当前位置:文档之家› 气力输送设计

气力输送设计

气力输送设计
气力输送设计

气力输送设计

5.1已知条件:

5.2系统选择

5.2.1正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。

5.2.2 供料器的选择:螺旋泵

5.2.3 风机选择

大多数气力输送系统使用容积式空压机(风机),因为此类设备当压力变化时体积流量几乎不变。当排气压力小于100kPa时,广泛使用罗茨鼓风机。该类型具有宽广的体积流量范围并能提供无油空气。此外,它有恒定的速度曲线,当传递压力增加时,体积流量仅轻微减少,从而保证了物料在一定压力下的悬浮流动状态。

5.3设计计算

5.3.1输送速度选择

据输送速度表的粒径和和密度,选

v=18m/s

5.3.2输送料气比

据GALOTER炉资料料气比C=2424/398=6.09,本设计取料气比

C=6㎏/㎏

则气体量为Q0=G/6=77821/6=12970㎏,折标态12970/1.293=10031 m3/h

考虑系统漏风和储备,风机风量Q=K4Q0=1.25×10031=12538.8 Nm3/h

5.3.2 输送管道有效内径计算

5.3.2.1风量换算系数计算

风量换算系数

体积换算系数

C=

V

质量换算系数m C =

2

0000/273/273H

P t t t m

p T C p T P t

ρρ==*=+

当已知海拔高度为H 时,大气压与标准大气压的关系为:

P h/ P 0= (1-0.022569H)5。256

式中:T o --标况气体温度,℃;

T 1一该风量中气体的工况温度,℃; P 0—海平面上的气压,Pa

P h 一水泥厂厂区的气压,pa

H--水泥厂厂区海拔高度,

km

1.711C V

==== 5.3.2.2管道流量计算

Qt= Q0?C V =10031×1.711=17163 m3/h

5.3.2.3管道直径计算

有效管径D1应为:

10.493

D === m

圆整,取D1=0.5m

5.4 气力输送系统总压损

气力输送系统总压损是由输送管道总压力损失、管道出口阻力、喷煤管阻力和气力输送设备阻力组成。输送管道总压力损失又由水平管摩擦阻力、垂直管摩擦阻力和垂直管提升阻力组成。 工程上为了便于计算,常将弯管的局部压力损失折算成水平管道的沿程压力损失。一般对于均匀粒状物料,当弯管R/D=6时,其当量长度取8~10m,弯管R/D=10时,其当量长度取10~16m,弯管R/D=20时,其当量长度取12~20m V —管道内风速,为25m/s u —料气比,为6kg/m 3

H —工厂海拔高度,为0.5km; T 1—气体温度,为500℃;

L 1—水平管道输送长度,为20m, H 1—

窑头垂直管道输送长度,为

16m,

N 1—输送管道上弯头数量,为4个。 M 1—输送管道上阀门数量,为2个。

L 2—换热器当量管道长度

输送管道阻力计算

ΔP=ΔP L +ΔP O +ΔP C +ΔP E ΔP —总压损

ΔP L ——输送管道总压力损失ΔP L =ΔP L1+ΔP L2+ΔP N1+ΔP M2+ΔP LFH +ΔP LH ΔP O ——管道出口阻力 ΔP C ——喷煤管阻力

ΔP E ——气力输送设备阻力。 ΔP LF W ——水平管摩擦阻力; ΔP LFH ——垂直管摩擦阻力 ΔP LH ——垂直管提升阻力。 5.4.1 计算输送管道当量长度

设弯管R/D=6时,其当量长度取10 m;阀门当量长度取20 m

水平管道当量长度

12112030410202130p L L L LN LM =+++=++?+?= m

5.4.2 计算输送管道阻力系数 按柏列斯公式:

阻力系数ξ1=0.0125+0.0011/1=0.0136 5.4.3 计算输送管道水平管摩擦阻力

水平管摩擦阻力(Pa) ΔP LFW =ξ1×Lp/D ×γa ×V 2/2 ×(1+K L ×u) 式中:ξ1一阻力系数;

Lp 一水平管道当量长度,m, D 一输送管道直径,m,

γa 一空气的重度,kg/m 3,当400℃,γa=1.293×273/673=0.524 u 一管道内料气比,u=2.2

K L 一附加阻力系数,见图1,v=25m/s 时,K L =0.23 水平管摩擦阻力(Pa)

ΔP LFW =ξ1×Lp/D ×γa ×V 2/2 ×(1+K L ×u) =0.0136?130/0.5?0.524×252/2?(1+0.23?6) =1378 (Pa)

5.4.4 计算输送管道垂直管摩擦阻力

垂直管摩擦阻力ΔP LFH =ξ1×H 1/D 1 ×γa ×V 2/2×(1+K H ?u) =0.0136 ×20/0.5×0.524×252/2× (1+0.23 ×1.1 ×6) =224.3(Pa) 式中: H 1一垂直提升高度,m;

K H 一附加阻力系数,K H =1.1K L 5.4.5计算输送管道垂直管提升 阻力

ΔP LH =γa ×(1+ u) H 1×g=0.524×(1+6)×20×9.81=720Pa 式中:g 一重力加速度。

5.4.6计算输送管道出口阻力

管道出口阻力(Pa)=50pa

5.4.7计算输送管道气力输送设备阻力

气力输送设备阻力(Pa)=10000Pa

5.4.8 输送斜槽阻力: ΔP F =3000 Pa

5.4.9计算输送管道总压力损失

输送管道总压力损失ΔP=ΔP L+ΔP O+ΔP C+ΔP E+ΔP F =1378.+224.3+720+50+10000+3000=15372Pa

设备选用压力P=Kp*ΔP=1.2*15372=18448Pa

式中:K P一考虑漏气和计算误差等原因的压力备用

系数,一般选用Kp=1.1~1.2

表5-2提升管物料平衡和热平衡计算表

提升管物料平衡和热平衡

六、提升管后旋风集渣器设计表6-1 提升管后集渣器物料平衡和热平衡

集料器规格参数设计

进口风量34287.3+256.7+=34544.4,进口风量为Q4= 26662+256.5/44*22.4=26792 Nm3,

进口风速v4=16m/s,进口面积A4=Q4/V4=26792/(3600*16)=0.465㎡

旋风分离器直径D4=4.650.5=2.15 m,

进风口高a=0.45D4=2.15*0.45=0.97 m

进风口宽b=0.22D4=2.15*0.45=0.47 m

直筒高度h1=1.6D4=3.44,

锥筒高度h2=1.7D4=3.66,

H=7.1m

七、高温燃烧斜槽设计

7.1高温燃烧斜槽完全燃烧残碳所需气体量计算

最终使高温输送斜槽能将高温提升机提来的高温半焦里的残碳全部燃烧掉,温度

从480℃升致780℃,

注:残碳量计算:Qc=20830×0.28×0.20=1166.48㎏,

碳的燃烧份额估算见表7-1

表7-1碳的燃烧份额估算

1166.5 13.9682516293.69 3323.689原料中碳量为:1166.5㎏,完全燃烧(为充分燃烧取空气过剩系数为1.1)

