当前位置:文档之家› 基于微处理器的热处理炉温度PID控制系统的设计_王亮

基于微处理器的热处理炉温度PID控制系统的设计_王亮

基于微处理器的热处理炉温度PID控制系统的设计_王亮
基于微处理器的热处理炉温度PID控制系统的设计_王亮

《热加工工艺》2014年1月第43卷第2期●设备与检测●

热处理炉的广泛应用和经济的发展有很大的关系。目前,对热处理炉温度的检测和控制已成为当前的研究热点。虽然热处理炉的温度控制系统已经与各行各业挂钩,但从总体来看,其发展水平还处于初级阶段,与那些发达的西方国家相比,差距是很大的[1-3]。通常情况下,大多数温控产品的控制器是“点位”控制和常规的PID,但是只能控制普通的温度系统,那些较高控制场合的智能化、自适应控制仪表还是非常匮乏的,其中技术能力不足是主要的原因[4-6]。现在,我国已经意识到仪表工业的不成熟,尤其是在近几年我国经济持续发展和加入世贸组织为我国的仪表工业带来了发展环境,所以成立了许多国家、企业的研发中心来进行创新性研究。现在的仪表行业的控制器是微处理器,这种微处理器不仅控制方便、容易、灵活,还可以大大提高被控温度的技术标准,进而产品的质量和数量都会有很大的改进[7-10]。本文基于这一背景,应用单片机微处理器,进行温度控制系统的应用,这一研究对于进一步改进热处理炉的温控稳定性具有一定的借鉴价值。

1硬件设计

1.1系统设计

本系统的温控系统针对于热处理炉,该系统的正常运行必须要保持炉膛的温度一定,误差范围±2℃,超调量很小,温度上升较快,稳定性好。这里的单片机温度控制系统是由MS-5l单片机、采样反馈电路、驱动电路和晶闸管主电路组成,其中最重要的是MS-5l单片机,它是一种微机控制系统,主要是控制电炉炉温。图1为系统的原理框图。首先使用输入设备(键盘)把温度的设定值送入单片机,随着系统的启动,进行信号的采集,然后通过信号采集电路,将其输送到A/D转换电路,并把信号数字化输入到单片机系统中,最后控制PID算法,并输出控制量,及时调整电阻炉的加热。

基于微处理器的热处理炉温度PID控制系统的设计

王亮

(东南大学机械工程学院,江苏南京211189)

摘要:为了进一步改进热处理炉的温度控制系统,设计了以8031控制电路微处理器为核心的控制系统,首先给出了硬件设计,进行了2台电阻炉的温度系统、单片机炉温控制系统、温控模块、可控硅控制电路以及应用的温度设定电路拨码盘的设计,接着就2台加热炉的输入输出通道控制电路进行了设计,最后给出了系统的软件设计思路和相应的部分程序。结果显示:设计的温度控制系统具有精度高、测量误差小、稳定性好等优点。

关键词:微处理器;热处理炉;PID控制;8031电路;拨码盘

中图分类号:TG155.1文献标识码:A文章编号:1001-3814(2014)02-0223-04 Design of Heating Furnace Temperature PID Control System

Based on Microprocessor

WANG Liang

(Southeast University,School of Mechanical Engineering,Nanjing211189,China) Abstract:In order to improve heating furnace of temperature control system,8031circuit microprocessor of control system was designed.The hardware design was first given,then,the temperature system,single tablets machine temperature control system,temperature control module,and SCR control circuit were designed.Next,the appropriate part of the procedure was designed.The results show that the temperature control system has the advantage of high precision,little measurement error and high stabilitiy.

