当前位置:文档之家› 纯电阻性负载与非线性负载

纯电阻性负载与非线性负载

纯电阻性负载与非线性负载
纯电阻性负载与非线性负载

现象解释:

可能很多同学都有这种经历,在寝室里4台电脑开着,电扇开着、日光灯开着都可以正常运行,没有任何问题,但是什么电器都不开,就插了一个小小的电热杯,电表就跳闸了。为什么会出现这种现象呢?电脑的电源都是250W~300W的,4台电脑功率之和绝对在一个电热杯之上,但为什么可以带4台电脑同时工作但不能接入一个300W的电热杯呢?两者有什么不同呢?下面我们就来研究一下。

我们平时使用的最多的加热装置就是热得快、电热杯或者电饭锅,它们的工作原理就是电流流过电阻丝,电阻丝发热来烧水。对于220V电网来说,这类负载相当于一个纯电阻接到电网里,学过电路的同学都知道,交流220V加到电阻上,其两端的电压波形和流过电阻的电流波形是同相的,也就是说,两者相位差是0。这类负载我们称之为纯电阻性负载。

计算机相当于什么负载呢?我们知道我们的电脑机箱的后上方,有一个方块状的铁盒子,那就是计算机的电源。这个电源对于电网来说,就是电网的一个负载。计算机的电源是开关电源(注意,这可不是有开关的电源哦),属于非线性负载(也叫整流性负载)。开关电源的原理是先把

220V@50hz交流电整流为高压直流,再把高压直流逆变为高压高频交流,再通过高频变压器降为低压高频交流,然后再转为低压直流输出,这种电源的效率要比传统稳压器高得多。把计算机的开关电源当做220V电网的一个负载,这种负载在220V市电输入端看来等效于一个容性负载,虽然它的电压波形还是正弦波,但是它的电流波形已经畸变了,不再是规则的正弦波,而是接近脉冲波的波形(其实这种非线性负载才是对电网有危害的恶性负载,会给电网带来高次谐波)。

那么电表如何识别这两种负载呢?方法有很多种,但都是通过单片机+AD转换器,对220V输出端的电压电流的波形实时采样,然后编制相应的程序,通过算法,判断这两种负载的功率各占多大的比例,仅仅限制纯电阻性负载的接入。

“识别器”限制的不是用电总功率,而是瞬间的阶跃功率,如果阶跃功率大于事先的设定,系统将自动切断负载电路,在间隔一段时间后,系统自动尝试性恢复供电,经过识别判断没有大功率阻性电热负载接入电路,从而继续正常供电。

给宿舍安装“智能负载识别器”的目的是很明确的,就是为了限制违章电器的使用,消除隐患,保障广大师生的生命财产安全。

识别的原理是:通过电表测量出增加那部分负载的功率和功率因数,因为电热杯之类的阻性负载的功率因数较高,达到0.99以上,再通过判断增加的功率,二者即识别出恶性负载实行断电控制。目前我所能做到的识别是:功率因数大于0.9999998,最小增量负载大于20W。即可实现断电。

之后由管理员来实现送电。达到安全用电的目的,以保护学生朋友们的人身和财产安全

注:

功率因数:在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S.

理论解释:

1线性负载的定义和特征

在我国UPS的国标GB/T7260-3中对线性负载有明确的定义:“3.2.6 线性负载 linear load 当施加可变正弦电压时,其负载阻抗参数(Z)恒定为常数的那种负载。”

在交流电路中,负载元件有电阻R、电感L和电容C三种,它们在电路中所造成的结果是不相同的。

在纯电阻电路中,正弦电压U施加在一个电阻R上,则产生电流I也是正弦性的,电流I与电压U相位是相同的。

如:电压u=Umsinωt,则i=Imsinωt;电流的有效值I=U/R。电流通过电阻发热,电能转换为热能,即P=UI=I2R。

在纯电感电路中,正弦电压施加在一个电感线圈L上,因电流是交变的,造成在线圈中产生感应电势,使得电流虽然仍然是正弦的,但相位上却滞后电压90°(电角度为π/2)。

如电压u=Umsinωt,则i=Imsin(ωt-π/2)。电流的有效值I=U/(2πf L)=U/XL;XL=2πf L称之为感抗。电流在电路中流动,将电源的电能带到线圈中,转换为磁能,然后又把磁能转换为电能返回电源。所以在电路中没有功率消耗,平均功率为零。无功功率Q=UI=I2XL。

在纯电容电路中,正弦电压施加在一个电容量为C的电容器上,因电流携带电荷积累在电容的极板上产生电容电压,使得电流虽然仍然是正弦的,但相位上却超前电压90°(电角度为π/2)。

如电压u=Umsinωt,则i=Imsin(ωt+π/2);电流有效值

I=2πfCU=U/XC;XC=1/(2πfC)。称之为容抗。电流在电路中流动,将电源的电能带到电容器中,转换为电场能量,然后又把电场能量转换为电能返回电源。所以在电路中没有功率消耗,平均功率为零。无功功率Q=UI=I2XC。一般将感抗和容抗统称为电抗。

在一般具有电阻R和电感L、电容C的线性负载上(RLC线性电路),施加正弦性电压,则电流仍然是正弦性的,但是电流与电压之间的相位关系,

既不是同相也不是相差90°,而是相差一个φ角。

如电压u=Umsinωt,则i=Imsin(ωt±φ)。电流有效值I=U/Z。Z即为阻抗,它与电阻、电抗的关系是:Z2=R2+X2。电抗为感抗XL和容抗XC的综合值。相位差φ角是由负载中的R、L、C参数决定的。在呈现为感性时φ为正,容性时φ为负。tgφ=X/R。阻抗Z、电抗X和电阻R三者构成阻抗直角三角形。负载上的视在功率S=UI,有功功率P=UIcosφ,无功功率