需干空气为: 1166.5×32/(12×0.21)×1.1=16293.7㎏,气力提升用气量

为12970㎏,差值3323.7㎏干空气在高温输送斜槽中从槽底送入

表7-2高温燃烧斜槽物料平衡和热平衡计算

1166.5

13.96825 16293.69 3323.689

斜槽物料平衡和热平衡

斜槽设计要考虑空气在料槽断面风速不大于送料速度的3倍,初选送料速度

1m/s,

则风速控制至3m/s 进料口风量17163m3/h,则斜槽截面积为17163/(3600*3)=1.589

槽宽为0.6m ,高度为2.64m. 槽宽为0.8m 时高度为1.986m

烟气和物料分流,出口段截面积增大,使风速降出口处

7.2高温输送斜槽设计应考虑的问题:

(1)高温输送斜槽的槽体结构设计、安装高度以及倾斜度; (2)燃烧残碳的方法,辅助热源的选择和安装方法;

1.9062C V ====

(3)所需的热量,空气的加入方式;

(4)槽体保温装置设计;

(5)陶瓷多孔板设计

高温输送斜槽的槽体采用方形结构,内嵌粘土质隔热保温材料,透气层选用陶瓷板能承受一定的压力,有利的保证槽体不受伤害。空气从槽体进料处进入,这样能够运用气力输送将物料送到热灰旋风收集器。辅助热源选用天然气,因为天然气是高温提油装置的产物,不需要再购买其它的燃烧物质如煤炭等。

最终使高温输送斜槽能将高温提升机提来的高温半焦里的残碳全部燃烧掉,温度从455℃升致750℃—850℃,

图6-1为一种空气输送斜槽的结构形式。斜槽由数段用钢板制成的矩形断面槽子制成,并沿着输送方向布置成一定斜度。槽子由两个凵形的上槽体5和下槽体6组成并用螺栓联接,中间用透气层相互隔开。物料由加料口2均匀地喂在透气层7上,空气由风机送入下槽体,并均匀地通过透气层通入物料颗粒之间,使颗粒间的空隙增大,并浮动于空气中,呈流态化状态。因为斜槽是倾斜的,流态化的物料便在重力作用下沿斜槽下滑,由卸料口9卸出,逸入上槽的空气由排气口8经收尘后排出,或经上槽的过滤器(布袋)排到大气中[4]。

空气粉状斜槽除主要作向下输送外,利用流态化输送的原理,也可以作水平和向上输送。当空气槽水平安装,物料水平流动,主要靠改变透气层的一种——多孔板气流喷出方向,使物料随气流的前进推力和物料的前进压力差流动;至于向上输送,则完全依靠空气的推力作流态输送,物料处于半悬浮呈波浪形前进。

1.风机

2.加料口

3.窥视窗 4支架 5上槽体 6.下槽体 7.透气层 8排风口

9.卸料口

图6-1.空气输输送送斜槽结构形式

7.3高温输送斜槽的选型计算

高温输送斜槽的选型计算,主要是根据被输送物料的特性、输送距离及生产能力等,选择合适的槽宽、鼓风机的风量和风压[6]。

7.3.1

高温输送斜槽的斜度i是决定槽内物料流动的基本条件。它决定于物料的特性、工艺布置及设备选型等。斜度小,则料层增厚,此时为了维持料层的最佳状态流动,需要较高的通风量,但有利于工艺布置;斜度大,空气消耗量虽有降低,但鼓风机的布置、安装较复杂,然而其物料流速大,生产能力较高。当斜度在4%~6%之间时较为适中。在工艺布置允许的条件下,采用较大的斜度对输送有利。当输送水泥和生料粉时可取6%;输送闭路循环磨机的粗料时,建议斜度不小于10%,甚至可取12%;用帆布作透气层时斜度取6%;用多孔板作透气层时斜度取4%~6%。

本高温输送斜槽选用斜度为4%。

7.3.2物料流动速度

物料在斜槽内的流动与液体在明渠内无压流动原理相近。物料流动速度主要决定于斜槽的斜度,此外还与槽宽、料机理高度、物料特性及透气层表面状况有关。物料流动速度可按斜度粗略选取:

i=4%,v=1.0m/s;因此,本高温输送斜槽的物料流动速度初选为1m/s.

7.3.3高温输送斜槽的槽宽

水泥输送斜槽的标准尺寸见表

7.3.4耗气量计算

耗气量是根据使物料层由静止过渡到运动状态的最小气流速度,也即根据物料开始呈流态化的风速来确定的。它与被输送物料特性、空气输送斜槽的斜度及透气层的性能等因素有关。

在透气层面积(槽宽B与输送长度L之积)确定之后,耗气量主要决定于空气穿过透气层的速度,通常称视在速度ν(用耗气量与透气层面积之比表示),它大致上等于物料刚好流态化但又尚未流动的空气速度。为保证输送的正常进

ν关系应保持为:

行,在输送全长上,空气速度与物料流态化的临界速度

f

ν

ν=(1.5~2.0)

f

νν按流体力学有关方法计算,但大多数情况下用试验的方法测临界速度

f

定,其测定方法是:在某一料层厚度下,在固定床时空气通过料层阻力与视在速

度ν成正比,当到达某一点以后,视在速度增加,阻力并不明显增加,几乎为一常数,则该点的空气速度即为流化临界速度f 。因而,耗气量为:

V=60qBL (3-2) 式中: V ——耗气量,㎡/h;

Q ——单位面积耗气量,23/m m ·min, 对多孔板:Q=1.523/m m ·min;

L ——输送长度,m

所以耗气量V2=60×1.5×0.4×20=7203m /h

取V1、V2中较大者,故得斜槽风量为14698㎏/h 7.3.5风压

高温输送斜槽所需风机的风压是用于克服透气层阻力、物料层阻力和送风管网

的阻力。斜槽正常操作时,顶槽压强大致为零压,因此,风压可按下式计算: Δp=Δp1+Δp2+ΣΔp3 (3-3) 式中: Δp ——风压,Pa ;

Δp1——透气层的阻力,Pa ,对多孔板,Δp1≈2000 Pa ; Δp2——物料层阻力,Δp2=10h ρ`,ρ`单位为kg/3m ,Δp2单位为Pa ; ΣΔp3——送风管网阻力之和,Pa 。

所以Δp=2000Pa+10×0.1×630+100=2.73kPa

7.4高温输送斜槽零部件设计 7.4.1气体燃料燃烧装置

气体燃烧器可以从不同角度进行分类,按照方法的不同可分为两大类,即有焰燃烧和无焰燃烧器[9]。

气体燃料燃烧过程可分三个阶段,即混合、着火及燃烧,燃料的混合过程比燃烧过程要缓慢得多。因此,决定气体燃料燃烧方式和效果的主要因素是混合过程。故气体燃烧嘴按其燃料与空气的混合方式分成扩散式煤气嘴、引射式煤气烧嘴、半引射式煤气烧嘴。本设备中气压为5.73kPa ,所以选用半引射式煤气烧嘴,即低压烧嘴。

