002) 摘要:介绍了希尔伯特-黄变换(HHT)这一非线性、非平稳信号处理方法,并利用HHT处理了地震工程中 常用的El Centro地震波,得到了该信号的Hilbert谱、边际谱和能量谱,提取了该信号的主要动力特性,并与 该信号的Fourier分析结果进行了对比,显示出HHT这一方法的优越性. 关键词:希尔伯特-黄变换;经验模态分解;固有模态函数;地震信号 中图分类号:TU311.3文献标识码:A Hilbert-Huang transform spectru m and its application in seismic signal analysis CHEN Zi-xiong,W U Chen,ZHOU Rui-zhong (College of Civil Engineering and Architecture,Fuzhou University,Fuzhou,Fujian350002,China) Abstract:HHT is a ne w method to deal with non-linear and non-stationary data.El Centro earth- quake wave is analyzed by HHT.Through the way,Hilbert spectrum,marginal spectrum and energy spec trum are got and dynamic property is extrac ted.The comparison between HHT spectrum and Fourier spec trum is made and the superiority of HHT is demonstrated. Keyw ords:Hilbert-Huang transform;empirical mode decomposition;intrinsic mode function;seismic signal 地震信号具有短时、突变等特点,是一种典型的非平稳随机信号,必须对其进行分析与处理,才可以提取信号的主要特征.传统的Fourie r变换能够表述信号的频率特性,但不提供任何时域信息[1],而小波分析虽然在时域和频域都具有很好的局部化性质,但本质上仍是一种窗口可调的Fourier变换,在小波窗内的信号必须是平稳的,因而没有根本摆脱Fourier分析的局限[2].小波基的选择也是信号分析中的一个重要问题,另外,小波基的有限长会造成信号能量的泄漏,使信号的能量-频率-时间分布很难定量表述. Hilbert-Huang变换(HH T)的信号处理方法被认为是近年来对以Fourier变换为基础对线性和稳态谱分析的一个重大突破[2].它由经验模态分解(E mpirical Mode Decomposition,E MD)方法和Hilbert变换(H T)两部分组成,其核心是E MD分解.该方法采用了固有模态函数(Intrinsic Mode Function,I MF)概念以及将任意信号分解为I MF组成的思想,即E MD法,使得瞬时频率具有实际的物理意义[3].它不受Fourier分析的局限,可依据数据本身的时间尺度特征进行模态分解,分解过程中保留了数据本身的特性,再对各I MF分量进行Hilbert变换,得到信号能量在时间尺度上的分布规律,实现地震动力特性的提取. 1Hilbert-Huang变换 1.1经验模态分解和固有模态函数 经验模态分解(EMD)的目的是通过对非线性非平稳信号的分解获得一系列表征信号特征时间尺度的固有模态函数(I MF),使得各个I MF是窄带信号,可以进行Hilbert分析.首先设定两个条件:1整个时间序列的极大极小值数目与过零点数目相等或最多相差一个;o时间序列的任意点上,由极大值确 收稿日期:2005-07-27 作者简介:陈子雄(1981-),男,硕士研究生;通讯联系人:周瑞忠,教授. 基金项目:教育部博士点专项科研基金资助项目(20040386004)

希尔伯特的23个问题

希尔伯特(Hilbert D,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力

用希尔伯特黄变换(HHT)求时频谱和边际谱

用希尔伯特黄变换(HHT)求时频谱和边际谱 1.什么是HHT? HHT就是先将信号进行经验模态分解(EMD分解),然后将分解后的每个IMF分量进行Hilbert变换,得到信号的时频属性的一种时频分析方法。 2.EMD分解的步骤。

EMD分解的流程图如下:

