当前位置:文档之家› 第十章 函数项级数

第十章 函数项级数

第十章 函数项级数
第十章 函数项级数

1

第十章函数项级数

§ 1 函数项级数的一致收敛性(1)

一、本次课主要内容

点态收敛,函数项级数收敛的一般问题。

二、教学目的与要求

使学生理解怎样用函数列(或函数项级数)来定义一个函数,掌握如何利用函

数列(或函数项级数)来研究被它表示的函数的性质。

三、教学重点难点

函数列一致收敛的概念、性质

四、教学方法和手段

课堂讲授、提问、讨论;使用多媒体教学方式。

五、作业与习题布置

P68 1(5)(7)

2 一.

函数列及极限函数:对定义在区间I上的函数列,介绍概念:

收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念.

1.逐点收敛 ( 或称为“点态收敛” )的“

”定义.

例1 对定义在

内的等比函数列, 用“”定义验

证其收敛域为

, 且

例2 .用“”定义验证在内.

例3 考查以下函数列的收敛域与极限函数: .

(1).

.

(2).

(3)设

为区间上的全体有理数所成数列. 令

, .

(4). , .

(5)

有, ,

. (注意

.)

二. 函数列的一致收敛性:

3 问题: 若在数集D上, . 试问: 通项

的解析性质

是否必遗传给极限函数

能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但

.

的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性质研

究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质

能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收

敛加强为所谓“整体收敛”的结果.

定义( 一致收敛 ) 一致收敛的几何意义.

在数集D上一致收敛,

Th1 (一致收敛的Cauchy准则 ) 函数列

,

.

( 介绍另一种形式.)

证 ( 利用式)

,……,有.

易见逐点收敛. 设

推论1 在D上

, ,.

D , 使

推论2 设在数集D上, . 若存在数列

在数集D上非一致收敛 .

应用系2 判断函数列

―在数集D上的最值点.

. 证明函数列在R内一致收敛.

例4

4

. 证明在R内, 但不一致收敛.

例5

,在点处取得极大值

证显然有

,

. 由系2 , 不一致收敛.

例6 . 证明在

内, .

内成立.

由系1 , ……

上的函数列

例7 对定义在区间

上不一致收敛. P38—39 例3, 参图13-4.

证明: , 但在

, 就有. 因此, 在上有

证时, 只要

. ,

, , 因

此 , 该函数列在

上不一致收敛.

. 考查函数列在下列区间上的一致收敛性:

例8

例9 考查级数从开头每两项加括号后所得级数的敛散性 .

该例的结果说明什么问题 ?

5 教学后记:

6

第十章函数项级数

§ 1 函数项级数的一致收敛性(2)

一、本次课主要内容

函数项级数一致收敛性。

二、教学目的与要求

使学生理解函数项级数一致收敛性概念。掌握函数项级数一致收敛性的判断。

三、教学重点难点

函数序列一致收敛性的判别方法。

四、教学方法和手段

课堂讲授、提问、讨论;使用多媒体教学方式。

五、作业与习题布置

P68 1(9)(11),P69 5

7

一. 函数项级数及其一致收敛性:

, 前项部分和函数列,收敛

1.函数项级数及其和函数:

点,收敛域, 和函数, 余项.

内的函数项级数( 称为几何级数 )

例1 定义在

的部分和函数列为, 收敛域为

.

2.一致收敛性: 定义一致收敛性.

在区间D上一致收敛, ,

Th2 ( Cauchy准则 ) 级数

对D成立.

推论级数

在区间D上一致收敛, , .

Th3 级数在区间D上一致收敛,

.

例2 证明级数在R内一致收敛 .

=, 则时

证令

8

R成立. ……

在区间上一致收敛;但在内非

例3 几何级数

一致收敛.

上 , 有

证在区间

, . 一致收敛 ;

内 , 取, 有

而在区间

, .

非一致收敛.

( 亦可由通项

在区间内非一致收敛于零,非一致收

敛.)

几何级数

虽然在区间内非一致收敛 , 但在包含于内的任

何闭区间上却一致收敛 . 我们称这种情况为“闭一致收敛”. 因此 , 我们说几何

级数

在区间内闭一致收敛 .

二.函数项级数一致收敛判别法:

1.M - 判别法:

9

Th 4 ( Weierstrass判别法 ) 设级数定义在区间D上, 是收

充分大时, 对D有|, 则在D上一致

敛的正项级数.若当

收敛 .

证然后用Cauchy准则.

亦称此判别法为优级数判别法. 称满足该定理条件的正项级数是级数

的一个优级数. 于是Th 4 可以叙述为: 若级数在区间D上存在优

级数 , 则级数在区间D上一致收敛 . 应用时, 常可试取

.但应注意, 级数在区间D上不存在优级数 , 级数

在区间D上非一致收敛.

注意区分用这种控制方法判别函数列和函数项级数一致收敛性的区别所在.

例 3 判断函数项级数和在R内的一致收敛性 .

是区间上的单调函数. 试证明 : 若级

例 4 设

都绝对收敛, 则级数在区间上绝对并一致

数与

收敛 .