低压烧嘴是指采用风机供风的强制紊流扩散燃烧的烧嘴,它包括同轴射流、交叉射流、旋转射流等几种类型,应用最广。如图4-1所示为DW-I 型烧嘴:

1.涡流叶片

2.空气输送管道

3.天然气输送管道

4.节流垫圈

图4-1DW—I烧嘴

DW-I型烧嘴在通道内设有涡流导向片,空气在燃气周围分为数股并以一定角度切向导入与煤气混合,混合效果很好。由于空气道装有旋流片,使空气产生了切向分速。在旋转前进中与煤气相遇,强化了混合过程,因而可以得到较短的火焰,但是也增加了流动阻力。

导向片轴向角度有30°和45°两种,可加强煤气和空气混合,因而火焰较短,火焰长度为烧嘴出口直径的4~8倍。燃烧所需要的靠风机鼓入。过剩空气系数取α=1.15~1.20。当煤气压力大于800Pa,而又要维持原烧嘴能力时,则应在煤气进口处加节流垫圈以消除剩余压力。

7.4.2高温输送斜槽槽体结构和耐火材料设计

7.4.2.1高温输送斜槽的槽体结构

高温输送斜槽槽体结构如图4-2所示:槽体用6mm的钢板制造,其截面为矩形断面(如图4-3所示)。槽体内宽500mm,上槽体内高400mm。一般料层高100mm。上下槽体之间用螺栓连接,螺栓均匀分布。陶瓷多孔板在全部表面上提供均匀的空气分布,使输送斜槽能够有效的操作。气孔板的孔径要比被输送的物料的颗粒直径小。约为8mm,以防止气孔被堵塞。由于油污、物料或水的存在会堵塞气孔板的微孔,可以用压缩空气吹扫、用水或用适当的溶剂清洗。槽体内设110mm粘土质隔热耐火浇铸材料[8][10]。

1.输送斜槽上槽体

2.输送斜槽下槽体

3.耐火材料4陶瓷板5法兰6支架

图4-2槽体结构

图4-3槽体结构矩型断面

7.4.2..2窥视孔的设计

为了观察高温输送斜槽内物料流动情况,避免堵塞事故,在距进料口2~3m 处,出料口的前面,在顶槽便于观察的一侧,均开设有窥视窗。如图4-4所示:

1.槽体耐火材料

2.窥视孔闸板

3.窥视孔壳体 4玻璃 5窥视孔内保温材料

图4-4窥视窗

窥视孔应直接通入上槽体内,但是槽体内温度很高,易使窥视孔内的玻璃受损。因此在窥视孔内设一闸板,当要查看槽体内的物料情况时只要将闸板提起即可。窥视孔壳体内浇铸20mm粘土质隔热耐火浇铸材料,这样更有利于保温。

7.4.2.3入料装置设计

入料装置可根据旋风收尘器的排灰装置进行设计。排灰装置是收尘器装置上的一个重要部件,它对收尘器运行及收尘效率有着重大影响。由于收尘器运行多数呈负压状态,如果装置失灵,就会使空气吸入,从而会破坏收尘器内流场的气流运动,而使粉尘难以与气体分离;或是会使收集下来的粉尘再次飞扬;或使排灰口堵塞,造成收尘系统的瘫痪。

为保证排灰口的严密性,此处装有各种不同的锁风装置。常用的锁风装置有重力作用闪动阀、机械传动回转卸尘阀、电动卸尘阀。而无论采用何种卸尘阀,都要在保证最大气密性的同时,尽快地将粉尘排出。

本设计中采用的是翻板式闪动卸料阀,如图4-5。翻板式闪动阀属于重力作用阀。它是利用重锤通过杠杆机构来压紧翻板。当翻板上的积灰重力超过重锤所能平衡的力时,就压下翻板而卸出粉尘,然后又在重锤作用下恢复原位,封住卸料口。为了更有效地增加气密可靠性,制成了如图所示的上下阀交替开关。为了保证高温输送斜槽的保温性能,在翻板阀的内侧浇铸了110mm的粘土质隔热保温材料。

图4-5料封装置

7.4.2..4入料溜板的设计

为了减少进料口下面物料对透气层的冲击和磨损,在进料口下面常设有进料溜板,如图4-6所示。进料溜板起缓冲作用,物料通过进料溜板滑到透气层上。

图4-6入料溜板

为了防止燃烧喷嘴将进料溜板烧坏,在进料溜板的下方燃烧喷嘴的上下两侧浇铸粘土质耐火材料各50mm厚,500mm长。这样不仅有利于天然气的充分燃烧,而且保证了进料溜板的寿命。

8旋风分离器2设计,

进风量17367.㎏/h,温度780℃,风中料气比约0.2,则气体带出渣3473.4㎏Cv3=1.9

Qt3=16293/1.293×1.9=23942 m3/h

收尘器组设为二级旋风收尘器串联,收尘效率90%,热损失约10%,

旋分器2物料平衡和热量平衡计算

提升管物料平衡和热平衡

提升管后集渣器物料平衡和热平衡

通风除尘与气力输送系统的设计说明

第一章通风除尘与气力输送系统的设计 第一节概述 在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。通风除尘和气力输送系统是食品加工厂的常用装置。 食品加工厂中粉尘使空气污染,影响人的身体健康。灰尘还会加速设备的磨损,影响其寿命。灰尘在车间或排至厂房外,会污染周围的大气,影响环境卫生。由于粉尘的这些危害性,国家规定工厂中车间部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。 图1是食品加工厂常见的通风除尘装置。主要由通风机、吸风罩、风管和除尘器等部分组成。当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外。 气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成。气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。小型面粉厂气力输送工艺流程如图2。

风机 气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。 通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识。有关流体力学的知识可参阅相关书籍资料,在此不再敷述。本章主要讨论食品加工厂通风除尘和气力输送系统的设计。 第二节通风除尘系统的设计与计算 1 通风除尘系统的设计原则和计算容 通风除尘系统也叫除尘网路或风网。通风除尘网路有单独风网和集中风网两种形式。在确定风网形式时,当: 1)吸出的含尘空气必须作单独处理; 2)吸风量要求准确且需经常调节; 3)需要风量较大;或设备本身自带通风机;

气力输送系统基本参数计算知识

系统基本参数计算 更新时间:2005年07月20日 系统基本参数计算 1.输灰管道当量长度Leg 输灰管道的总当量长度为 Leg=L+H+∑nLr (m)(5-19) 2.灰气比μ 根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比 μ=φGhX103/[ Qmγa(t2+t3)](kg/kg) (5-20) Gh=ψγhνp (t/仓) (5-21) 式中Gh—仓泵装灰容量,t/仓。 灰气比的选择取决于管道的长度、灰的性质等因素。对于输送干灰的系统,μ值一般取7-20 kg/kg。当输送距离短时,取上限值;当输送距离长时,则取下限值。 3.输送系统所需的空气量 因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min) (5-22) 质量流量Ga=Qaγa=16.67 Gm/μ (kg/min) (5-23) 4.灰气混合物的温度 输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24) 式中Gm—系统出力,kg/min; ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算 th—灰的温度,℃; ca—空气的比热容,一般采用o.24kcal/(kg℃); ta—输送空气的温度,℃。 因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。根据经验,每100m的温降值一般为6—20℃。当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。 5.输送速度 仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:

气力输送系统的设计要点

气力输送系统的设计要点 【摘要】本文简要介绍了气力输送系统的分类和组成,并对气力输送系统设计中存在的一些重要问题进行归纳总结,为以后的工程设计提供参考。 【关键词】气力输送;分类;组成;设计要点 0.前言 气力输送是借助负压或正压气流通过管道输送粉料的技术。与其他机械输送方式如斗提、皮带等相比,具有设备简单、布置灵活、占地面积小、操作及维修方便等特点,在钢铁、煤炭、电力、化工、粮食等行业得到广泛应用[1]。气力输送系统设计的合理与否,对输送效率、运行成本和使用寿命都有重要影响,因此本文对气力输送系统设计中着重考虑的问题进行归纳总结,希望引起工程设计同行的重视,为将来的工程设计提供参考。 1.气力输送系统 1.1气力输送的分类 根据输送管中物料的密集程度,气力输送可分为稀相输送和密相输送。稀相输送的混合比一般为0.1~25,输送气速为18~30m/s,高于浓相输送[2]。 根据输送管中气体的压力大小,气力输送可分为吸送式和压送式。吸送式的输送管内压力低于大气压,能自吸进料,缺点是必须负压卸料,而且物料输送距离较短;压送式的输送管内压力高于大气压,卸料方便,物料输送距离较长,其缺点是须用给料器将物料送入带压的管道中[3]。 1.2气力输送系统的组成 气力输送系统主要包括给料系统、输料系统、集料系统、动力系统和控制系统五大部分。 给料系统的作用是保证粉尘能够连续、均匀地进入输送管中,主要包括粉料缓冲斗、插板阀、旋转给料阀、给料器等。由于吸送式气力输送的输送管内存在一定负压,能够自吸进料,故其给料器通常采用L型或V型给料器,压送式的给料器较复杂,一般采用船型给料器或仓泵。 输料系统是粉料输送的关键环节,由输送直管、弯管、吸气口、吹扫口等组成,输送管的布置对气力输送系统的压力损失、连续稳定运行有至关重要的影响。 集料系统的作用是使料气分离,并将粉料收集后集中处理,主要包括集料器、卸料阀、粉料储罐等。集料器即除尘器,烟尘粒径小、混合比大时,应采用二级

最新5低压吸运气力输送系统设计计算示例

5 低压吸运气力输送系统设计计算示例 (1)单管气力输送系统设计计算示例 例7.3 如图7.78所示,由压榨车间将破碎饼粕送至浸出车间的气力输送系统。浸出车间日处理25 T/d (1)设计输送量G 计的确定 根据浸出车间要求处理饼25T/d ,按24h 计,则 G =25/24=1000(kg/h ) 由公式7-25,得: G 计=α×G =1.1×1000=1100(kg/h ) (2)输送风速V 的选择 由表7.56,取V 为21m/s 。 (3)输送浓度μ的选择 取μ=0.4。 (4)输送风量Q a 的确定 由公式7-27,得: 29924 .02.11100 =?= = μ ρa a G Q 计 (m 3/h ) (5)确定管径D 的确定 由公式7-28,得: 195.021 14.336002992 4.36004=???= = V Q D a π(m ) 取200mm 。则实际输送浓度为: 39.02378 2.11100=?==a a Q G ρμ计 (6)压力损失计算 输料输送压力损失H 物 ①空气通过作业机的压力损失H 机 由表7.1,H 机=0 ②接料器压力损失H 接 采用诱导式接料器,由表7.57,阻力系数为0.7。由公式7-31,得: g V H a j 22 ρζ=接 9.1881.92212.17.02 =???= (mmH 2O ) ③加速物料压力损失H 加 查表7.60得,i 谷粗=17mmH 2O/t ,由公式7-, H 加= i 谷粗G 算=17×1.1=18.7 (mmH 2O ) ④摩擦压力损失H 摩 查表7.65,R =2.21mmH 2O/m ,K 粗=0.669;由公式7-35,得: 236)39.0669.01(70.8421.2)1(=?+?=+=μm K RL H 摩(mmH 2O ) ⑤弯头压力损失H 弯 采用弯头90°,曲率半径为6D ,ζw 为0.083,查表7.60,K w =1.6,由公式7-45,得: 6.3)39.06.11(81 .92212.1083.0)1(22 2=?+???=+=μρζw a w K g V H 弯(mmH 2O ) ⑥恢复压力损失H 复 查表7.61和表7.62,△=0.35,β=1.5,由公式7-47,得: H 复=βΔΗ加=1.5×0.35×18.7=9.8 (mmH 2O )

克莱德气力输送系统介绍

克莱德贝尔格曼华通 物料输送 气力输送系统介绍 现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理 一:电厂输送的物料(输送对象) 1:电除尘的飞灰。 2:省煤器和空气预热器灰。 3:循环流化床锅炉的炉底渣。 4:循环流化床锅炉的石灰石粉料。 二:电除尘飞灰的主要性能指标及对输送的影响 1:粒度 粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。 测量方法:筛分(围)和粒度分析仪(围更小的数值围)。 粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度 密度:单位容积的重量。 气化密度:灰层处于气化状态下的密度。 在粒度相同时,密度小、孔隙率高,易输送。 3:粘附力 粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。 分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力. 静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失. 粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。 4:磨蚀性 粉煤灰在流动中对管道壁的磨损。 影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。 粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。 一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。 在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。 磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。 5:灰斗的架桥和离析 架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。 架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小) 括号是增加架桥发生的诱因变化趋势。

灰渣稀相气力输送系统设计计算说明书

灰渣稀相气力输送系统设计计算说明书灰渣稀相气力输送系统设计计算说明书一系统出力 按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%,DS)计算,焚烧炉系统的灰渣产率为2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%,DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%,DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为1.65t/h。系统的最大灰渣产率按第一种情况计算,即取2.05t/h。尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为 4.6kg/h。为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭则通过另一套系统输送到飞灰储仓。卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。根据经验数据,两台余热锅炉排出的灰渣量约为440kg/h。按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为2.05t/h。按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性炭粉)0.67t/h。因为对每个灰斗来说,灰渣输送系统采用的是间歇运行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘 设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。 综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取5.125t/h,袋式除尘器的飞灰输送系统的设计出力取1.675t/h。二灰渣输送线操作参数选取