Q=UIsinφ,S2=P2+Q2,三者构成功率三角形。

在这里要说明一点,决定负载特征的不仅是负载阻抗的大小,还有功率因数的大小。综合来讲,在线性负载中,有纯阻性(功率因数为1)和感性(功率因数小于1)、容性(功率因数小于1),以及纯感性和纯容性(功率因数均为0)。上述这些负载都属于线性负载,不能认为只有功率因数为1的纯阻性负载是线性的,功率因数不为1的其他负载就不是线性的。这是本文所要特别强调的。

2 非线性负载的定义和特征

在我国UPS的国标GB/T7260-3中对非线性负载也有明确的定

义:“3.2.7 非线性负载 non-linear load 负载阻抗参数(Z)不总为恒定常数,随诸如电压或时间等其它参数而变化的那种负载。”

非线性负载的种类繁多,在UPS供电的负载中多是整流滤波型,UPS的输入也是整流滤波型。因此,IEC标准中便制定了一个基准非线性负载(Reference non-linear load),做为标准的附录列入标准中。用这个基准非线性负载检验UPS带非线性负载的能力。在UPS国标GB/T7260-3中,也在附录E中给出了这个基准非线性负载电路,如图1所示。

这个电路之所以是非线性负载,就是因为在输入端施加正弦电压u时,当电压瞬时值大于电容上的直流电压,则电源给负载R1供电,并向电容充电。当电压瞬时值小于电容上直流电压时,因二极管的阻断作用,电源不再供电,而由电容放电使负载保持电流的连续性。所以这个负载对于电源呈现的阻抗是随电压瞬时值的大小而改变的。

非线性负载的一个重要特点就是当对负载施加正弦形电压时,电流并不是正弦形的。图1的负载电路交流电流是间断的、尖峰的。而图2是这种非线性负载的电压和电流的波形图,由此可以看出,电流是一个尖峰形的。

分析和计算非线性电路中的电流和功率,使用的方法是用傅立叶函数分析

的方法,用等效的正弦量代替非正弦量。在这个具体电路中:电源输入电压

u=u1+u3+u5+u7+…,此处u1是基波电压分量,因为交流输入电源可以认为是正弦形的,所以没有高次谐波分量,则u=u1。此处交流电流

i=i1+i3+i5+i7+i9+i11……。

每一次谐波电流都是正弦形的,它们都有自己的幅值、有效值(I1、I3、I5……)以及电流与同频率电压之间的相位差(φ1、φ3、φ5、φ7……)。

以等效的正弦形电流替代非正弦电流,其有效值的平方等于各谐波分

量有效值的平方和,即:I2=I12+I32+I52+I72+……。在这个电路中,瞬时功率值p=ui=u1(i1+i3+i5+i7+i9+i11…)。平均功率P=U1I1cosφ1=UI1cosφ1,亦称之为有功功率。与线性电路相同,令电路中的视在功率为S,S=UI。同样无功功率为Q,三个功率之间的关系仍为S2=P2+Q2。有功功率与视在功率的比值为电路中的功率因数 :PF=P/S=UI1cosφ1/UI=I1cosφ1/I=λcosφ1。系数λ=I1/I<1。功率因数PF值比基波的相位差的功率因数cosφ1还要小一些。谐波中高次谐波占的比例越大,则λ越小,功率因数也就越小。这样就可以把一个非线性的负载化为线性负载进行计算和分析。

在诸多负载中,非线性负载很复杂,电流波形种类很多。有尖峰的、有双峰的等等,仅仅用其电流大小来说明还是不够的。为了说明非线性与线性电流差别的程度,用一个参数来表示,这就是峰值因数。在GB/T7260-3标准中是这样说的:“3.3.29 峰值因数peak factor周期量的峰值对方均根值之比。

注:术语“尖峰因数”(crest factor)与此同义。其中方均根值就是平常所说的有效值。

一般最大峰值因数的负载是个人计算机,峰值因数约为2.7。一个计算机系统的电流峰值因数约为2.3左右。正弦电流的峰值因数则是1.4。所以一般UPS都把能带非线性负载的峰值因数定为3,完全能满足负载的需要。特别是大型UPS的峰值因数为3,就更没有问题

单相双半波晶闸管整流电路设计(纯电阻负载)

电力电子技术课程设计说明书 单相双半波晶闸管整流电路设计 (纯电阻负载) 系、部:机电工程系 学生姓名:乔元培 指导教师:段金英 专业:自动化 组员:乔垒垒乔元培 班级:自动化1002班 完成时间:2012年12月11日

摘要 电力电子技术,又称“功率电子学”(英文:Power Electronics),简称PE,是应用于电力领域,使用电力电子元件对电能进行变换和控制的电子技术。电力电子技术分为电力电子元件制造技术和变流技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。 1974年,美国的W. Newell提出:电力电子学是由电力学、电子学和控制理论三个学科交叉而行成。这一观点被全世界普遍接受。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 电力电子技术自诞生已来,以其应用范围广泛,迅速的发展起来,但是我们在关心电力电子技术发展的过程中,不难发现,电力电子技术之所以会迅速的发展起来,是因为其实用性高,应用范围广,所以电力电子工作者要去挖掘电力电子的新作用,同时也要关心电力电子技术的未来走向,积极关注本行业的最新成果。 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好课程设计,因而我们进行了此次课程设计。又因为整流电路应用非常广泛,而单相全控桥式晶闸管整流电路又有利于夯实基础,故我们将单结晶体管触发的单相晶闸管全控整流电路这一课题作为这一课程的课程设计的课题。