Key words:microprocessor;heating furnace;PID control;8031circuit;dial plate

收稿日期:2013-06-28

作者简介:王亮(1978-),男,江苏南京人,工程师,硕士,研究方向为机

电一体化;电话:138********;E-mail:wangl16888@https://www.doczj.com/doc/6a3459555.html,

Hot Working Technology 2014,Vol.43,No.2

1.2单片机炉温控制系统总体设计

本文的主要工作任务是控制2台电阻炉的温度,也就是利用PID 算法控制2台电炉温度在一定的稳定程度下运行。在电阻炉工作过程中,要及时将电炉的温度显示出来,其显示位数为4位;一旦温度变化时要有报警的信号;如果系统要进一步扩展,必须有多余的输入/输出通道和存储器容量。硬件系统总体结构见图2。

1.3温控模块的设计

温控模块的设计存在很大的缺陷,它的控制精度低,控制能力不强,程序也比较简单。所以CPU 是

803,EPROM 是2732(4kB),低8位地址锁存器是74LS273。

1.4可控硅控制电路

其中,可控硅调控器的作用是达到8031对温度的控制。图3是可控硅功输出和通断时间的关系草图。双向可控硅管和加热丝是串联的,它是和

220V 、50Hz 交流电组成闭合回路。通常在一定的周

期T 内,8031随着可控硅管的接通时间的延长,其

加热丝功率也会逐渐变大。图4对可控硅管在给定周期T 内不同接通时间的状况进行了详细描述。其中,在可控硅的给定周期T =100%情况下,其功率最大。可控硅控制板上控制脉冲能够调整可控硅的接通时间。这个触发脉冲的作用机理是首先产生在

8031在P1.3的引脚上,然后经过0同步脉冲,由光

偶管和驱动器传输到可控硅的控制极上。偏差控制也是比较复杂的,首先求得实测炉温和所需炉温的差值,接着处理偏差值得到控制信号,以便控制电阻炉的功率,达到电阻炉的炉温控制目的。

偏差控制它在理想状态下的方程是:

U=Kp (E+1

T 1

乙edt+T

D

d e d t

)(1)

式中:e 表示测量值和给定值间的偏差;T D 表示微分

时间;T 表示积分时间;

化简:

U n =K p [e n +T 1n

i=1Σe 1+T

D (e n -e n-1)]

=K p e n +K 1n

i=1Σe 1+K D (e n -e n-1)

(2)

K p 代表调节器的放大系数。最后对式(2)进行离

散化处理得到式(3)的数字PID 增量式算法:

ΔU n =K p (e n -e n-1)+K 1e n +K 0(e n -2e n-1+e n-2)

=K p Δe n +K 1e n +K 0(Δe n -Δe n-1)

(3)

1.5温度设定电路拨码盘的设计

数字拨码盘的输出有两种形式,即BCD 编码的四线输出和单片十位的十线输出。它的作用是输入控制参数,通常这些参数在设定之后是固定的。

BCD 拨码盘的输入语言是十进制的,方便操作

人员的使用。BCD 拨码盘有0~9十个位置,每个位置都有相应的数字标记,表示其中的一位十进制数的输入。BCD 拨码盘内有n 位十进制数,它是由n 片拨码盘并联安装而成的。

BCD 拨码盘有4根输出线、1根输入线,输出

8031控制电路

给定值

驱动电路

晶闸管主电路

被控对象

输出温度

采样电路

图1温控系统原理框图

Fig.1Schematic diagram of temperature control system

打印

故障报警

温度显示

I/O

接口电路

8255

CPU

单片面

8031

A/D S/H

信号放大电路

多路转换开关

逻辑控制

炉温2信号

炉温1信号

传感器

锅炉温度

输出驱动器

输出锁存器

光电隔离电路

温度设定

人机接口主机

过程通道被控对象

图2硬件系统总体结构图

Fig.2Overall structure of hardware system

图3可控硅功输出与通断时间关系

Fig.3SCR power output and the on-off time

12.5%25%

100%

50%

80311248

5.14K *4

图4温度设定电路接线图

Fig.4Temperature setting circuit wiring diagram

0123

P1.7P1.6P1.5

P1.4

《热加工工艺》2014年1月第43卷第2期

线的输出状态有8、4、2、1四种状态。当拨码盘的位

置不同,输入控制线A与输出线的连接方式不一

样,然后拨码盘会做出指令,显示不同的输出数据。

表1为BCD码拨码盘的真值表。

2输入输出通道控制电路设计

2.1模拟量输入通道的组成

模拟量输入通道的组成部分是信号调理电路、多路转换开关、放大器和模/数转换器等。它是和微机直接相连的,其中还包括控制电路(图5)。

传感器的作用是改变过程量变成电信号,信号调理电路的作用是扩大电信号的能量。多路转换开关可根据要求输出多路的模拟信号。S/H采样保持可随机选取模拟信号,当模/数转换时保证信号的完整性。A/D转换也就是模/数转换,转变电路的模拟信号为二进制数字量。接口电路是一个闭合的回路,是模拟输入通道和计算机之间的控制信号和数据的传递通路。