简证 ,留为作业. .……

2. Abel判别法:

10

在区间上收敛; ⅱ> 对每个, 数列

Th 5 设ⅰ> 级数

单调 ; ⅲ> 函数列

在区间上一致收敛 .

, 有. 则级数

( [1]P43 )

3.Dirichlet判别法:

的部分和函数列在区间上一致

Th 6 设ⅰ> 级数

有界;

ⅱ> 对于每一个

, 数列单调; ⅲ> 在区间上函数列

在区间上一致收敛 .

一致收敛于零. 则级数

在区间上的一致收敛性.

例5 判断函数项级数

解记. 则有ⅰ> 级数收敛;

, ↗;ⅲ> 对

ⅱ> 对每个

单调收敛于零 . 试证明 : 级数在区间

例6 设数列

上一致收敛.

证在

.

11

的部分和函数列在区间上一致有界 . 取

可见级数

, . 就有级数

的部分和函数列在区间

上一致有界, 而函数列

在区间上一致收敛.

收敛于零.由Dirichlet判别法,级数

单调收敛于零的条件下, 级数在不包含

其实 , 在数列

习题课

设,, . 且,

例1

―|对成立, 则函数列{}

若对每个自然数有|

例2

证明函数列在区间上非一致收敛.

, . 讨论函数列{}的一致收敛性.

例3

― 0|. 可求得

解 0, . |

.

函数列{

设函数在区间上连续 . 定义. 试证

例4

}在区间上一致收敛于零.

12

有界 . 设在区间上||.

证法一由

|

|;

|;

|

|.

|

注意到对, .

0, , .

证法二

.

有界. 设在区间上||. 把函数在

点展开成具Lagrange型余项的

,

就有

,

, , .

所以 , 0, , .

设. 且, . 令

例5

13

, ,

. …….

和, 有 , 则函数列

试证明: 若对

{

取, 使时, 有. 于是对任何自然数

证对

和, 有

.

由Cauchy收敛准则 , 函数列{

}在区间上一致收敛 .

例6 设在数集

在数集

在数集上有界 ) 设在上有||.

证( 先证函数

,有 |

||,

|< . 即函数在数集上有

|

界.

( 次证函数列{

}在数集上一致有界 ) 时, 对,有

|

取易见对

即函数列{

14 教学后记:

15

第十章函数项级数

§ 2 一致收敛级数的判别与性质(1)

一、本次课主要内容

函数项级数的一致收敛的柯西收敛准则和一致收敛级数的性质。

二、教学目的与要求

使学生掌握判别函数的一致收敛性。深刻理解函数项级数一致收敛的判别方法。

三、教学重点难点

函数项级数一致收敛的判别方法的选择与使用。

四、教学方法和手段

课堂讲授、提问、讨论;使用多媒体教学方式。

五、作业与习题布置

P82 1(4)(6)(8)(10)

16

一. 一致收敛函数列极限函数的解析性质:

1.连续性:

Th 1 设在

上,且对,函数在上连续 ,

证( 要证 : 对

当|

时, . )

在点

估计上式右端三项. 由一致收敛 , 第一、三两项可以任意小; 而由函数

也可以任意小 . ……

上. 若在上间断,则函数列{}在

推论设在

上一致收敛和所有

}, 有

註 Th1表明: 对于各项都连续且一致收敛的函数列{

即极限次序可换 .

2. 可积性:

Th 2 若在区间

上函数列{}一致收敛 , 且每个在

上连续. 则有.

证设在

上, 由Th1, 函数在区间上连续,

因此可积. 我们要证. 注意到

在上成立.

, 可见只要

17

在上(R )可积”代替条件“

Th2的条件可减弱为: 用条件“

关于函数列逐项积分条件的减弱有一系列的工作. 其中之一是:

Th 设{

}是定义在区间上的函数列. 若{}在上收

敛且一致可积 , 则其极限函数

在上( R)可积 , 且有

.

3. 可微性:

Th 3 设函数列{

}定义在区间上, 在某个点收敛. 对

上连续可导, 且由导函数构成的函数列{}在上

一致收敛, 则函数列{

.

,. , .

证设

, 注意到函数连续和+, 就有

+ (对第二项交换极限与积分次序)

+ +.

估计 |

+――

―| + |,可证得.

|

18

.

即. 亦即求导运算与极限运算次序可换.

教学后记:

19

第十章函数项级数

§ 2 一致收敛级数的判别与性质(2)

一、本次课主要内容

函数项级数的一致收敛的连续性定理,逐项积分定理和DiNi定理

二、教学目的与要求

使学生理解函数项级数的性质。

三、教学重点难点

函数像级数一致收敛的性质的使用。

四、教学方法和手段

课堂讲授、提问、讨论;使用多媒体教学方式。

五、作业与习题布置

P83 8

20

二. 一致收敛函数项级数和函数的解析性质:

例1P40例3

证明函数在区间内连续.

例2

在区间内闭一致收敛.)对,有

证( 先证

;又,在一致收敛.

( 次证对

上一致收敛; 又函数连续, 在区间

论 , 在区间

上连续,

在点连续. 由点的任意性, 在区间

, . 计算积分.