带电阻负载的三相全控桥式整流电路1

链接课题:带电阻负载的三相全控桥式整流电路 1、操作条件 (1)、带有三相交流电源的电力电子实训台 (2)、双踪示波器一台 (3)、电阻-电感负载箱 (4)、万用表 2、操作内容: (1)、根据已知整流变压器TR和同步变压器TS的联接组别号画出其接线图、标明相序。 (2)、画全三相桥式全控整流电路带电阻性负载(白炽灯)的系统接线图。 (3)、在电力电子技术实训装置上进行接线、调试并演示其功能。(4)、正确使用示波器测量并记录有关波形。 3、操作要求: (1)、在下图中,根据已知整流变压器TR和同步变压器TS的联接组别号(具体要求在附表中选择其中一个方案,下同),画出其接线图、标明相序,并画全三相桥式全控整流电路带电阻性负载(白炽灯)的系统接线图,然后在电力电子技术实训装置上完成其接线。 (2)、测定交流电源的相序,正确选择“单脉冲”或“双脉冲”,在

触发电路正常后,适当调整同步电压相位调整电位器和总偏移电位器,使输入控制电压UC = 0时,初始脉冲对应在α=120°处,输出Ud = 0。 (3)、调节UC电位器,用示波器观察α从120 °~0 °变化时ud 的波形, 要求输出电压6个波头均匀平整,不缺相。 (4)、用示波器观察并记录同步电压及锯齿波电压的波形,同时记录α为某角度时的输出电压ud和晶闸管VT两端的波形及触发脉冲的波形 4、实验分析及工作原理 工作原理和波形分析: (1) α =0°时的情况 A、对于共阴极组的3个晶闸管,阳极所接交流电压值最大的一个导通; B、对于共阳极组的3个晶闸管,阴极所接交流电压值最低(或者说负得最多)的导通; C、任意时刻共阳极组和共阴极组中各有1个SCR处于导通状态。其余的SCR均处于关断状态。 D、触发角α的起点,仍然是从自然换相点开始计算,注意正负方向均有自然换相点。

单相双半波晶闸管整流电路设计(纯电阻负载)

1 单相双半波晶闸管整流电路供电方案的选择 1.1 单相桥式全控整流电路 此电路对每个导电回路进行控制,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。并且单相桥式全控整流电路具有输出电流脉动小,功率因素高的特点。但是,电路中需要四只晶闸管,且触发电路要分时触发一对晶闸管,电路复杂,两两晶闸管导通的时间差用分立元件电路难以控制。 1.2 单相双半波可控整流电路 单相双半波可控整流电路又称单相全波可控整流电路。此电路变压器是带中心抽头的,在u2正半周T1工作,变压器二次绕组上半部分流过电流。u2负半周,VT2工作,变压器二次绕组下半部分流过反方向的电流。单相全波可控整流电路的U d波形与单相全控桥的一样,交流输入端电流波形一样,变压器也不存在直流磁化的问题。当接其他负载时,也有相同的结论。因此,单相全波与单相全控桥从直流输入端或者从交流输入端看均是一致的。适用于输出低压的场合作电流脉冲大(电阻性负载时)。在比较两者的电路结构的优缺点以后决定选用单相全波可控整流电路作为主电路。

具体供电方案 电源电压:交流100V/ 50Hz 1.3 变压器相关参数的计算 电源电压交流100/ 50Hz ,输出功率:500W,移相范围:0 -180°。设R=1.25Ω ,α=0° P=Ud2/R U d =25V 变压器一、二次侧电流 P=Id2R Id=20A U1/Ud=100/25 N1/N2=4/1 I1=I d/4=5 A 变压器容量 S=U 1i 1 =100×5=0.5kVA 变压器型号的选择 N1:N2=4:1 S=0.5kV A

单相桥式全控整流电路设计_(纯电阻负载)

单相桥式全控整流电路的设计一、 1. 设计方案及原理 1.1 原理方框图 触发电路 驱动电路 整流主电路 负载 1.2 主电路的设计 电阻负载主电路主电路原理图如下: 1.3主电路原理说明 1.3.1电阻负载主电路原理 (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿 b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

1.4整流电路参数的计算 电阻负载的参数计算如下: (1) 整流输出电压的平均值可按下式计算 U d=0.45U2(1+cos ) (1-1) 当α=0时,取得最大值,即= 0.9 ,取=100V则U d =90V,α=180o 时,=0。α角的移相范围为180o。 (2) 负载电流平均值为 I d=U d/R=0.45U2(1+cos )/R (1-2) (3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R (1-3) (4)流过晶闸管电流有效值为 IVT= I2/ (1-4) 二、元器件的选择 晶闸管的选取 晶闸管的主要参数如下: ①额定电压U TN 通常取和中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。在选用管子时,额定电压应为正常工作峰值电压的2~3倍, 以保证电路的工作安全。 晶闸管的额定电压 U TN=(2~3)U TM(2-1) U TM:工作电路中加在管子上的最大瞬时电压

电力电子课程设计---三相半波可控整流电路电阻性负载

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由 变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控 整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。 The ac power rectifier circuit is converted to dc can circuit. Most by rectifier circuit transformer, rectifier main circuit and filters etc. It in dc motor speed, the motives of generator excitation adjustment, electrolysis, electroplating and other areas to be widely applied. Usually by rectifier circuit main circuit, filter and transformers group. Since 1970s, main circuit multi-purpose silicon rectifier diode and the brake canal composition. Filters connect in the main circuit and load between filter, used in the dc voltage ripple exchange component. Transformer Settings or not inspect particular case and decide。Transformer's role is to communicate with the dc input voltage output voltage and the matching between exchange network and electrical isolation between rectifier circuit (can reduce the power grid and circuit of electric interference and fault between effects). There are many kinds of rectifier circuit, half wave, rectifier circuit single-phase bridge type half accused of rectifying circuit, single-phase bridge type all control the rectifier circuit, three-phase bridge type half accused of rectifying circuit, three-phase bridge type all control the rectifier circuit, etc Keywords: rectifier, variable pressure, trigger thyristor and rated 1主电路设计及原理 1.1 主电路设计 其原理图如图1所示。