3.实例演示。 给定频率分别为10Hz和35Hz的两个正弦信号相叠加的复合信号,采样频率fs=2048Hz的信号,表达式如下:y=5sin(2*pi*10t)+5*sin(2*pi*35t) (1)为了对比,先用fft对求上述信号的幅频和相频曲线。 代码: function fftfenxi clear;clc; N=2048; %fft默认计算的信号是从0开始的

t=linspace(1,2,N);deta=t(2)-t(1);1/deta x=5*sin(2*pi*10*t)+5*sin(2*pi*35*t); % N1=256;N2=512;w1=0.2*2*pi;w2=0.3*2*pi;w3=0.4*2*pi; % x=(t>=-200&t<=-200+N1*deta).*sin(w1*t)+(t>-200+N1*deta&t<=-200+N2*det a).*sin(w2*t)+(t>-200+N2*deta&t<=200).*sin(w3*t); y = x; m=0:N-1; f=1./(N*deta)*m;%可以查看课本就是这样定义横坐标频率范围的 %下面计算的Y就是x(t)的傅里叶变换数值 %Y=exp(i*4*pi*f).*fft(y)%将计算出来的频谱乘以exp(i*4*pi*f)得到频移后[-2,2]之间的频谱值 Y=fft(y); z=sqrt(Y.*conj(Y)); plot(f(1:100),z(1:100)); title('幅频曲线') xiangwei=angle(Y); figure(2) plot(f,xiangwei) title('相频曲线') figure(3) plot(t,y,'r') %axis([-2,2,0,1.2]) title('原始信号')

希尔伯特-黄变换(Hilbert-Huang Transform,HHT)

希尔伯特-黄变换(Hilbert-Huang Transform,HHT) 0 前言 传统的数据分析方法都是基于线性和平稳信号的假设,然而对实际系统,无论是自然的还是人为建立的,数据最有可能是非线性、非平稳的。 希尔伯特-黄变换(Hilbert-Huang Transform,HHT)是一种经验数据分析方法,其扩展是自适应性的,所以它可以描述非线性、非平稳过程数据的物理意义。 1 HHT简介[贺礼平.希尔伯特-黄变换在电力谐波分析中的应用研究[D].湖南:中南大学,2009]HHT的发展。 1995年,Norden E.Huang为研究水表面波构思出一种所谓“EMD--HSA”的时间序列分析法,通过这种方法他发现水波的演化不是连续的,而是突变、离散、局部的。 1998年,Norden E.Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。 HHT是一种新的分析非线性非平稳信号的时频分析方法,由两部分组成: 第一部分为经验模态分解(Empirical Mode Decomposition,EMD)(the sifting process,筛选过程),它是由Huang提出的,基于一个假设:任何复杂信号都可以分解为有限数目且具有一定物理定义的固有模态函数(Intrinsic Mode Function,IMF;也称作本征模态函数);EMD方法能根据信号的特点,自适应地将信号分解成从高到低不同频率的一系列IMF;该方法直接从信号本身获取基函数,因此具有自适应性,同时也存在计算量大和模态混叠的缺点。 第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,HSA),利用Hilbert变换求解每一阶IMF 的瞬时频率,从而得到信号的时频表示,即Hilbert谱。 简单说来,HHT处理非平稳信号的基本过程是:首先,利用EMD方法将给定的信号分解为若干IMF,这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的时间-频率-能量分布,即Hilbert谱。 在HHT中,为了能把复杂的信号分解为简单的单分量信号的组合,在进行EMD方法时,所获得的IMF 必须满足下列两个条件: 1)在整个信号长度上,一个IMF的极值点和过零点数目必须相等或至多只相差一点。 2)在任意时刻,由极大值点定义的上包络线和由极小值点定义的下包络线的平均值为零,也就是说IMF的上下包络线对称于时间轴。

希尔伯特23个问题

希尔伯特23问 希尔伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1.连续统假设1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2.算术公理的相容性欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大百科全书》数学卷指出,数学相容性问题尚未解决。 3.两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4.两点间以直线为距离最短线问题此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大百科全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼

希尔伯特·黄变换

HHT-希尔伯特·黄变换 1998年,Norden E. Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。 HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HAS)。简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF 表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个 IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的Hilbert谱。 与传统的信号或数据处理方法相比,HHT具有如下特点: (1)HHT能分析非线性非平稳信号。 传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理 论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。历 史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并 不能完全意义上处理非线性非平稳信号。HHT则不同于这些传统方法,它彻底摆脱了 线性和平稳性束缚,其适用于分析非线性非平稳信号。 (2)HHT具有完全自适应性。 HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。这点不同于傅立叶变换 和小波变换。傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小 波基,小波基也是预先选定的。在实际工程中,如何选择小波基不是一件容易的事, 选择不同的小波基可能产生不同的处理结果。我们也没有理由认为所选的小波基能够 反映被分析数据或信号的特性。 (3)HHT不受Heisenberg测不准原理制约——适合突变信号。 傅立叶变换、短时傅立叶变换、小波变换都受Heisenberg测不准原理制约,即时间窗口与频率窗口的乘积为一个常数。这就意味着如果要提高时间精度就得牺牲频率精度,反之亦然,故不能在时间和频率同时达到很高的精度,这就给信号分析处理带来一定 的不便。而HHT不受Heisenberg测不准原理制约,它可以在时间和频率同时达到很 高的精度,这使它非常适用于分析突变信号。 (4)HHT的瞬时频率是采用求导得到的。

(完整版)Hilbert希尔伯特环变换

黄锷院士在《On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data》中提出一种高维全息谱分析理论HHSA(Holo-Hilbert spectral analysis) 要理解HHSA方法,首先要了解希尔伯特变换、经验模态分解(EMD)、与希尔伯特-黄变换(HHT)。 学术背景: 在信号处理与频谱分析的目的是要描述信号的频谱含量在时间上变化,以便能在时间和频谱上同时表示信号的能量或者强度。傅里叶频谱并没有告诉我们哪些频率在什么时候出现。因此傅里叶变换无法表现信号频率成分的时变性,因此学术界先后发展出了短时傅里叶变换、窗口傅里叶变换、小波等手段,近似的求信号某一时刻的瞬时频率。 希尔伯特变换: 希尔伯特变换是以著名数学家大卫·希尔伯特(David Hilbert)来命名。通过希尔伯特变换,使得我们对短信号和复杂信号的瞬时参数的定义及计算成为可能,能够实现真正意义上的瞬时频率的提取,因而希尔伯特变换在信号处理上具有十分重要的地位,使得希尔伯特变换具有广泛的工程应用。 但在进一步的工程应用中,希尔伯特变换具有以下缺陷: (1)希尔伯特变换只能近似应用于窄带信号。但实际应用中,存在 许多非窄带信号,希尔伯特变换对这些信号无能为力。即便是 窄带信号,如果不能完全满足希尔伯特变换条件,也会使结果

发生错误。而实际信号中由于噪声的存在,会使很多原来满足 希尔伯特变换条件的信号无法完全满足; (2)对于任意给定时刻,通过希尔伯特变换运算后的结果只能在 一个频率值,即只能处理任何时刻为单一频率的信号; (3)对于一个非平稳的数据序列,希尔伯特变换得到的结果很大 程度上失去了原有的物理意义。 图1 傅立叶、小波与希尔伯特-黄变换对瞬时频率的分辨率 希尔伯特-黄变换: 针对上述的三个问题,黄锷院士在1998年提出希尔伯特-黄变换(HHT)。其基本思想是:讲一个非稳态、非线性的信号分解为若干个稳态信号,在对分解后的信号进行希尔伯特变换,分别求取对应的瞬时频率。 在这里将非稳态、非线性信号分解为多个稳态信号的算法成为经