例3

时, 级数的部分和有界 . 由Dirichlet判别法推得级

可见

数收敛 . 同理可得级数数收敛 .

教学后记:

复变函数项级数

§4.2 复变函数项级数 教学目的:1.理解复变函数项级数收敛的概念,掌握其收敛的常用 判别法,以及收敛复函数项级数的和函数的基本性质. 2. 能正确灵活运用相关定理判断所给级数的敛散性. 3.掌握幂级数收敛半径的计算公式、幂级数的运算性质以及幂级数和函数的解析性,能灵活正确求出所给级 数的收敛半径;能用 1 (1)1n n z z z ∞ ==<-∑将简单函数表示为级数. 教学重点:掌握阿贝尔定理以及级数收敛半径的计算方法;能用间 接法和 01 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学难点:正确利用 1 (1)1n n z z z ∞ ==<-∑求函数的幂级数展式. 教学方法:启发式讲授与指导练习相结合 教学过程: §4.2.1 复变函数项级数 设{()n f z }是定义在平面点集E 上的一列复变函数,(书上为其中各项在区域D 内有定义,)则式子: 12()()()n f z f z f z ++++L L 称为E 上的复函数项级数,记为 1 ()n n f z ∞ =∑. 【定义】※设1 ()n n f z ∞ =∑是定义在E 上的复函数项级数, ()S z 是E

的一个复函数,如果对E 内的某一点0z ,极限 00lim ()() n n S z S z →∞ =存在,则称复变函数项级数在0z 收敛.若对E 上的每一点z E ∈,都有级数 1 ()n n f z ∞ =∑收敛, 则它的和一定是一个z 的函数()S z ,则称 1 ()n n f z ∞ =∑在E 上收敛于()S z ,此时()S z 也称为1 ()n n f z ∞ =∑在E 上的 和函数.记为1 ()()n n S z f z ∞ == ∑或者()lim ()n n S z S z →∞ =, {}()n S z 称为 1 ()n n f z ∞ =∑的部分和函数列. §4.2.2 幂级数 1.【幂级数的定义】通常把形如: 20 010200 () ()()n n n C z z C C z z C z z ∞ =-=+-+-∑ 0()n n C z z ++-+L L 的复函数项级数称为(一般)幂级数, 其中0C ,1C ,L n C ,L .和0z 都 是复常数, 分别称为幂级数 () n n n C z z ∞ =-∑的系数与中心点. 若00z =, 则幂级数0 () n n n C z z ∞ =-∑可简化为 n n n c z ∞ =∑(标准幂级

幂级数求和函数方法概括与总结

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3 )n u x n =是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++ ∈ 为定义在E 上的函数项级数,简记为1 ()n n u x ∞=∑ 。 2、具有下列形式的函数项级数 2 00102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-+ +-+ ∑

函数列与函数项级数

Ch 13 函数列与函数项级数 ( 1 2 时 ) § 1 一致收敛性( 6 时 ) 一. 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念: 收敛点,收敛域( 注意定义域与收敛域的区别 ),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞→n lim n x =? ??=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n =n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 22 2x n xe n -. )(x f n →0, R ∈x .

156 ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意 ? ≡1 1)(dx x f n .) 二. 函数列的一致收敛性: 问题: 若在数集D 上 )(x f n →)(x f , ) (∞→n . 试问: 通项)(x f n 的解析性质是否必遗传给极限函数)(x f ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 ∞ →n lim () ? ?∞ →≠1 1 0)(lim )(dx x f dx x f n n n . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等函数的一 种手段. 对这种函数, ∞ →n lim )(x f n 就是其表达式.于是,由通项函数的解析性质研究极限 函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质能遗传给极 限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓 “整体收敛”的结果. 定义 ( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy 准则 ) 函数列}{n f 在数集D 上一致收敛,? N , 0?>?ε, , , N n m >?? ε<-n m f f . ( 介绍另一种形式ε<-+n p n f f .) 证 )? ( 利用式 .f f f f f f n m n m -+-≤-)

第十三章函数列和函数项级数

第十三章 函数列与函数项级数 目的与要求:1.掌握函数序列与函数项级数一致收敛性的定义,函数列与函数项级数一致收敛性判别的柯西收敛准则,函数项级数一致收敛性的判别法. 2. 掌握一致收敛函数序列与函数项级数的连续性、可积性、可微性的结论. 重点与难点:本章重点是函数序列与函数项级数一致收敛性的定义,判别法和性质;难点则是利克雷判别法和阿贝尔判别法. 第一节 一致收敛性 我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数. 一 函数列及其一致收敛性 设 ,,,,21n f f f (1) 是一列定义在同一数集E 上的函数,称为定义在E 上的函数列.也可简记为: }{n f 或 n f , ,2,1=n . 设E x ∈0,将0x 代入 ,,,,21n f f f 得到数列 ),(,),(),(00201x f x f x f n (2) 若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点. 若数列(2)发散,则称函数列(2)在点0x 发散. 若函数列}{n f 在数集E D ?上每一点都收敛,则称}{n f 在数集D 上收敛.