单相桥式全控整流电路设计-(纯电阻负载)word版本

单相桥式全控整流电路设计-(纯电阻负载)

单相桥式全控整流电路的设计 一、 1. 设计方案及原理 1.1 原理方框图 1.2 主电路的设计 电阻负载主电路主电路原理图如下: R id

1.3主电路原理说明 1.3.1电阻负载主电路原理 (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电 压。因此在0~α区间,4个晶闸管都不导通。假如4个晶 闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状 态,晶闸管VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3 →R→VT2→α→T的二次绕组→b流通,电源电压沿正半周 期的方向施加到负载电阻上,负载上有输出电压(ud=- u2)和电流,且波形相位相同。 1.4整流电路参数的计算 电阻负载的参数计算如下: (1)整流输出电压的平均值可按下式计算 U d=0.45U2(1+cos)(1-1)当α=0时, U取得最大值,即d U= 0.9 2U,取2U=100V则U d d =90V,α=180o时, U=0。α角的移相范围为180o。 d (2)负载电流平均值为

I d =U d /R=0.45U 2(1+cos )/R (1-2) (3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R )sin 21(π απαπ-+ (1-3) (4)流过晶闸管电流有效值为 IVT= I2/2 (1-4) 二、元器件的选择 晶闸管的选取 晶闸管的主要参数如下: ①额定电压U TN 通常取DRM U 和RRM U 中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。在选用管子时,额定电压应为正常工作峰值电压的2~3倍,以保证电路的工作安全。 晶闸管的额定电压 {}RRM DRM TN U U U ,min = U TN =(2~3)U TM (2-1) U TM :工作电路中加在管子上的最大瞬时电压 ②额定电流I T(AV) I T(AV) 又称为额定通态平均电流。其定义是在室温40°和规定的冷 却条件下,元件在电阻性负载流过正弦半波、导通角不小于170°的电路中,结温不超过额定结温时,所允许的最大通态平均电流值。

负载与电阻

负载与电阻 曾见一本书这样写道:“人们通过生产斗争和科学实验,总结出电压U、电流I、负载 (电阻)R三者之间的关系为。这是一个基本规律,称为欧姆定律。”很明显,这段话把负载和电阻完全等同起来了。正是在这种思想和观念的影响、支配下,有些人往往认为:在电压一定的电路中,负载大就是指电阻大,负载小就是指电阻小。我们认为,以上思想和观念都是错误的。事实上,负载和电阻并不完全是一码事,它们是两个可区分的概念,当然也有一定的联系。下面我们就来对这个问题作一定的阐述和分析。 关于负载这个概念的内涵,就一般而言,可有两种理解。一种理解是:负载就是指广义的耗(吸)能器。在电学范围内,负载就是各种用电设备,它们是取用电能的装置,其作用是将电能转换成为其他形式的能量,为人们所利用。例如,白炽灯把电能转换成为能(主要的);电炉把电能转换成热能;电动机把电能转换成机械能;扬声器把电能转换成声能;蓄电池把电能转换成化学能等等。在力学范围内,负载主要是指能吸收机械能量的一种特殊装置。 可以这么说,如把负载作为一种广义的耗(吸)能器来理解,则其意义多少犹如我们在科学实验和日常生活中把能盛放任何物体的一切器件统称为“容器”一样,它仅是一个反映特殊功能的名称而已,别无他意。把负载理解成上述意义多见于电工学和电子学中。如“用变压器耦合,是为了阻抗匹配,最大限度地将功率送到负载”。“在三相电路中,负载的联 接有两种方式。”“三极管集电极电流流过负载电阻。”负载还有直流负载与交流负载之分,电子线路中的直流负载线和交流负载线就是一例。这种负载之称,仅是为了区别流过负载的电流是直流还是交流,它们仍保持着负载的原涵义。 负载的另一种理解是:在电学范围,负载就是一切用电设备从电源所获取的功率,又负载就是负荷,负荷乃直接指动力(如电力)设备在运行时所产生、转换、消耗的功率”。例如,发电机在运行时的负载就是指当时所产生的千瓦或千伏安数。实际负荷与额定负荷相等时称为“满负荷”或“全负荷”,小于额定负荷时称为“低负荷”,超过额定负荷时则称为“过负荷”。如按这种理解,则负载就可看作是功率的代名字(或称一种含有特殊含义的功率),它有大小之分,有单位,有量纲。 对负载的两种涵义明确以后,接下来我们就可回答负载是否就是电阻等问题。 根据负载就是用电设备的涵义,那就不难判断,电阻(器)或纯电阻性器件就是负载,而负载却不一定是电阻(器)或电阻性器件,因为负载的外延是包括电阻(器)在内的一切用电设备,它可以是电阻性的,也可以是电感性的(常称电感性负载),或它们的组合,如电动机、电炉、扬声器等。那欧姆定律中的R到底能不能说成是负载?显然不能!因为定律中的R明明是指用电器的电阻值。 若欲论负载的大小,那就只能按上述第二种涵义来理解负载。此时, 负载与电阻还是两个截然不同的概念。譬如直流电路中一般用电阻器 (耗能元件)符号R来代表用电器,如图所示。

电力电子设计(单相全控桥式-纯电阻负载)

电力电子 课程设计 单相全控桥式晶闸管整流电路设计(纯电阻负载) 院别:机械与电子工程学院 专业班级:电气工程自动化0803 姓名:徐浩 学号:2008011251 指导老师:施云