有关希尔伯特的两个小故事

有关希尔伯特的两个小故事德国数学家大卫·希尔伯特(1862~1943)是20世纪最伟大的数学家之一.他对数学的贡献是巨大的和多方面的,研究领域涉及代数不变式,代数数域,几何基础,变分法,积分方程,无穷维空间,物理学和数学基础等.他在1899年出版的《几何基础》成为近代公理化方法的代表作,且由此推动形成了“数学公理化学派”,可以说希尔伯特是近代形式公理学派的创始人.1900年希尔伯特38岁时在巴黎举行的第二届国际数学家大会上作了题为《数学问题》的著名讲演.在讲演中,他根据19世纪数学研究的成果与发展趋势,以卓越的远见和非凡的洞察力,提出了新世纪所面临的23个问题.这23个问题涉及现代数学的大部分重要领域(著名的哥德巴赫猜想就是第8个问题中的一部分),对这些问题的研究有力地推动了20世纪各个数学分支的发展. 本文介绍关于希尔伯特青年时代的两个小故事. 一、老师在课堂上现想现推 1880年秋天,18岁的希尔伯特进人家乡的哥尼斯堡大学,他不顾当法官的父亲希望他学习法律的愿望,毫不犹豫地进了哲学系学习数学(当时的大学,数学还设在哲学系内).希尔伯特发现当时的大学生活要多自由有多自由.意想不到的自由,使许多年轻人把大学第一年的宝贵时光都花费在学生互助会的传统活动饮酒和斗剑上,然而对希尔伯特来说,大学生活的更加迷人之处却在于他终于能自由地把全部精力给予数学了. 大学的第一学期,希尔伯特选学了积分学,矩阵论和曲面的曲率论三门课.根据规定。第二学期可以转到另一所大学听课,希尔伯特选择了海德尔堡大学,这是当时德国所有大学中最讨人喜欢和最富浪漫色彩的学校.希尔伯特在海德尔堡大学选听拉撒路·富克斯的课.富克斯是微分方程方面的名家,他的名字和线性微分方程几乎成了同义语.他讲课确实与众不同,给人的印象很深.课前他不大做准备,对要讲的内容,在课堂上现想现推.于是常常发生这样的情形,某个问题在黑板上

希尔伯特-黄变换说明及程序(标准程序)

目录 ? 1 本质模态函数(IMF) ? 2 经验模态分解(EMD) ? 3 结论 ? 4 相关条目 ? 5 参考文献 ? 6 外部链接 [编辑]本质模态函数(IMF) 任何一个资料,满足下列两个条件即可称作本质模态函数。 ⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。 ⒉在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。

因此,一个函数若属于IMF,代表其波形局部对称于零平均值。此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。 [编辑]经验模态分解(EMD)

EMD算法流程图 建立IMF是为了满足希尔伯特转换对于瞬时频率的限制条件之前置处理,也是一种转换的过程。我们将IMF来做希尔伯特转换可以得到较良好的特性,不幸的是大部分的资料并不是IMF,而是由许多弦波所合成的一个组合。如此一来,希尔伯特转换并不能得到正确的瞬时频率,我们便无法准确的分析资料。为了解决非线性(non-linear)与非稳态(non-stationary)资料在分解成IMF时所遇到的困难,便发展出EMD。 经验模态分解是将讯号分解成IMF的组合。经验模态分解是借着不断重复的筛选程序来逐步找出IMF。 以讯号为例,筛选程序的流程概述如下: 步骤 1 : 找出中的所有局部极大值以及局部极小值,接着利用三次样条 (cubic spline),分别将局部极大值串连成上包络线与局部极小值串连成下包络线。 步骤 2 : 求出上下包络线之平均,得到均值包络线。 步骤 3 : 原始信号与均值包络线相减,得到第一个分量。 步骤 4 : 检查是否符合IMF的条件。如果不符合,则回到步骤1并且将 当作原始讯号,进行第二次的筛选。亦即 重复筛选次 直到符合IMF的条件,即得到第一个IMF分量,亦即

相关主题
文本预览
相关文档 最新文档