气力输送系统的设计原则与程序

气力输送系统的设计原则与程序 在设计压送式气力输送装置时,首先必须要对被输送物料的性质和料粒形状,输送条件,现场状况等进行了解和研究,在此基础上充分发挥气力输送的优点,正确选择气力输送的类型,以利于提高生产效率。 一、设计原则 1、输送物料的性质和料粒形状物料的粒度常取平均粒度作为物料的计算粒度,并要了解物料粒度的分布情况。物料的流动性一般用堆积角和摩擦角的大小来间接表示。同一种物料由于含水量不同,流动性有很大的差别,对物料的含水量需考虑是内部水分还是表面水分,要考虑物料的粘附作用。 ●物料的密度和堆密度是直接影响气力输送装置的外形尺寸、结构形式及功率 消耗的大小。 ●物料破碎率决定气力输送的布置路线、输送距离和选定合适的气流速度。 ●物料的腐蚀性对输送管道的材质提出特殊的要求。 ●物料有静电效应时,要安装必要的地线和防止带电装置,防止产生静电。

●对爆炸性物料,除防止静电外,必须采取防爆安全措施。 ●对输送有害物料,必须考虑采取密闭的搬运安全措施,防止管道和设备磨损 或损坏而外泄。 2、输送量在压送式气力输送装置设计时,要根据单位时间的输送量来确定装置的容量及规格。气力输送装置往往是成套设备中的一部分,必须与其他主机及辅机匹配,如果在输送量的大小上发生矛盾,可以采取中间料斗贮存缓冲的办法予以解决。输送量还与工艺有关,根据工艺要求决定采用间歇式还是连续式的装置,在选用压送式气力输送形式还应考虑装置的可靠性,要估计气力输送一旦发生故障对生产的影响。 3、输送起点和终点的状况在保证工艺的前提下尽可能缩短输送距离,充分发挥压送式气力输送的优势。装置的安装高度和给料方式要允分考虑周围的环境,必须不阻碍交通,便于检修,并减少设备维护费用。 4、降噪及环保气源机械的噪声影响环境,在气源进口及出口处,必须采取降低噪声措施。如风机或空气压缩机安装在单独的房间内,采用消声器等。气力输送装置必须考虑排气的除尘效果,采用各种类型适合于气力输送特点的除尘器,防止对大气的污染,若采用湿法除尘器时,要考虑污水处理。 5、自动化水平程度气力输送装置可实现集中自动控制,由中央控制室进行远程控制。这不仅减少操作人员,而且实现自动连锁,防止事故发生。 6、安装要点气力输送装置安装在室外时要考虑防雨防冻措施。岔道、增压器、气动或电气控制元件、阀、限位开关等必须要有箱体,防止雨淋而失灵。 7、特殊条件的要求输送高温物料需考虑冷却因素,输送管道要考虑保温和加热。气源机械(如空压机)要考虑水冷条件及排水措施。

气力输送系统的设计和选择1

气力输送系统的设计和选择 1.基本设计数据 1.1装置的位置 :江苏某码头,不考虑海拔、温度范围变化,按常温设计。 1.2被输送的物料 贝壳:属三相不均匀散状物料,ρp=2300kg/m3 ρs=0.75 kg/m3.颗粒尺寸、dmax=30,dmin=10,三维尺寸不均匀,有脆性、磨琢性。 1.3始送数据: 输送流程图及输送管道布置图如图1。 进入系统的物料温度 室外温度 ℃;物料中水的含量 3 % 允许堵塞程度 2 %,允许细粉的损失率 2 % 物料的滑动角 30 ,休止角 40 。 机械特征:干的、易破碎的 、脆性 大 磨琢性 大 流动性:自由流功 粘滞 无 堆密度 750 kg /m3 粒度范围:尺寸10 -15 mm 85 % 尺 % 最大块物料尺寸 30 mm 最大块物料占总物料的百分率 15 输送能力:最小 10000 kg/h ,最大 30000 kg/h 使用要求,系统操作:批量 操作周期:每天24小时的频率 10% 及每周期操作 5 时 输送范围:总垂直升高 8000 mm 总水平距离 15000 mm 要求90°弯头数目 2 要求45°弯头数目 0 系统特征:被输送物料来自 船仓 卸料点数目 1 供气动力设备: 类型 风机 位置 (室外) 需要动力:电机:类型.开式 全密封 级 组 电流 电压 相 功率 装置位置:海拔 m ,环境温度范围 -10-40℃ 管道结构材质 软管 输送介质(空气)、操作类型(批量等)、 15米 贝壳 风机 旋风筒 软管 皮带机 船 2 输送方式确定

按题意,选抽吸式,在或能情况下尽量选中低压风机 3设计计算 (1)输送速度确定 密相输送散状固体物料的最小输送速度大约为5-l0m/s ,但这是极易改变的。对一定的物料,特别不是在密相系统输送的固体颗粒物料,最小输送速度的确定是指物料颗粒开始失掉支持将要落下那点的速度(悬浮速度)。对于大多数物料来说,最小输送速度约为16m/s ,这是稀相系统初始设计选用的较好值。这很好理解:当输送含大块的散状固体物料特别是物料密度较大时,其最低输送速度显然是非得大的。 一旦最小输送速度确定后,设计选用的输送速度一般高于最小输送送速度的20%,以提供防止输送管道堵塞的安全系数。一般不建议采用更大的输送速度,因为这会加大功率消耗和分离设备并使被愉送物料过分破裂降级和使输送系统的部件严重磨损。 本题为不均匀片状为此初选择输送速度v0=20m/s (4)固气比 按资料1:对于稀相输送系统典型的固气比在5-15(kg 物料/kg 空气)之间。设计稀相输送系统合理的方法首先假设其固气比为10,然后再将此值上调或下调,以便使系统的压降与所用鼓风机或压缩机的特性相匹配。 按资料2提出据当量长度和输送压力定 (一)当量输送长度 Z H V V F L =L +K L +K L +L θθ∑∑∑∑ = =15+2*8+2*10 +4=55 m (17—20) 式中; Lz —当量输送长度 ∑Lz —水平直管的总长度 ∑Lv —垂直管的总长度 ∑L θ—斜管的总长度 ∑L f —管件和阀件的总当量长度 Kv 、K θ—换算系数,由试验确定。一般取K θ=1.6;Kv=1.8—2.0,

稀相气力输送与密相气力输送的区别

山东海德粉体稀相气力输送与密相气力输送的区别 山东海德粉体气力输送是利用气流的能量,气力输送又称气流运送或风送体系。密闭管道内沿气流偏向运送颗粒状物料,流态化技能的一种具体应用。气力输送装置的布局简略,操作方便,可作水平的垂直的或倾斜偏向的运送,运送进程中还可同时举行物料的加热、冷却、干燥友好流分级等物理操作或某些化学操作。与呆板运送相比,这种输送方法能量损失较大,颗粒易受破坏,配置也易受磨蚀。含水量多、有粘附性或在高速活动时易孕育产生静电的物料,不宜于举行气力输送。 根据颗粒在管道运送中的密集情况,气力输送分为: 1、稀相输送:固体含量低于100kg/m3或固气比(固体运送量与相应气体用量的质量流率比)为0.1~25运送进程。操作气速较高(约1830ms按管道内气体压力,又分为吸引式和压送式。前者管道内压力低于大气压,自吸进料,但须在负压下卸料,可以大概运送的距离较短;后者管道内压力高于大气压,卸料方便,可以大概运送距离较长,但须用加料器将粉粒送入有压力的管道中。 2、密相输送:固体含量高于100kg/m3或固气比大于25运送进程。操作气速较低,用较高的气压压送形成风送体系。间歇充气罐式密相运送。将颗粒分批参加压力罐,然后通气吹松,待罐内达肯定压力后,打开放料阀,将颗粒物料吹入