2011年1 月6日 电力电子课程设计 一、设计课题目 单相全控桥式晶闸管整流电路设计(纯电阻负载) 二、设计要求 1、单相全控桥式晶闸管整流电路的设计要求为: 负载为阻性负载. 2、技术要求: (1).电网供电电压:交流100V/50Hz; (2).输出功率:500W; (3).移相范围:0度—180度; 三、课程设计的性质和目的 1、性质:是电气信息专业的必修实践环节; 2、目的: (1).培养学生综合运用知识解决问题的能力与实际动手能力; (2).加深理解《电力电子技术》课程的基本理论; (3).初步掌握电力电子电路的设计方法。

前言 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方

法,得到了广泛应用。在电能的生产和传输上,目前是以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。整流的基础是整流电路。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。 第一章单相桥式整流电路供电方案的选择 1.1 具体供电方案 电源电压:交流100V/ 50Hz

单相桥式全控整流电路(电阻性负载)#(优选.)

1.单相桥式全控整流电路(电阻性负载) 1.1单相桥式全控整流电路电路结构(电阻性负载) 单相桥式全控整流电路用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成共阳极,每一只晶闸管是一个桥臂。单相桥式全控整流电路(电阻性负载)电路图如图1所示 : 图1 单相桥式全控整流电路(电阻性负载) 1.2单相桥式全控整流电路工作原理(电阻性负载) 1)在u2正半波的(0~α)区间: 晶闸管VT1、VT4承受正压,但无触发脉冲。四个晶闸管都不通。假设四个晶闸管的漏电阻相等,则uT1.4= uT2.3=1/2 u2。 2)在u2正半波的ωt=α时刻: 触发晶闸管VT1、VT4使其导通。电流沿a→VT1→R→VT4→b→Tr的二次绕组→a流通,负载上有电压(ud=u2)和电流输出,两者波形相位相同且uT1.4=0。此时电源电压反向施加到晶闸管VT2、VT3上,使其承受反压而处于关断状态,则uT2.3=1/2 u2。晶闸管VT1、VT4一直导通到ωt=π为止,此时因电源电压过零,晶闸管阳极电流下降为零而关断。

3)在u2负半波的(π~π+α)区间: 晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关断状态。此时,uT2.3=uT1.4= 1/2 u2。 4)在u2负半波的ωt=π+α时刻: 触发晶闸管VT2、VT3,元件导通,电流沿b→VT3→R→VT2→a→Tr的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。此时电源电压反向加到晶闸管VT1、VT4上,使其承受反压而处于关断状态。晶闸管VT2、VT3一直要导通到ωt=2π为止,此时电源电压再次过零,晶闸管阳极电流也下降为零而关断。晶闸管VT1、VT4和VT2、VT3在对应时刻不断周期性交替导通、关断。 1.3单相桥式全控整流电路仿真模型(电阻性负载) 单相桥式全控整流电路(电阻性负载)仿真电路图如图2所示: 图2 单相桥式全控整流电路(电阻性负载)仿真电路图

常用负载分类

常用负载分类

电气设计中低压交流接触器的选用 2006-6-24 12:21 页面功能【字体:大中小】【打印】【关闭】 低压交流接触器主要用于通断电气设备电源,可以远距离控制动力设备,在接通断开设备电源时避免人身伤害。交流接触器的选用对动力设备和电力线路正常运行非常重要。 1、交流接触器的结构与参数 一般使用中要求交流接触器装置结构紧凑,使用方便,动静触头的磁吹装置良好,灭弧效果好,最好达到零飞弧,温升小。按照灭弧方式分为空气式和真空式,按照操动方式分为电磁式、气动式和电磁气动式。 接触器额定电压参数分为高压和低压,低压一般为380V,500V,660V,1140V 等。 电流按型式分为交流、直流。电流参数有额定工作电流、约定发热电流、接通电流及分断电流、辅助触头的约定发热电流及接触器的短时耐受电流等。一般接触器型号参数给出的是约定发热电流,约定发热电流对应的额定工作电流有好几个。比如CJ20-63,主触头的额定工作电流分为63A,40A,型号参数中63指的是约定发热电流,它和接触器的外壳绝缘结构有关,而额定工作电流和选定的负载电流、电压等级有关。 交流接触器线圈按照电压分为36、127、220、380V等。接触器的极数分为2、3、4、5极等。辅助触头根据常开常闭各有几对,根据控制需要选择。 其他参数还有接通、分断次数、机械寿命、电寿命、最大允许操作频率、最大允许接线线径以及外形尺寸和安装尺寸等。接触器的分类见表1 表1 常用接触器类型

2、交流接触器的选用原则 接触器作为通断负载电源的设备,接触器的选用应按满足被控制设备的要求进行,除额定工作电压与被控设备的额定工作电压相同外,被控设备的负载功率、使用类别、控制方式、操作频率、工作寿命、安装方式、安装尺寸以及经济性是选择的依据。选用原则如下: (1)交流接触器的电压等级要和负载相同,选用的接触器类型要和负载相适应。 (2)负载的计算电流要符合接触器的容量等级,即计算电流小于等于接触器的额定工作电流。接触器的接通电流大于负载的启动电流,分断电流大于负载运行时分断需要电流,负载的计算电流要考虑实际工作环境和工况,对于启动时间长的负载,半小时峰值电流不能超过约定发热电流。 (3)按短时的动、热稳定校验。线路的三相短路电流不应超过接触器允许的动、热稳定电流,当使用接触器断开短路电流时,还应校验接触器的分断能力。 (4)接触器吸引线圈的额定电压、电流及辅助触头的数量、电流容量应满足控制回路接线要求。要考虑接在接触器控制回路的线路长度,一般推荐的操作电压值,接触器要能够在85~110%的额定电压值下工作。如果线路过长,由于电压降太大,接触器线圈对合闸指令有可能不起反映;由于线路电容太大,可能对跳闸指令不起作用。 (5)根据操作次数校验接触器所允许的操作频率。如果操作频率超过规定值,额定电流应该加大一倍。 (6)短路保护元件参数应该和接触器参数配合选用。选用时可参见样本手册,样本手册一般给出的是接触器和熔断器的配合表。 接触器和空气断路器的配合要根据空气断路器的过载系数和短路保护电流系 数来决定。接触器的约定发热电流应小于空气断路器的过载电流,接触器的接通、断开电流应小于断路器的短路保护电流,这样断路器才能保护接触器。实际中接触器在一个电压等级下约定发热电流和额定工作电流比值在1~1.38之间,而断路器的反时限过载系数参数比较多,不同类型断路器不一样,所以两者间配合很难有一个标准,不能形成配合表,需要实际核算。