这时对于D x ∈?,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数.记作f .于是有 )()(lim x f x f n n =∞ →, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈. 函数列极限的N -ε定义是: 对每一个固定的D x ∈,对0>?ε,0>?N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n . 使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域. 例1 设n n x x f =)(, ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ? ??=<=1,11 ,0)(x x x f (3) 证明:因为定义域为),(∞-∞,所以根据数列收敛的定义可以将),(∞-∞分为四部分 (i) 10<ε(不妨设1<ε),当10<时,就有ε<-)()(x f x f n . (ii)0=x 和1=x 时,则对任何正整数n ,都有 ε<=-0)0()0(f f n ,ε<=-0)1()1(f f n . (iii) 当1>x 时,则有)(∞→+∞→n x n , (iv) 当1-=x 时,对应的数列为 ,1,1,1,1--,它显然是发散的. 这就证得{}n f 在]1,1(-上收敛,且有(3)式所表示的极限函数.所以函数列{}n x 在区

第十二讲函数列与函数项级数

第十二讲函数列与函数项级数 12 . 1 函数列与函数项级数的收敛与一致收敛 一、函数列 (一)函数列的收敛与一致收敛 1 .逐点收敛 函数列(){}I x x f n ∈,,若对I x ∈?,数列(){}x f n 都收敛,则称函数列在区间 I 上逐点收敛,记 ()()I x x f x f n n ∈=∞ →,lim ,称()x f 为(){}x f n 的极限函数.简记为 ()()()I x n x f x f n ∈∞→→, 2 .逐点收敛的N -ε定义 对I x ∈? ,及 0>?ε,()0,>=?εx N N ,当N n > 时,恒有()()ε<-x f x f n 3 .一致收敛 若函数列(){}x f n 与函数()x f 都定义在区间 I 上,对 0,0>?>?N ε,当N n > 时,对一切I x ∈恒有()()ε<-x f x f n ,则称函数列(){}x f n 在区间 I 上一致收敛于()x f .记为()()()I x n x f x f n ∈∞→?, . 4 .非一致收敛 00>?ε,对N n N >?>?0,0,及I x ∈?0,使得 ()()0000ε≥-x f x f n 例 12 . 1 证明()n n x x f =在[]1,0逐点收敛,但不一致收敛. 证明:当[]1,0∈x 时,()0lim lim ==∞ →∞ →n x n n x x f ,当1=x 时,()11lim =∞ →n n f ,即极限函数 为()[)???=∈=1 ,11,0,0x x x f .但 ()x f n 非一致收敛,事实上,取031 0>=ε。对0>?N ,取 N N n >+=10,取()1,02101 0∈? ? ? ??=n x · 此时()()00002100ε>==-n x x f x f n , 即()()()[]1,0,∈∞→≠>x n x f x f n 5 .一致收敛的柯西准则 函数列(){}x f n 在 I 上一致收敛?对 0,0>?>?N ε,当 n , m > N 时,对一切I x ∈,

函数列与函数项级数

第十三章 函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致 收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ———————————————————— 一 函数列及其一致收敛性 对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值

函数项级数一致收敛的几个判别法及其应用

函数项级数一致收敛性判别法及其应用 栾娈 20111101894 数学科学学院 数学与应用数学11级汉班 指导老师:吴嘎日迪 摘要:本文证明了常用的函数项级数一致收敛性的判别法,并通过例题给出了它的应用.另外,仿照极限的夹逼原理,得到函数项级数一致收敛的夹逼判别法. 关键词:一致收敛,函数项级数,和函数 1.函数列与一致收敛性 (1)函数项级数一致收敛性的定义:设有函数列{S n (x )}(或函数项级数∑∞ =1 )(n n x u 的 部分和序列)。若对任给的0>ε,存在只依赖于ε的正整数N (ε),使n > N (ε)时,不等式 ε<-)()(x S x S n 对X 上一切x 都成立,则称{S n (x )}(∑∞ =1 )(n n x u )在X 上一致收敛于S (x ). 一致收敛的定义还可以用下面的方式来表达: 设 =-S S n X x ∈s u p )()(x S x S n -, 如果 0lim =-∞ →S S n n 就称S n (x )在X 上一致收敛于S(x ). 例1 讨论 = +=X x n nx x S n 在2 2 1)([0,1]的一致收敛性 由于S (x )=0, 故 2 11)(m a x 1 = ?? ? ??==-≤≤n S x S S S n n x o n , 不收敛于零,故在[0,1]上非一致收敛 (2)函数项级数一致收敛的几何意义:函数列{f n }一致收敛于的f 几何意义:对任 给的正数ε ,存 N ,对一切序号大于N 的曲线y=f n (x )都落在以曲 线y= f (x )+ε与y=f (x )-ε为上,下边界的带形区域内. 2.函数列一致收敛的判别准则(充要条件)

函数列与函数项级数

第十三章函数列与函数项级数 教学目的:1.使学生理解怎样用函数列(或函数项级数)来定义一个函数;2.掌握如何利用函数列(或函数项级数)来研究被它表示的函数的性质。 教学重点难点:本章的重点是函数列一致收敛的概念、性质;难点是一致收敛的概念、判别及应用。 教学时数:20学时 § 1 一致收敛性 一. 函数列及极限函数:对定义在区间I上的函数列,介绍概念:收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛 ( 或称为“点态收敛” )的“ ”定义. 例1 对定义在 内的等比函数列, 用“”定义验证其收敛域为 , 且 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: . ⑴. .