运送管中运送。脉冲式运送是将一股压缩氛围通入下罐,将物料吹松;另一股频率为2040min-1脉冲压缩氛围流吹入输料管入口,管道内形成交替分列的小段料柱和小段气柱,借氛围压力推动前进。密相运送的运送本领大,可压送较长距离,物料破坏和配置磨损较小,能耗也较省。水平管道运送体系中举行稀相运送时,气速应较高,使颗粒疏散悬浮于气流中。 山东海德粉体气力输送系统的选型是更具,企业生产工况、输送物料性质所决定的。在选择稀相输送或密相输送是,是要根据输送产量和粉体物料性能设计的。不论是用稀相还是密相,有粉体输送方面的问题均可来电咨询。

气力输送的设计要点

气力输送的设计要点 气力输送广泛应用于水泥、石化、电力和冶金等行业中粉粒状物料的输送。由于其具有布置灵活,所占空间小,可避开已有设备和建筑物等优点,因此特别适合于水泥厂的改造和扩建工程。目前,新型干法水泥厂的生料入窑或入均化库、煤粉入窑或入分解炉大多采用了气力输送系统。本文通过分析常用气力输送系统的性能特点和选型要求,指出了每种气力输送方法的差异和限制,并对气力输送的系统选择、供料器选择、空压机风机选择、经济性分析、物料特性对系统选型影响这五个设计要点进行了总结。 1 系统选择 1.1 正压及负压系统 正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。在管路系统中安装两路阀就能实现多点卸料和喂料。但多点喂料供料器过多,会造成大量空气泄漏。特别是旋转叶片供料器,其泄漏量约占空气总供应量的20%。目前国内水泥厂输送生料、煤粉及水泥等粉状物料的气力输送系统基本上采用正压系统。 负压系统适宜于从多喂料点输送物料到一个卸料点。它的优点是通过供料器的空气泄漏和压力降都很小,因而旋转叶片供料器能得到令人满意的使用效果。该系统在国内常应用于小型散装水泥驳船的卸料。1.2 混合系统 混合系统结合了正、负压系统各自的优点,在该系统中,负压部分把物料从多个喂料仓中吸走,而正压部分把物料送入多个卸料仓。气源靠一台通风机或鼓风机提供。 双级混合系统比普通混合系统能更好地输送物料。普通混合系统虽对许多车间内部的短距离物料输送较为理想,但由于系统压力小,物料输送量和输送距离均受到限制。双级混合系统利用中间仓把负压和正压系统分开,并把负压和正压系统所需气源分成两个独立供气装置,这样可以分别选择最佳的真空泵和空压机。由于存在二个独立系统,故整个系统需要2台料气分离器。 图1为双级混合系统,是一个典型的大中型散装水泥船卸料装置,卸料能力达到100t/h以上。它的2台空气动力源中1台可选用液环式真空泵;另1台可选用螺杆式或往复式空压机,在较小系统中则选用罗茨风机。 2 供料器的选择 2.1 供料器的选用因素

通风除尘与气力输送系统的设计

通风除尘与气力输送系统 的设计 The Standardization Office was revised on the afternoon of December 13, 2020

第一章通风除尘与气力输送系统的设计 第一节概述 在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。通风除尘和气力输送系统是食品加工厂的常用装置。 食品加工厂中粉尘使空气污染,影响人的身体健康。灰尘还会加速设备的磨损,影响其寿命。灰尘在车间内或排至厂房外,会污染周围的大气,影响环境卫生。由于粉尘的这些危害性,国家规定工厂中车间内部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。 图1是食品加工厂常见的通风除尘装置。主要由通风机、吸风罩、风管和除尘器等部分组成。当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外。 气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成。气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。小型面粉厂气力输送工艺流程如图2。

风机 气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。 通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识。有关流体力学的知识可参阅相关书籍资料,在此不再敷述。本章主要讨论食品加工厂通风除尘和气力输送系统的设计。 第二节通风除尘系统的设计与计算 1 通风除尘系统的设计原则和计算内容 通风除尘系统也叫除尘网路或风网。通风除尘网路有单独风网和集中风网两种形式。在确定风网形式时,当: 1)吸出的含尘空气必须作单独处理; 2)吸风量要求准确且需经常调节; 3)需要风量较大;或设备本身自带通风机; 4)附近没有其它需要吸风或可以合并吸风的设备或吸点时应采用单独风网。 不符合上述任一条例的两个或两个以上的设备或吸点,应尽量采用集中风网,以发挥“一风多用”的作用。在把几台设备或吸点组合成一个集中风网时,应该遵循以下原则: 1)吸出物的特性相似。由于各种设备的工艺任务各不相同,它们产生的粉尘的五华特性及其价值存在差异。因此不同特性的吸出物,应根据情况尽可能分别吸风。

气力输送设计计算书知识

广东南海梅山电场气力输送设计计算书 1.仓泵技术参数: 2.除尘器一个输送单元输送系统校核 2.1.仓泵出口处管道内气流速度: 按浓相仓泵运行要求,出口处气流速度:< 5.0m/s 2.2.仓泵运行时输送压力(泵内工作压力):0.15~0.18MPa 2.3.输送管未端气流速度: 按管道内灰气混合物流动的热力学过程介于等温和绝热过程之间,取k=1.1则: P 1(V 1 ×S 1 )1.1=P 2 (V 2 ×S 2 )1.1 式中:P 1 、P 2 为输送管始端压力和管道未端压力(绝对压力) V 1、V 2 为输送管进口和出口的流速 S 1 电场仓泵出口输灰管截面积 0.0078m2 S 2 电场输送管出口截面积0.0078m2 令P 2=1,P 1 =2.8代入得: V 2 =12.43m/s 管道内气流平均速度:U p =8.71m/s 在上列无缝管配置下实际耗气量: 耗气量按下式确定(近似计算式): Q 实= S 2 ×V 2 =0.096m3/s = 5.8m3/min 2.4.仓泵的工作过程主要分为下列几个过程: ㈠进料㈡加压㈢输送㈣吹扫等四个过程. 2.5.仓泵输送质量流率: G MS =Q×μ 气 ×μ=2.84g/s 上式中: G MS 质量流率 Q 耗气量 (0.069m3/s)

μ 气 空气比重 (1.25) μ混合比 (33) 仓泵主要技术参数见上表, 一个输送过程的时间按下式计算: t=t 1+t 2 +t 3 +t 4 +t 5 上式中:t 1 进料时间(多组仓泵进行交替输送时,不计时料时间) t 2 有效输送时间 t 3 管道吹扫时间 t 4 加压时间 t 5 辅助时间(各种动作过程时间) 每组泵的有效输送时间: t 2=w÷(Q×μ 气 ×μ) =598.6s 上式中: w 一台仓泵装灰量, 为1700kg. 吹扫时间: t 3 = L÷V p +60=85s 上式中: L 按输送最远几何距离215m计算 V p 气流平均速度:8.7m/s 加压时间: T 4 30s 辅助时间: T 5 5s 总的输送时间为:718.6 每小时最大输送能力: (3600÷718.6)×1.7t =8.5t/h 根据以上计算,电除尘器一台炉采用一根DN100输灰管,分二组进行交替输送,其输送能力为8.5t/h,大于实际出力的300%,满足招标文件中的设计出力要求。