IGBT降压斩波电路设计(纯电阻负载)

课程设计任务书 学生:专业班级: 指导教师:工作单位: 题目:IGBT降压斩波电路设计(纯电阻负载) 设计条件: 1、输入直流电压:Ud=150V 2、输出功率:250W 3、开关频率4KHz 4、占空比5%~50% 5、输出电压脉率:小于5% 要求完成的主要任务: 1、根据课程设计题目,收集相关资料、设计主电路、控制电路; 2、用MATLAB/Simulink对设计的电路进行仿真; 3、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的 工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路 典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明 仿真过程中遇到的问题和解决问题的方法,附参考资料; 4、通过答辩。 时间安排:2012.12.24-12.29 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1原理分析及电路设计 (1) 1.1IGBT降压斩波电路组成 (1) 1.2主电路工作原理及结构说明 (1) 2各模块电路设计 (3) 2.1主电路带纯电阻负载 (3) 2.2控制电路 (4) 2.3驱动电路 (6) 2.4保护电路 (7) 2.5各器件参数确定 (8) 3系统仿真及结果分析 (10) 3.1建立仿真电路模型 (10) 3.2设置仿真参数 (11) 3.3仿真结果分析 (14) 3.4结论 (16) 心得体会 (17) 参考文献 (18)

IGBT 降压斩波电路设计 1原理分析及电路设计 1.1IGBT 降压斩波电路组成 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路,IGBT 降压斩波电路是直接直流变流电路。直流降压斩波电路不需要输入输出间的隔离。直流电压变换电路主要可控器件为全控器件IGBT ,其所带负载可为阻性感性以及容性。与一般电子电路结构类似,直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。 电路的结构框图如图1所示。 图1 电路结构框图 除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。 1.2主电路工作原理及结构说明 典型降压斩波电路的原理图如图2所示。 图2 降压斩波电路原理图 E M

水冷电阻,负载电阻柜

RXS-A/D型大功率水冷电阻 ?适用于安装空间小,功率要求较高的场合 ?用于大功率电力、电子设备的IGBT电路中作为电容放电使用,也可用于大功率设备的 分压、分流和泄放电路。 ?附加电感小,可用于中频电力电子电路。 ?直接水冷,产品温升小,可靠性高,维护方便。 ?可根据用户使用要求定制特殊形状和功率的水冷电阻器。 ?适用标准: Q/RW450-2003 超大功率水冷线绕电阻器技术条件 ?产品外型及尺寸

2-M8x15 M 10X 1 深15 90±163 162±1 210±1 RXS-A/D 型电阻器照片 RXS-D 型水冷电阻器外形图 162±0.5 210±0.5 标志 2-M8X15 M 14X 1.5 φ10 63(45) 157(146) RXS-A 型水冷电阻器外型图 产品技术参数 产品型号 额定功率 (KW ) 阻值范围(Ω) 阻值 精度 冷却介质 介质流量 介质温升℃ 表面温升℃ RXS-A 10 0.3-3 ±5% 去离子水+乙二醇 8L/min ≤30 - RXS-D 5 0.3-3 去离子水+乙二醇 4 L/min

WTC系列大功率制动负载 ?作为制动电阻适用于海洋钻井平台,最大深度可达9000m,?适用于多家大功率变频器的制动单元,西门子,ABB等。 ?可靠性高,维护方便。 ?可根据用户使用要求定制特殊材料,特殊功率的制动负载。 ?持续功率1.14MW,P20/70功率制动功率1.7MW ?使用海水或淡水直接冷却。 ?产品外型

RX84N 高压线绕电阻器 用于±500kV 直流输电系统,用于电压信号采集。 电阻器的技术参数: 序号 参数名称 参数值 1 产品阻值 50M Ω

纯电阻电路与非纯电阻电路的区别

纯电阻电路与非纯电阻电路的区别 班级 姓名 . 一、从元器件角度识别 日常生活中的电热毯、电烙铁、白炽灯、电炉子、电饭锅、电熨斗、转子被卡住的电动机等元器件都属于纯电阻,含这些元件的电路称纯电阻电路。电动机、电风扇、电吹风、电冰箱、电视机、电解槽、电脑、电磁炉、蓄电池(充电)等元器件在工作时都属于非纯电阻,含这些元件的电路称非纯电阻电路。它们在电路中的符号如下: (1)纯电阻: (2)非纯电阻: 二、从能量转化角度识别 (1)纯电阻电路:电能全部转化为内能 (2)非纯电阻电路:电能转化为内能和其它形式能。其中:内能应只占少部分。 对于含电动机的电路,其它形式能为机械能;对于含电解槽的电路,其它形式能为化学能。-=100%=100%??输出的其它形式能输入的电能自身发热的内能效率输入的电能输入的电能 三、从欧姆定律角度识别 (1)纯电阻电路: 2IUt I Rt = U IR ∴= 遵守部分电路欧姆定律。公式:2 2Q=I U Rt t UIt R ==都适用。 (2)非纯电阻电路:2IUt I Rt > U IR ∴> 部分电路欧姆定律不成了。求热 功时只能用:2Q=I Rt ,求电流的功(即总功)时只能用:W UIt =。 四、练习题 1.如右图所示,电源的电动势E =18 V ,电阻R 1=8 Ω,电动机绕组的电阻R 0=0.5 Ω,电键S 1始终闭合.当电键S 2断开时,电阻R 1的电功率是32 W ;当电键S 2闭合时,电阻R 1的电功率是8 W ,求: (1)电源的内电阻. (2)当电键S 2闭合时流过电源的电流和电动机的输出功率. (3)电动机转化为机械能的效率.