⑵. . ⑶设 为区间上的全体有理数所成数列. 令 , . ⑷. , . ⑸ 有 , , . (注意.) 二. 函数列的一致收敛性: 问题: 若在数集D上, . 试问: 通项 的解析性质是否必遗传给极限函数 ? 答案是否定的. 上述例1、例3⑴⑵说明连续性未能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 . 用函数列的极限表示函数是函数表达的一种重要手段. 特别是表达非初等 函数的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解 析性质研究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函

数的解析性质能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收敛加强为所谓“整体收敛”的结果. 定义( 一致收敛 ) 一致收敛的几何意义. Th1 (一致收敛的Cauchy准则 ) 函数列 在数集D上一致收敛, , . ( 介绍另一种形式.) 证 ( 利用式) ,……,有 易见逐点收敛. 设 , 对D成立, . 令 , ,D. 即 推论1 在D上 , ,. D , 推论2 设在数集D上, . 若存在数列 使, 则函数列 在数集D上非一致收敛时, 常选为函数 ―在数集D上的最值点. . 证明函数列在R内一致收敛. 例4

一致收敛函数列与函数项级数的性质

§2 一致收敛函数列与函数项级数的性质 教学计划:4课时. 教学目的:让学生掌握一致收敛函数列与函数项级数的性质及其应用. 教学重点:函数列与函数项级数的确定的函数的连续性、可积性与可微性. 教学难点:在一致收敛的条件下证明各项分析性质. 教学方法:讲授法. 教学步骤: 本节讨论由函数列与函数项级数的确定的函数的连续性、可积性与可微性. 定理13.8 设函数列{}n f 在()()b x x a o o ,, 上一致收敛于()x f ,且对每个n , ()n n x x a x f o =→lim 则n a ∞ →lim 和()x f o x x →lim 均存在且相等. 证 先证{}n a 是收敛数列.对任意0>ε,由于{}n f 一致收敛,故有N ,当N n >和任意正整数p ,对一切()()b x x a x o o ,, ∈有 ()().ε<-+x f x f p n n (1) 从而 ()()ε≤-=-+→+x f x f a a p n n x x p n n 0 lim 这样由柯西准则可知{}n a 是收敛数列. 设.lim A a n n =∞ →.再证().lim 0 A x f x x =→ 由于)(x f n 一致收敛于)(x f 及n a 收敛于A ,因此对任意,0>ε存在正数N ,当N n >时,对任意),(),(00b x U x a x ∈ 3 3 )()(ε ε < -< -A a x f x f n 和 同时成立.特别取,1+=N n 有 .3 ,3 )()(11ε ε < -< -++A a x f x f N N 又(),lim 110 ++→=N N x x a x f ,故存在,0>δ,当δ<-<00x x 时, .3 )(11ε < -++N N a x f 这样,当x 满足δ<-<00x x 时, A a a x f x f x f A x f N N N N -+-+-≤-++++1111)()()()( ,3 3 3 εε ε ε =+ + < 即 ().lim 0 A x f x x =→ □ 这个定理指出:在一致收敛的条件下,{})(x f n 中两个独立变量x 与n ,在分别求极限时其求极限的顺序可以交换,即 ()().lim lim lim lim 0 0x f x f n x x n n n x x →∞→∞ →→= (2) 类似地,若)(x f n 在()b a ,上一致收敛且)(lim x f n a x + →存在,可推得 ()().lim lim lim lim x f x f n a x n n n a x ++→∞→∞ →→=;若)(x f n 在()b a ,上一致收敛和)(lim x f n b x +→存在,则可推 得()().lim lim lim lim x f x f n b x n n n b x + + →∞→∞ →→=.

函数项级数的一致收敛性精选

函数列与函数项级数 §1. 函数项级数的一致收敛性 1. 讨论下列函数序列在所示区域的一致收敛性: ⑴ ()n f x =(,);x ∈-∞+∞ ⑵ ()sin ,n x f x n = i) (,),x l l ∈- ii) (,);x ∈-∞+∞ ⑶ (),1n nx f x nx = + (0,1);x ∈ ⑷ 1(),1n f x nx =+ i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑸ 22 33(),1n n x f x n x =+ i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑹ (),1n nx f x n x =++ [0,1];x ∈ ⑺ (),1n n n x f x x =+ i) [0,],1,x b b ∈< ii) [0,1];x ∈ iii) [,),1;x a a ∈+∞> ⑻ 2(),n n n f x x x =- [0,1];x ∈ ⑼ 1(),n n n f x x x +=- [0,1];x ∈ ⑽ ()ln ,n x x f x n n = (0,1);x ∈ ⑾ 1()ln(1),nx n f x e n -=+ (,);x ∈-∞+∞