本设计的模拟量输入通道包括热电偶、放大器、多路模拟开关、A/D转换器和接口电路等部件。图6是模拟量输入通道硬件的设计图。

2.2开关量输出通道硬件设计

开关量输出通道通常包括通道结构、光电耦合器和输出驱动等。

本设计的开关量输出通道,即单片机炉温控制系统温度控制电路和模拟量通道相反,是一种2路输出,包括数字光电隔离电路和输出驱动电路。图7是开关量输出通道硬件的设计图。

3软件程序设计

3.1总体设计

图8是软件设计的总体流程图。主程序也就是

表1BCD拨码盘真值表

Tab.1BCD dial truth table

拨码输入控制端A输出状态

8421 010000 110001 210010 310011 410100 510101 610110 710111 811000 911001CPU

A/D S/H

逻辑控制信号处理

信号处理

放大器

图5模拟量输入通道的组成

Fig.5Consist of analog input channels

á

á

á

?

?

?

图6模拟量输入通道硬件设计图

Fig.6Hardware design diagram of analog input channel

输入和输出端口、定时器、中断系统、8255A 等首先进行初始化操作;随着定时器的中断,服务子程序也停止运行,然后判定30s 能否到达,如果不足30s ,那么返回原位置。如果达到30s ,那么开始下列操作:检查测定拨盘的设定值、测量温度和转变标度,不断更新改变显示的温度,实时打印温度,调整输出温度,按照温度检测值判断警报系统是否开启等。系统程序结构的运行周期是30s ,通常在这30s 内要完成一系列的中断服务子程序的操作。从其总体结构来看,程序的功能模块包括输入温度值、测定温度、温度值标度的改变、显示温度、打印温度、PID 算法、调整温度、报警等。

3.2温度检测子程序SAMP 设计

温度检测子程序流程图见图9。部分程序清单示于图9右侧。

3.3温度控制子程序设计

温度控制子程序流程图见图10。部分程序清单示于图10右侧。

3.4PID 子程序设计

PID 程序流程图见图11。部分程序清单示于图11右侧。

(下转第222页)

á???

?á???

???

á????????èé ? ?? ????á????á ? ????

á?

?????è ?? ???

!???

á??"!???á??????? èé ? ?# ????á#???á ?

?????è ?? ?"?$# $#

á

?"?á图7开关量输出通道硬件设计图

Fig.7Hardware design diagram of switch output channel

图9温度检测子程序流程图

Fig.9Temperature detection subroutine flow chart

开始系统初始化设定

键入设定温度停止加热

加热炉温测定并显示

结束N

Y

Y N

图10温度控制子程序流程图

Fig.10Temperature control subroutine flow chart

主程序

并行口初始化

串行口初始化

8255A 初始化

等待定时中断

中断返回

温度控制

报警及事故处理

温度打印

温度显示标度变换

温度检测拨盘设定值检测

30s 定时到?

定时中断程序

Y

N

图8软件设计总体流程图

Fig.8Software design flow chart

图11PID 程序流程图

Fig.11PID program flow chart

温度检测程序

结束

N

选择通道

设采样值地址首址

设计数据启动ADC 延时

转换结束?结果送内存

计数器为零吗?

SAMP :MOV R 0,#2CH

MOV R 2,#3H MOV DPTR ,#03F8H

SAM1:MOVX @DPTR ,A

MOV R 3,#20H

DLY :DJNZ R 3,DLY

HERE :JB P3.3,HERE

MOVX A ,@DPTR

MOV @R0,A INC R 0DJNZ R 2,SAM1RET

Y

温度超出范围否?