灰渣稀相气力输送系统设计计算说明书

灰渣稀相气力输送系统设计计算说明书 一系统出力 按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%-DS)计算,焚烧炉系统的灰渣产率为 2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%-DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为 1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%-DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为 1.65t/h。系统的最大灰渣产率按第一种情况计算,即取2.05t/h。尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为 4.6kg/h。为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭 则通过另一套系统输送到飞灰储仓。卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。根据 经验数据,两台余热锅炉排出的灰渣量约为440kg/h。按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率 1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为 2.05t/h。按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性 炭粉)0.67t/h。因为对每个灰斗来说,灰渣输送系统采用的是间歇运 行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘

设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。 综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取 5.125t/h,袋式除尘器的飞灰输送系统的设计出力取 1.675t/h。 二灰渣输送线操作参数选取 按输送系统输送距离最长的部分(余热锅炉灰斗至渣仓)管线布 置计算,灰渣输送管线的当量长度大于200m。参考火力电厂输灰系统设计的有关规定,灰渣采用低正压压送方式输送,选取输送管末端气速为22m/s,输送的固气比选为5。每条输送线的输送量按 5.125t/h 设计,因此其耗风量为 1.025t/h。估计罗茨风机出口处的空气温度为70℃,从风机出口到余热锅炉排灰口空气输送管线几何长度约为 92m,空气通过这段输送管线与灰渣混合前温度估计降为60℃。炉渣从余热锅炉卸出时的温度取120℃,灰渣热容0.8kJ/(kg·℃),空气比热1.0kJ/(kg·℃),则两者混合均匀后的温度约为90℃。这段灰渣输送管线的几何长度约为116m,灰渣输送到管线末端时的温度约降为75℃。仓顶除尘器的压力损失按 1.5kpa计算,计算得出管线内径为130mm,选用Ф159×7mm的输送管,其内径为145mm。如果输送的气体量仍为 1.025t/h,则输送管线出口端的气速为17.7m/s。 三输送管线压降计算 因为余热锅炉到灰渣仓的距离最远,因此只需计算该部分的输送 管线压力损失就可以确定灰渣输送风机的升压。这段输送管线水平长度约101m,垂直管道长度约15m,90度弯头(R/D i≥6)8个,变径

气力输送系统的组成气力输送

《食品加工机械与设备》 前言 研究内容:农产品加工中常用的机械和设备以及其构成、各部分的功能,特性,适用范围,使用与维护和相关性能指标的测定(生产率、功率消耗等)。 研究目的和意义:了解现有的设备,设计未来的产品。 第一章物料输送机械 本章学习目标 1)了解各种形态物料的输送特点; 2)掌握输送机械的主要类型及其工作原理; 3)了解各种主要输送机械的基本结构; 4)掌握输送机械的基本性能特点; 5)掌握输送机械的选用和使用要点。 一前言: 输送机械的类型:按传送过程的连续性分为连续式和间歇式 按传送时运动方式可分为直线式和回转式 按驱动方式分机械驱动、液压驱动、气压驱动和电磁驱动 按所传送的物料形态分为固体物料输送机械和液体物料输送机械输送物料的状态:固体物料状态有块状、粒状和粉状,输送机械有带式、螺旋、振动式、刮板式、斗式输送机与气力输送装置,固体物料的组织结构、形状、表面状态、摩擦系数、密度、粒度大小;液体物料状态有牛顿流体和非牛顿流体,输送机械有离心泵、齿轮泵和螺杆泵,液体物料的粘度、成分构成。 良好输送效果,应考虑物料性质、工艺要求、输送路线及运送位置的不同选择适当形式的输送设备。 二固体物料输送机械 (一)带式输送机应用最广泛,连续输送机械,用于块状、颗粒状物料及整件物料的水平或倾斜方向的运送,还常用于连续分选、检查、包装、清洗和预处理的

操作台。v=0.02~4m/s 1.工作原理和类型:环形输送带作为牵引及承载构件,绕过并张紧于两滚筒上,输送带依靠 其与驱动滚筒之间的摩擦力产生连续运动,同时,依靠其与物料之间的 摩擦力和物料的内摩擦力使物料随输送带一起运动,从而完成输送物料 的任务。主要组成部件:环形输送带,驱动滚筒,张紧滚筒,张紧装置, 装料斗、卸料装置、托辊及机架组成 特点:结构简单,适应性广;使用方便,工作平稳,不损失被运输物料;输送过程中物料与输送带间无相对运动,输送带易磨损,在输送轻质粉料时易形成飞扬。 1.2主要构件: 1.2.1输送带: A种类:食品工业常用的输送带有橡胶带、纤维编织带、网状钢丝带及塑料带。 1)橡胶带纤维织品与橡胶构成的复合结构,上下两面为橡胶层,耐磨损,具有良好 的摩擦性能。工作表面有平面和花纹两种,后者适宜于内摩擦力较小的光滑颗粒物 料的输送。规格:300、400~1600mm宽 2)钢带0.6~1.4mm厚,宽<650mm;强度大耐高温、不易伸长和损伤 3)网状钢丝带强度高、耐高温、耐腐蚀,网孔大小可选,常用于水冲洗+输送, 边输送,并清、沥水、炸制、通分冻结、干燥。 4)塑料带耐磨、耐酸碱、耐油、耐腐蚀,适用温度变化范围大,一般有单层和多层 结构。 B托辊: 作用:承托输送带及其上面的物料,避免作业时输送带产生过大的挠曲变形。 种类:上托辊(载运托辊)和下托辊(空载托辊) 上托辊有单辊式和多辊组合式。前者输送带表明平直,物料运送量较少,适合运输成件物品;后者输送带弯曲呈槽形,运输量大、生产率高,适合运送 颗粒状物料,单输送带易磨损。 材料:铸铁、钢管+端头 1)上托辊φ89、φ108、φ159mm , 间距<1/2物件长(大于20公斤)一般 0.4~0.5m 2)下托辊只起托运输送作用,多为平面单辊。 C: 滚筒 1)驱动滚筒一般有电机+减速机+带、链传动,电动滚筒。宽大于带宽10~20cm.