⑿ 2 ()(),x n n f x e --= i) [,],x l l ∈- ii) (,)x ∈-∞+∞ . 2. 设()f x 定义于(,)a b ,令 [()]()n nf x f x n = (1,2,)n =???. 求证:{()}n f x 在(,)a b 上一致收敛于()f x . 3. 参数α取什么值时, (),nx n f x n xe α-= 1,2,3,n =??? 在闭区间[0,1]收敛?在闭区间[0,1]一致收敛?使10lim ()n n f x dx ->∞?可在积分号下取极 限? 4. 证明序列2()nx n f x nxe -=(1,2,)n =???在闭区间[0,1]上收敛,但 1 1 00lim ()lim ().n n n n f x dx f x dx ->∞->∞≠?? 5. 设{()}n f x 是[,]a b 上的连续函数列,且{()}n f x 在[,]a b 一致收敛于()f x ;又 [,]n x a b ∈(1,2,)n =???,满足0lim n n x x ->∞=,求证 0lim ()().n n n f x f x ->∞ = 6. 按定义讨论下列函数项级数的一致收敛性: ⑴ 0 (1), [0,1];n n x x x ∞=-∈∑ ⑵ 12 21(1), (,)(1) n n n x x x -∞=-∈-∞+∞+∑. 7. 设()n f x (1,2,)n =???在[,]a b 上有界,并且{()}n f x 在[,]a b 上一致收敛,求证: ()n f x 在[,]a b 上一致有界. 8. 设()f x 在(,)a b 内有连续的导数()f x ',且 1()[()()],n f x n f x f x n =+- 求证:在闭区间[,]αβ()a b αβ<<<上,{()}n f x 一致收敛于()f x '. 9. 设1()f x 在[,]a b 上黎曼可积,定义函数序列

数学分析第十讲函数项级数资料

第十讲 函数列与函数项级数 一、知识结构 1、函数列收敛性 (1)函数列收敛的概念和定义 定义1 设 ,,,,21n f f f 是定义在同一数集E 上的函数,称为定义在E 上的函数列,记作}{n f 或n f , ,3,2,1=n . 定义 2 设E x ∈0, 以0x 代入函数列 ,,,,21n f f f 的数列 ()()() ,,,,00201x f x f x f n . 如果数列)}({0x f n 收敛, 我们称函数列}{n f 在点0x 收敛, 点0x 为函数列}{n f 的收敛点. 如果数列)}({0x f n 发散, 称函数列}{n f 在发散, 点0x 为函数列}{n f 的发散点.如果在数集E D ?上的每一点函数列 ,,,,21n f f f 都收敛, 则我们称函数列}{n f 在D 上收敛.记作)()(lim x f x f n n =∞ →,D x ∈,)(x f 称为函数列 }{n f 在D 上极限函数, 或称为函数列}{n f 在D 上收敛与)(x f . 定义3(函数列)}({x f n 在D 上收敛于) (x f N -ε的定义) 对每一个固定的D x ∈0, 对0>?ε,存在正整数N ,当N n >时,有()()ε<-00x f x f n ,我们称函数列()}{x f n 在D 上收敛与)(x f ,记作)()(lim x f x f n n =∞ →,D x ∈或) ()(x f x f n →(∞→n ),D x ∈. 说明 ①对每一个固定的D x ∈0,都存在一个正整数N ,由于D 中一般有无限个0x ,所以就对应于无限个正整数N ,这无限个正整数N 中可能找到最小的,也可能找不到最小的.②定义中ε的大小一般既与N 的大小有关,又与D 上所选取的0x 大小有关. (2)函数列收敛的判定方法 数列)}({0x f n 收敛的判定方法均可作为函数列收敛的判定方法.例如,函数列

数项级数和函数项级数及其收敛性的判定

学号 数项级数和函数项级数及其收敛性的判定 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 姓名: 指导教师: 2012年5月

数项级数和函数项级数及其收敛性的判定 摘要 本文主要对数项级数中的正项级数与函数项级数收敛性判定进行研究,总结了正项级数和函数项级数一致收敛的部分判别法,并且介绍两种特别判别法:导数判别法和对数判别法。 关键词:数项级数;正项级数;函数项级数;一致收敛性;导数判别法;对数判别法. Several series and Function of series and the judgment of their convergence Abstract In this paper, the author mainly discusses two series: Several series of positive series and Function of series. Summarizing the positive series and function of the part of the uniform convergence series discriminant method .And it presents two special discriminant method: derivative discriminant method and logarithmic discriminant method. Keywords Several series; Positive series; Function of series; uniform convergence; derivative discriminant method; logarithmic discriminant method 前 言 在数学分析中,数项级数和函数级数是全部级数理论的基础,而且数项级数中的正项级数和函数级数是基本的,同时也是十分重要的两类级数。判别正项级数和函数级数的敛散性是研究级数的主要问题,并且在实际中的应用也比较广泛,如正项级数的求和问题等。所以探讨正项级数和函数级数敛散性的判别法对于研究级数以及对于整个数学分析的学习与理解都有重要的作用。 1 正项级数及其收敛性 一系列无穷多个数123,,,,, n u u u u 写成和式 123n u u u u +++ + 就称为无穷级数,记为1 n n u ∞ =∑。如果()0,1,2,3, n u n ≥=,那么无穷级数1 n n u ∞ =∑,就称为正项 级数。