什么是阻性负载,感性负载,容性负载

什么是阻性负载?感性负载?容性负载? 解答这个问题前先解释几个名词:有功功率、无功功率、视在功率。 有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率; 无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量; 视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量;阻性负载: 即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等)。通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。 感性负载 通常情况下,一般把负载带电感参数的负载,即符合和电源相比负载电流滞后负载电压一个相位差的特性的负载为感性(如负载为电动机、变压器)。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。 这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。 此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于车载交流供电器所能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。

容性负载 电路中类似电容的负载,可以使负载电流超前负载电压一个相位差(和电源相比),降低电路功率因数。 一般把负载带电容参数的负载,即符合电压滞后电流特性的负载成为容性负载。充放电时,电压不能突变。其对应的功率因为为负值。对应的感性负载的功率因数为正值。 一般电源控制类产品,所给出的负载,如未加说明则是给出的是视在功率;即总容量功率;它既包括有功功率,也包括无功功率;而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器,感应开关在控制它时,则要加上这8瓦;具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。 混联电路中容抗比感抗大,电路呈容性反之为感性。 通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功。 只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机,变压器等等,通常为感性负载。部分日光灯为容性负载。举例: 纯感性负载就是一组电感。通常用来补偿电路中的容性电流。 在电路中带线圈的用电设备,其线圈部分即为纯感性负载。如电动机、变压器、电风扇、日光灯镇流器等。 纯感性负载的电流是不能突变。感性负载应用广泛。在电路中带电容的用电设备,其电容部分即为纯容性负载。如补偿电容

电阻性负载

电阻性负载: 电流=电压/功率 电线发热功率=电流的平方*电阻 不一样的工作电流,导致发热不一样, 导线的电阻=长度*电阻率/导线截面积面积与载流量 导线的计算: 一、一般铜导线载流量导线的安全载流量是根据所允许的线芯最高温度、冷却条件、敷设条件来确定的。一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。<关键点> 一般铜导线的安全载流量为5~8A/mm2,铝导线的安全载流量为3~5A/mm2。如:2.5 mm2 BVV铜导线安全载流量的推荐值 2.5×8A/mm2=20A 4 mm2 BVV铜导线安全载流量的推荐值4×8A/mm2=32A 二、计算铜导线截面积利用铜导线的安全载流量的推荐值5~8A/mm2,计算出所选取铜导线截面积S的上下范围:S=< I /(5~8)>=0.125 I ~0.2 I(mm2)S-----铜导线截面积(mm2)I-----负载电流(A) 三、功率计算一般负载(也可以成为用电器,如点灯、冰箱等等)分为两种,一种式电阻性负载,一种是电感性负载。对于电阻性负载的计算公式:P=UI 对于日光灯负载的计算公式:P=UIcosф,其中日光灯负载的功率因数cosф=0.5。不同电感性负载功率因数不同,统一计算家庭用电器时可以将功率因数cosф取0.8。也就是说如果一个家庭所有用电器加上总功率为6000瓦,则最大电流是I=P/Ucosф=6000/220*0.8=34(A) 但是,一般情况下,家里的电器不可能同时使用,所以加上一个公用系数,公用系数一般0.5。所以,上面的计算应该改写成I=P*公用系数/Ucosф=6000*0.5/220*0.8=17(A) 也就是说,这个家庭总的电流值为17A。则总闸空气开关不能使用16A,应该用大于17A的。 估算口诀: 二点五下乘以九,往上减一顺号走。三十五乘三点五,双双成组减点五。 条件有变加折算,高温九折铜升级。穿管根数二三四,八七六折满载流。 说明: (1)本节口诀对各种绝缘线(橡皮和塑料绝缘线)的载流量(安全电流)不是直接指出,而是“截面乘上一定的倍数”来表示,通过心算而得。由表5 3可以看出:倍数随截面的增大而减小。 “二点五下乘以九,往上减一顺号走”说的是2.5mm’及以下的各种截面铝芯绝缘线,其载流量约为截面数的9倍。如2.5m m’导线,载流量为2.5×9=22.5(A)。从4mm’及以上导线的载流量和截面数的倍数关系是顺着线号往上排,倍数逐次减l,即4×8、6×7、10×6、16×5、25×4。 “三十五乘三点五,双双成组减点五”,说的是35mm”的导线载流量为截面数的3.5倍,即35×3.5=122.5(A)。从50mm’及以上的导线,其载流量与截面数之间的倍数关系变为两个两个线号成一组,倍数依次减0.5。即50、70mm’导线的载流量为截面数的3倍;95、120mm”导线载流量是其截面积数的2.5倍,依次类推。 “条件有变加折算,高温九折铜升级”。上述口诀是铝芯绝缘线、明敷在环境温度25℃的条件下而定的。若铝芯绝缘线明敷在环境温度长期高于25℃的地区,导线载流量可按上述口诀计算方法算出,然后再打九折即可;当使用的不是铝线而

IGBT降压斩波电路设计(纯电阻负载)