气力输送设计

气力输送设计 5.1已知条件: 5.2系统选择 5.2.1正压系统是工业上最常用的,它适用于文丘里式、螺旋泵和仓式泵等绝大多数供料器。 5.2.2 供料器的选择:螺旋泵 5.2.3 风机选择 大多数气力输送系统使用容积式空压机(风机),因为此类设备当压力变化时体积流量几乎不变。当排气压力小于100kPa时,广泛使用罗茨鼓风机。该类型具有宽广的体积流量范围并能提供无油空气。此外,它有恒定的速度曲线,当传递压力增加时,体积流量仅轻微减少,从而保证了物料在一定压力下的悬浮流动状态。 5.3设计计算 5.3.1输送速度选择 据输送速度表的粒径和和密度,选 v=18m/s 5.3.2输送料气比 据GALOTER炉资料料气比C=2424/398=6.09,本设计取料气比 C=6㎏/㎏ 则气体量为Q0=G/6=77821/6=12970㎏,折标态12970/1.293=10031 m3/h 考虑系统漏风和储备,风机风量Q=K4Q0=1.25×10031=12538.8 Nm3/h 5.3.2 输送管道有效内径计算 5.3.2.1风量换算系数计算 风量换算系数 体积换算系数 C= V

质量换算系数0 t m C ρρ= 2 0000/273/273H P t t t m p T C p T P t ρρ==*=+ 当已知海拔高度为H 时,大气压与标准大气压的关系为: P h/ P 0= (1-0.022569H)5。256 式中:T o --标况气体温度,℃; T 1一该风量中气体的工况温度,℃; P 0—海平面上的气压,Pa P h 一水泥厂厂区的气压,pa H--水泥厂厂区海拔高度,km 0 5.256 (273480) 1.711273(1-0.0225690.5)0 t T P C t C V T P t ρ ρ+====?? 5.3.2.2管道流量计算 Qt= Q0?C V =10031×1.711=17163 m3/h 5.3.2.3管道直径计算 有效管径D1应为: 117163 0.493 0.78543600250.78543600 t Q D v ===???? m 圆整,取D1=0.5m 5.4 气力输送系统总压损 气力输送系统总压损是由输送管道总压力损失、管道出口阻力、喷煤管阻力和气力输送设备阻力组成。输送管道总压力损失又由水平管摩擦阻力、垂直管摩擦阻力和垂直管提升阻力组成。 工程上为了便于计算,常将弯管的局部压力损失折算成水平管道的沿程压力损失。一般对于均匀粒状物料,当弯管R/D=6时,其当量长度取8~10m,弯管R/D=10时,其当量长度取10~16m,弯管R/D=20时,其当量长度取12~20m V —管道内风速,为25m/s u —料气比,为6kg/m 3 H —工厂海拔高度,为0.5km; T 1—气体温度,为500℃; L 1—水平管道输送长度,为20m, H 1—窑头垂直管道输送长度,为16m,

气力输送系统设备商务投标书范本

气力输送系统设备商务投标书范本

————————————————————————————————作者: ————————————————————————————————日期: ?

济南恒通粉体工程有限公司HTPE 济南恒通粉体工程公司阜新盛明热电有限责任公司飞灰气力输送系统及灰库卸料设备工程 投 标 文 件 ?文件目录 1、法定代表人资格证明书 2、投标人法定代表人授权书 3、投标函 4、投标人关于资格的声明函 5、资质文件 电话:6邮箱:

6、投标人公司简介 7、业绩表 8、投标一览表 9、分项报价 10、两年备品备件清单? 11、价格汇总表 12、付款方式 13、交货时间、地点、运输方式 14、油漆、标志、包装及储存 15、产品承诺书 16、设备质保承诺 17、商务条款偏离表 法定代表人资格证明书投保人名称:济南恒通粉体工程有限公司 单位性质:私营 地址:山东省章丘市赭山工业园 成立时间:2010年8月 经营期限: 营业执照号码:3787

企业代码证号码:56075555-9 税务证号码:379 安全许可证号码: 姓名: 性别: 男年龄:职务: 经理 系济南恒通粉体工程有限公司的法定代表人。 特此证明。 投标人法定代表人授权书 项目名称:阜新盛明热电有限责任公司飞灰气力输送系统及灰库卸料设备工程 日期:2013年8月24日 致:阜新盛明热电有限责任公司 济南恒通粉体工程有限公司,中华人民共和国合法企业,法定地址山东省章丘市明水经济开发区西环路中段。 特授权代表我公司全权办理针对上述项目的投标、谈判、签约等具体工作,

负压稀相气力输送系统

负压稀相气力输送系统工作原理和系统优势 负压气力输送系统主要由:气力输送风机、取料装置、管道、缓冲仓、除尘器、卸料装置、等构成。 负压稀相气力输送系统主要采用负压罗茨真空泵作为动力源,管道输送压力为低真空状态,管道风速约10-35米/秒,物料在管道内呈雾状。负压输送起点压力等于或接近大气压,终点压力在-10到-50Kpa之间,管道真空度沿气力输送管道逐渐增高。 工作原理 1、系统主要采用罗茨风机或真空泵作为气源设备,气源设备在系统的末端; 2、气力输送系统取料装置部件通常采用特殊结构的吸嘴; 3、风机运转后,抽风整个系统形成负压,由管道内外存在的压力差将物料吸入输料管,物料和一部分空气同时被吸嘴吸入,并被送到缓冲仓内; 4、在缓冲仓内,物料和空气分离,被分离出的物料从缓冲仓的底部通过锁气阀卸出; 5、未被分离出来的微细粉粒输送气流进入除尘器中净化,净化后的空气净除尘器,风机排入大气中。 系统优势 1、本负压系统具有气力输送量大、输送距离长、输送速度快等特点; 2、系统易于取料,适用于从低压、深处、较为狭窄的取料点取料,可用于要求取料不发尘的场合,可实现多处上料向一处集中供料。负压稀相气力输送系统适用性广,用于广泛,粉体、颗粒物均可顺利输送; 3、系统气源位于末端,润滑油或水分等不会混入输送的物料中,输送物料更清洁; 4、系统由于输料管道内为负压,因此系统管道产生磨损或存在间隙时,被输送物料也不会发生泄漏,此外,由于负压稀相气力输送系统内压力低于大气压,水分更易蒸发,所以对水分多的物料较其他方法更容易输送; 5、系统输送气体一般直接取自大气,气体的温度即为环境温度,因此负压气力输送系统适用于对温度敏感的热敏性物料

克莱德气力输送系统介绍

克莱德贝尔格曼华通 物料输送有限公司 气力输送系统介绍 现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理 一:电厂输送的物料(输送对象) 1:电除尘的飞灰。 2:省煤器和空气预热器灰。 3:循环流化床锅炉的炉底渣。 4:循环流化床锅炉的石灰石粉料。 二:电除尘飞灰的主要性能指标及对输送的影响 1:粒度 粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。 测量方法:筛分(范围)和粒度分析仪(范围更小的数值范围)。 粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度 密度:单位容积内的重量。 气化密度:灰层处于气化状态下的密度。 在粒度相同时,密度小、孔隙率高,易输送。 3:粘附力 粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。 分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力. 静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失. 粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。 4:磨蚀性 粉煤灰在流动中对管道壁的磨损。 影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。 粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。 一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。 在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。 磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。 5:灰斗内的架桥和离析 架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。 架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小) 括号内是增加架桥发生的诱因变化趋势。

相关主题
文本预览
相关文档 最新文档