第十三章---函数项级数习题课

第十三章 函数项级数习题课 一 概念叙述 1.{}n f 在D 上一致收敛于0,,,f N n N x D ε??>??>?∈有ε<-)()(x f x f n . 2.{}n f 在D 上不一致收敛于0000,,,f N n N x D ε??>??>?∈使得0 000()()n f x f x ε-≥. 3.{}n f 在数集D 上一致收敛?柯西准则 0,,,,N m n N x D ε?>??>?∈,有()()n m f x f x ε-<. ?柯西准则 0,,,,0N n N x D p ε?>??>?∈?>,有()()n p n f x f x ε+-<. 4.{}n f 在数集D 上不一致收敛?柯西准则 00000,,,,N m n N x D ε?>??>?∈使得0 000()()n m f x f x ε-≥. ?柯西准则 00000,,,,0N n N x D p ε?>??>?∈?>使得0 000()()n p n f x f x ε+-≥. 5. 1 ()n n u x ∞ =∑在D 上一致收敛于函数()S x ?部分和函数列{}()n S x 在数集D 上一致收敛于函 数()S x . 二 疑难解析与注意事项 1.为何要讨论函数列与函数项级数的一致收敛性? 答:函数列理论中重要问题是(){} n f x 的性质(连续性,可积性,可导性)在极限过程中是否依旧保持?比如能否由函数列每项的连续性,判断出极限函数的连续性.又如极限函数的导数或积分,是否分别是函数列每项导数或积分的极限.对这些问题的讨论,只要求函数列在数集D 上的收敛是不够的,必须对它在D 上的收敛性提出更高的要求才行,这就是所要讨论的一致收敛性问题.由于函数项级数 1 ()n n u x ∞ =∑的收敛性可以转化为相应部分和函 数列{}()n S x 的问题来讨论,因此研究函数项级数逐项求极限,逐项求导,逐项求积分时,要讨论函数项级数的一致收敛性. 2.判断函数列{}n f 在D 上一致收敛有哪些方法? 答:1)定义:{}n f 在D 上一致收敛于0,,,f N n N x D ε??>??>?∈有ε<-)()(x f x f n ; 2)柯西准则:0,,,,N m n N x D ε?>??>?∈,有()()n m f x f x ε-<,用于抽象的函数列的一致收敛性的判断; 3)确界(最大值方法):0)()(sup lim =-∈∞→x f x f n D x n ; 4)估计方法(放大法):|()()|0n n f x f x a -≤→;

第十章 函数项级数

1 第十章函数项级数 § 1 函数项级数的一致收敛性(1) 一、本次课主要内容 点态收敛,函数项级数收敛的一般问题。 二、教学目的与要求 使学生理解怎样用函数列(或函数项级数)来定义一个函数,掌握如何利用函 数列(或函数项级数)来研究被它表示的函数的性质。 三、教学重点难点 函数列一致收敛的概念、性质 四、教学方法和手段 课堂讲授、提问、讨论;使用多媒体教学方式。 五、作业与习题布置 P68 1(5)(7)

2 一. 函数列及极限函数:对定义在区间I上的函数列,介绍概念: 收敛点,收敛域(注意定义域与收敛域的区别),极限函数等概念. 1.逐点收敛 ( 或称为“点态收敛” )的“ ”定义. 例1 对定义在 内的等比函数列, 用“”定义验 证其收敛域为 , 且 例2 .用“”定义验证在内. 例3 考查以下函数列的收敛域与极限函数: . (1). . (2). (3)设 为区间上的全体有理数所成数列. 令 , . (4). , . (5) 有, , . (注意 .) 二. 函数列的一致收敛性:

3 问题: 若在数集D上, . 试问: 通项 的解析性质 是否必遗传给极限函数 能遗传,而例3⑶说明可积性未能遗传. 例3⑷⑸说明虽然可积性得到遗传, 但 . 的一种手段. 对这种函数, 就是其表达式.于是,由通项函数的解析性质研 究极限函数的解析性质就显得十分重要. 那末, 在什么条件下通项函数的解析性质 能遗传给极限函数呢? 一个充分条件就是所谓“一致收敛”. 一致收敛是把逐点收 敛加强为所谓“整体收敛”的结果. 定义( 一致收敛 ) 一致收敛的几何意义. 在数集D上一致收敛, Th1 (一致收敛的Cauchy准则 ) 函数列 , . ( 介绍另一种形式.) 证 ( 利用式) ,……,有. 易见逐点收敛. 设 令 , 推论1 在D上 , ,. D , 使 推论2 设在数集D上, . 若存在数列 在数集D上非一致收敛 . 应用系2 判断函数列 ―在数集D上的最值点. . 证明函数列在R内一致收敛. 例4

函数项级数的一般概念

函数项级数的一般概念

一、函数项级数的一般概念 1.定义: . 1 2 0 +++=∑∞=x x x n n 例如级数 ∑∞ =++++=121)()()()(n n n x u x u x u x u {}上的函数列,称 是定义在区间设 )( I x u n 上的为定义在区间 I 函数项(无穷)级数。