定时器初始化

中断系统初始化

Y

炉温测量与显示

炉温等于下限温度

炉温等于上限温度

PID 算法控制炉温加热等于目标温度Y

CON :MOVA ,50H ;

读温度检测值

CLRC

SUUBB A ,51H ;

检测值与设定值比较

JC LLT0;

检测值<设定值,转SUBB A ,#04H ;检测值>设定值,再判是否大于1℃JNC LT1;

若(检测值-设定值)≥1℃,转

REI ;

若(检测值-设定值)

<1℃,返回LT1:JNB P1.0,LT2;

若1#电炉已关掉,转LT2CLR P1.0;

否则关1#电炉

RET

位于式PID 程序输入Y ,W 计算e i =W -Y 计算P i =I ×e i 计算P=de i =e i -e i -1

计算P i +P P

返回

计算P d =D ×(e i -2e i -1+e i -2)

u i =K p (P d +P P +P i )+u i -1u i →u i -1e i →e i -1e i -1→e i -2

PID :MOV R 5,31H

MOV R 4,32H MOV R 3,2AH MOV R 2,#00H ACALL CPL1ACALL DSUM MOV 39H ,R 7MOV 3AH ,R 6MOV A ,@R 0CPl A

ADDC A ,#00H MOV @R 0,A TPL :RET

N

N

2.5μm

2

4

6810

E /keV

图4610L 试样断口带状组织的SEM 照片及能谱图

Fig.4SEM pictures and EDAX of impact fracture of 610L

C P S →

1

图3610L 试样冲击断口的SEM 照片Fig.3SEM pictures of impact fracture of 610L (a)取样位置1

(b)取样位置2

25μm

250μm

成的主要原因,从而导致冲击韧性偏低。带状组织形成的过程由凝固过程开始的。在钢液凝固的过程中,其中分配系数小于1的合金元素与杂质元素(例如锰,硅,硫,磷等)不断地从奥氏体相的树枝晶处析出,所以这类元素在树枝晶间区域的浓度明显高于树枝晶内的浓度,选择性结晶形成,化学成分呈不均匀分布的枝晶组织。枝晶在轧制时沿变形方向被拉长,并逐渐与变形方向一致,从而形成碳及合金元素的贫化带与富化带彼此变替堆叠的带状区。轧后缓冷条件下,先在碳及合金元素贫化带析出先共析铁素体,导致多余的碳排到两侧的富化带,最终形成以铁素体为主的带;而碳及合金元素富化带在其后形成以珠光体为主的带,因而形成了以铁素体为主的带与以珠光体为主的带彼此交替的带状组织。成分偏析越严重,形成的带状组织也越严重。

根据对带状组织的微区成分分析可知,在这一区域,确实存在较高含量的硫和钛。硫含量偏高多是由于在铁水预处理或在转炉炼钢阶段除硫不力造成的。而钛含量偏高,则可能是由于钢在加热均热阶段的时间或温度不够,钛等合金元素没有达到均匀化要求。还有一种可能就是在凝固阶段的冷速过慢,造成偏聚的浓度差较大,从而引起较严重的偏析。另外存在较多的MnS 等夹杂物也易引起应力集中,从而降低其冲击性能。

3结论

(1)610L 汽车大梁钢冲击韧性偏低是由于组织中存在C 、Mn 、S 、Ti 等元素的成分偏析,而成分偏析

是导致带状组织形成的主要原因。

(2)硫含量偏高多是由于在铁水预处理或在转

炉炼钢阶段除硫不力造成的。而钛含量的偏高,则可能是由于钢在加热均热阶段的时间或温度不够,钛等合金元素没有达到均匀化要求。还有一种可能就是在凝固阶段的冷速过慢,造成偏聚的浓度差较大,从而引起较严重的偏析。参考文献:

[1]马正伟,王俊海,亓俊鸿,等.汽车大梁钢610L 的研究[J].中国冶金,2011(6):1-4.