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目:IGBT降压斩波电路设计(纯电阻负载) 设计条件: 1、输入直流电压:Ud=150V 2、输出功率:250W 3、开关频率4KHz 4、占空比5%~50% 5、输出电压脉率:小于5% 要求完成的主要任务: 1、根据课程设计题目,收集相关资料、设计主电路、控制电路; 2、用MATLAB/Simulink对设计的电路进行仿真; 3、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的 工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路 典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明 仿真过程中遇到的问题和解决问题的方法,附参考资料; 4、通过答辩。 时间安排:2012.12.24-12.29 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1原理分析及电路设计 (1) 1.1IGBT降压斩波电路组成 (1) 1.2主电路工作原理及结构说明 (1) 2各模块电路设计 (3) 2.1主电路带纯电阻负载 (3) 2.2控制电路 (4) 2.3驱动电路 (6) 2.4保护电路 (7) 2.5各器件参数确定 (8) 3系统仿真及结果分析 (10) 3.1建立仿真电路模型 (10) 3.2设置仿真参数 (11) 3.3仿真结果分析 (14) 3.4结论 (16) 心得体会 (17) 参考文献 (18)

I GBT 降压斩波电路设计 1原理分析及电路设计 1.1IGBT 降压斩波电路组成 直流-直流变流电路的功能是将直流电变为另一固定电压或可调电压的直流电,包括直接直流变流电路和间接直流变流电路,IGBT 降压斩波电路是直接直流变流电路。直流降压斩波电路不需要输入输出间的隔离。直流电压变换电路主要可控器件为全控器件IGBT ,其所带负载可为阻性感性以及容性。与一般电子电路结构类似,直流降压斩波电路主要分为三个部分,分别为主电路模块,控制电路模块和驱动电路模块。 电路的结构框图如图1所示。 图1 电路结构框图 除了上述主要结构之外,还必须考虑电路中电力电子器件的保护,以及控制电路与主电路的电器隔离。 1.2主电路工作原理及结构说明 典型降压斩波电路的原理图如图2所示。 图2 降压斩波电路原理图 主电路 驱动电路电源 触发电路 E V + -M R L VD i o E M u o i G

单相半波可控整流电路(电阻性负载)

单相半波可控整流电路(电阻性负载) 1.关于matlab MATLAB 是由美国mathworks 公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C 、Fortran )的编辑模式,代表了当今国际科学计算软件的先进水平。 2.工作原理: (1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG 在ωt=α处触发晶 闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。 (2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。 (3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。 (4)直到电源电压u2的下一周期的正半波,脉冲uG 在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。 2.1基本数量关系 a.直流输出电压平均值 2 cos 145.02 cos 12)(sin 2212 22α πωωπ α π α +=+== ?U U t d t U U d b.输出电流平均值 2 cos 1.45 .02a R U R U I d d +== c.负载电压有效值 π ππ 242sin . 2a a U U -+ = d.负载电流有效值

π ππ 242sin 2a a R U I -+ = e.晶闸管电流平均值 2cos 1.45 .02a R U R U I d dT +== 3.仿真模型

纯电阻负载设计难点

纯电阻负载设计难点 使用功率电阻,例如氧化膜电阻,水泥电阻,以及可调功率电阻器做负载,对直流电源进行负载测试,是否是可行,稳定,精度足够的一种选择呢? 市场目前在实验室中测试电源管理芯片时,采用电子负载产品。但是电子负载属于有源设备,其小电流时纹波大,以及有源器件固有的噪声,使得用其作为电源模块的测试负载,不利于分析产品故障或失效原因。 因此,尤其是芯片设计人员和应用工程师通常倾向于使用纯电阻可调负载,以规避电子负载的这些缺陷。遗憾地是,目前功率可调电阻中可以用来做负载的,可选之物甚少。 功率电位器是一个选择。但在功率和精度上都存在很多弱点。首先,普通电位器功率偏小;其次,调节精度难以达到负载调节使用的要求。 拿目前市场上做的比较好的捷骏牌的10圈线绕功率电位器(https://www.doczj.com/doc/614517736.html,/buy/s-592945.html),阻值100ohm(功率3W)来做举例如下。 一、电位器功率讨论 假设电压U不变化,r1表示限流电阻阻值,是一个已确定的参数,R表示电位器阻值,相当于一个可变化的电阻。那么P表示电位器R 的功率,P随R的变化而变化。 如图1:

P=2 )1(2R r R U + ------------公式1 对P 以R 求导: =dR dP 3 2) 1() 1(R r R r U +? ------------公式2 当 =dR dP 0时,也即R=r1时, 取得极大值P Max =22141r r U =1 42 r U 假设r1=5Ω,U=5V,R=0-100Ω。图1如下:

表1:部分靠近极值时的数据 R(Ω) P(W) R(Ω) P(W) 4.4 1.244907 4.9 1.249872 4.5 1.246537 5 1.254.6 1.24783 5.1 1.2498774.7 1.248804 5.2 1.2495194.8 1.249479 5.3 1.24894 从该图和表1可以看出,当R=r1时,电位器功率P 的值达到最大。 又,根据功率极值公式P Max =1 42 r U 可知,电位器在回路中工作时,能消耗的最大功率,和回路的总电压的平方成正比,和该回路的限流电阻成反比。 下表2显示了不同负载电流,不同限流电阻值时,对应的电位器最大功率值的情况。 表2: I U r1 P Max 1A 5V 5ohm(数值上=U) 1.25W(数值上=U/4) 2A 5V 2.5ohm(数值上=U/2) 2.5W(数值上=U/2) 3A 5V 1.66ohm(数值上=U/3) 3.75W(数值上=3U/4) 4A 5V 1.25ohm(数值上=U/4) 5W(数值上=U)

相关主题
文本预览
相关文档 最新文档