2.收敛点与收敛域: 如果I x ∈0,数项级数∑∞ =10)(n n x u 收敛, 则称0x 为级数 )(1x u n n ∑∞=的收敛点,否则称为发散点.函数项级数)(1x u n n ∑∞ =的所有收敛点的全体称为收敛域, . )(:1??????∈=∑∞ =收敛n n x u R x K

3.和函数: {}为函数项级数的称记 )( , )()( 1x s x u x s n n k k n ∑== 部分和数列。).( , )(lim , 000x s x s K x n n 记为存在则设∞ →∈函数项级数的和函数: . , )()(1K x x u x s n n ∈=∑∞ =

解:由达朗贝尔判别法,)()(1x u x u n n +x n n +?+=111)(11∞→+→n x ,111)1(<+x 当, 2 0时或即-<>x x 原级数绝对收敛. , 11>+?x 例1. )11()1( 1的收敛域求函数项级数n n n x n +-∑∞=二、典型例题 板书

,111)2(>+x 当,11<+?x , 02时即<<-x 原级数发散. , 0时当=x ; )1(1收敛级数∑∞=-n n n , 2时当-=x . 11发散级数∑∞=n n ). ,0[)2,(+∞--∞ 故级数的收敛域为,1|1|)3(=+x 当, 2 0-==?x x 或板书

幂级数求和函数方法概括与总结

常见幂级数求和函数方法综述 引言 级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。 幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。 一、幂级数的基本概念 (一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =L 是定义在数集E 上的一个函数列,则称 12()()(),n u x u x u x x E ++++∈L L 为定义在E 上的函数项级数,简记为1()n n u x ∞ =∑ 。 2、具有下列形式的函数项级数 200102000 ()()()()n n n n n a x x a a x x a x x a x x ∞ =-=+-+-++-+∑L L

《数学分析》第十三章 函数列与函数项级数

110 第十三章 函数列与函数项级数 ( 1 2 时 ) §1 一致收敛性( 6 时 ) 一 函数列及极限函数:对定义在区间I 上的函数列)}({x f n ,介绍概念:收敛点, 收敛域(注意定义域与收敛域的区别),极限函数等概念. 逐点收敛(或称为“点态收敛”)的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x ,用“N -ε”定义验证其收敛域为] 1 , 1 (-,且 ∞→n l i m )(x f n = ∞→n lim n x =?? ?=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n = n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞ →n lim )(x f n =0. 例3 考查以下函数列的收敛域与极限函数: ) (∞→n . ⑴ )(x f n =x x x x n n n n --+-. )(x f n →,sgn x R ∈x . ⑵ )(x f n =1 21+n x . )(x f n →,sgn x R ∈x . ⑶ 设 ,,,,21n r r r 为区间] 1 , 0 [上的全体有理数所成数列. 令 )(x f n =???≠∈=. ,,, ] 1 , 0 [ , 0, ,,, , 12121n n r r r x x r r r x 且 )(x f n →)(x D , ∈x ] 1 , 0 [. ⑷ )(x f n =2 2 22x n xe n -. )(x f n →0, R ∈x . ⑸ )(x f n =?? ? ? ? ? ???≤≤<≤-<≤--+ . 121 , 0 ,2121 ,42,210 ,41 11x x x x x n n n n n n n 有)(x f n →0, ∈x ] 1 , 0 [, ) (∞→n . ( 注意?≡1 1)(dx x f n .)

§13.1函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数 §1 一致收敛性 (一) 教学目的: 掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (二) 教学内容: 函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法. 基本要求: 1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法. (2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法. 2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌 握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。 3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判 别及应用。 (三) 教学建议: (1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项 级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别 法. (2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法. ————————————————————一函数列及其一致收敛性

对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。 使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。 若函数列})({x f n 在数集E D ?上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值 )()(lim x f x f n n =∞ → 与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。 逐点收敛 ( 或称为“点态收敛” )的“N -ε”定义. 例1 对定义在) , (∞+∞-内的等比函数列)(x f n =n x , 用“N -ε”定义 验证其收敛域为] 1 , 1 (-, 且 ∞→n lim )(x f n = ∞ →n lim n x =?? ?=<. 1 , 1 , 1 || , 0 x x 例2 )(x f n = n nx sin . 用“N -ε”定义验证在) , (∞+∞-内∞→n lim )(x f n =0. 函数列的一致收敛性: 设函数列 })({x f n 在E 上收敛于 )(x f ,若对任意的0>ε ,存在自然数 )(εN N =,当 N n >时,对E 中一切 x 都有 ε<-)()(x f x f n 则称函数列)}({x f n 在E 上一致收敛于)(x f 。 注意 这里的 N 只与ε有关,与x 无关,这一点是一致收敛与逐点收敛的本质区别。 一致收敛的几何意义 对任给的ε-带 }|)(|;),({ε<-x f y y x ,总存在一个N ,N n >时,)(x f n 的图形全部落入这个ε-带内。

相关主题
文本预览
相关文档 最新文档