[2]张志波,张红斌,张瑜,等.汽车大梁钢K610L 在昆钢炉卷轧机上的研发与生产[J].钢铁,2011(8):48-51.

[3]张兴利,王金柱,张俊粉,等.承钢钒微合金化汽车大梁钢

C610L 的开发[J].河北冶金,2010(3):7-9.

[4]陈培敦,马正伟,陈坤.汽车大梁钢610L 的试制开发[J].山东冶金,2010(5):27-29.

[5]赵楠,穆海玲,周丽萍,等.BM510汽车大梁钢冷弯开裂原因分析[J].机械工程材料,2008(11):72-74.

[6]方圆,阳代军,张宏艳,等.汽车大梁钢510L 冲压开裂原因分析[J].热加工工艺,2012,41(3):169-170.

(上接第226页)

4小结

科学技术的进步带来了电子技术、微型单片机技术的变革。单片机的体积小、质量轻、耗能低、价格便宜、可靠性强、应用灵活,所以它在电子仪表、家电、节能设备、军事、机器人、工业控制等许多行业都被大量使用着。参考文献:

[1]袁熙武.加热炉燃烧系统的模糊控制研究[D].武汉:武汉科技大学,2005.

[2]

孟海龙.步进式加热炉控制系统的设计[D].青岛:山东科技大学,2004.

[3]柴天佑,王中杰,张莉.加热炉的炉温优化设定模型[J].自动化学报,2000(4):537-541.

[4]孙莹.单片机加热炉温度控制系统[J].电气时代,2001,(8):38-39.[5]汤秀琴,王云川,张东平.加热炉加热过程优化控制系统的研究与应用[J].控制工程,2006(3):218-220.

[6]徐向前,周好斌.基于PIC 单片机的电容储能点焊机电路设计

[J].热加工工艺,2008,37(21):126-128.

[7]毛有武,吴树森,罗吉荣,等.单片机在中频热推弯管机温度控制上的应用[J].热加工工艺,2003(2):59-60.

[8]刘向军,赵燕,潘小兵.步进式加热炉内钢坯加热过程的模拟研究[J].钢铁,2005(7):76-79.

[9]

金龙国,闫世杰.一种简单实用的单片机电加热炉温控系统

[J].基础自动化,1997,(20):27-30.

[10]闫群民.大型电阻炉炉温智能控制系统设计[J].热加工工

艺,2012,41(12):224-225.

C

Fe

S

Fe

Fe

Mn

Ti

中央空调节能自控系统改造方案设计

1.1空调自控系统改造方案 1.1.1控制设备范围 一套制冷系统中的制冷机组、冷冻水循环泵、冷却水循环泵、冷却塔、相关 阀门、膨胀水箱、软化水箱等。 1.1.2空调自控系统 1.1. 2.1.监测功能信息采集优化 A通过冷机通讯接口读取(包括但不限于)以下参数: 冷水机组运行状态、故障报警状态 冷冻水供/回水温度、冷却水供/回水温度 冷冻水温度设定值 运行时间、压缩机运行电流百分比、压缩机运行小时数、压缩机启动次数、蒸发温度、冷凝温度、蒸发压力、冷凝压力。 B冷冻水系统 冷冻水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水补水泵运行状态、故障报警、手/自动模式反馈(DI) 冷冻水供回水管温度、水流量反馈(AI) 冷冻水泵进口、出口分支管压力(AI) 冷冻水供回水环网压力、冷冻水供回水环网间压差反馈(AI) 冷冻水泵变频器频率反馈(AI) 最不利末端供回水压差

C冷却水系统 冷却水泵、冷却塔风机运行状态、故障报警、手/自动模式反馈(DI) 冷却水供回水管温度、环网水流量反馈(AI) 冷却水泵进口、出口分支管压力反馈(AI) 冷却水泵、冷却塔风机变频器频率反馈(AI) 冷却水补水泵运行状态、故障报警、手/自动模式反馈(DI) D电动蝶阀 压差旁通阀开度反馈(AI) 免费供冷管路上切换电动蝶阀开关状态反馈(DI)E液位监控 膨胀水箱超高、超低水位监测(DI) 软化水补水箱高、低水位监测(DI) F其他参数 室外干球温度、相对湿度(AI) 计算室外湿球温度、焓值 免费供冷系统水泵运行、故障、手/自动状态(DI) 免费供冷板换进出口压力监测(AI) 1.1. 2.2.控制功能 1、冷水机组启/停控制、出水温度设定(通过冷机通讯接口控制) 2、冷冻水系统: 冷冻水泵启/停控制(DO)及反馈

pid控制器设计

目录一设计任务与要求 二系统校正的基本方法与实现步骤 三PID的控制原理与形式模型 四设计的原理 五设计方法步骤及设计校正构图 六设计总结 七致谢 八参考文献

一 设计任务与要求 校正对象: 已知单位负反馈系统,开环传递函数为:s s s s G 1047035.87523500 )(23++=,设 计校正装置,使系统满足: (1)相位稳定裕量o 45≥γ (2)最大超调量%5≤σ 二 系统校正的基本方法与实现步骤 系统校正就是在自动控制系统的合适位置加入适当的装置,以改善和提高系统性能。按照校正装置在自动控制系统中的位置,可分为串联校正,反馈校正和顺馈补偿。 顺馈补偿方式不能独立使用,通常与其他方式同时使用而构成复合控制。顺馈补偿装置满足一定条件时,可以实现全补偿,但前提是系统模型是准确的,如果所建立的系统模型有较大误差,顺馈补偿的效果一般不佳。 反馈校正主要是针对系统中的敏感设备——其参数可能随外部环境条件发生变化,从而影响自动控制系统的性能——给敏感设备增加局部负反馈支路以提高系统的抗扰能力。由于负反馈本身的特性,反馈校正装置通常比较简单,只有比例(硬反馈)和微分(软反馈)两种类型。 串联校正是最基本也是最常用的校正方式,根据校正装置是否使用独立电源,可分为有源校正装置和无源校正装置;根据校正装置对系统频率特性的影响,可分为相位滞后、相位超前和相位滞后-超前校正装置;根据校正装置的运算功能,可分为比例(P )校正、比例微分(PD )校正、比例积分(PI )校正和比例积分微分(PID )校正装置。

三 PID 控制的原理与形式模型 具有比例-积分-微分控制规律的控制器,称PID 控制器。这种组合具有三种基本规律各自的特点,其运动方程为: dt t de dt t e t e t m K K K K K d p t i p p )()()()(0++=? 相应的传递函数为: ??? ? ? ? + +=S S s K K K G d i p c 1)( S S S K K K d i p 12++ ?= PID 控制的结构图为: 若14

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计 2010-07-28 12:56:38 作者:王丽华郑树展来源:高等职业教育:天津职业大学学报 关键字:电加热炉控温固态继电器飞升曲线 引言 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温控制,可以提高控制质量和自动化水平。 1 单片机炉温控制系统结构 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。如图1所示。 炉温信号T通过温度检测及变送,变成电信号,与温度设定值进行比较,计算温度偏差e和温度的变化率de/dt,再由智能控制算法进行推理,并得控制量u,可控硅输出部分根据调节电加热炉的输出功率,即改变可控硅管的接通时间,使电加热炉输出温度达到 理想的设定值。 2 系统硬件设计 2.1 系统硬件结构 以AT89C51单片机为该控制系统的核心,实现对温度的采集、检测和控制。该系统的工作流程如图2所示。系统由变送器经A/D转换器构成输入通道,用于采集炉内的温度信号。

变送器可以选用DBW,型号,它将热电偶信号(温度信号)变为0~5 V电压信号,以供A/D转换用。转换后的数字量与炉温数字化后的给定值进行比较,即可得到实际炉温和给定炉温的偏差及温度的变化率。炉温的设定值由BCD 拨码盘输入。由AT89C51构成的核心控制器按智能控制算法进行推算,得出所需要的控制量。由单片机的输出通过调节可控硅管的接通时间,改变电炉的输出功率,起到调温的作用。 2.2 系统硬件的选择 a)微型计算机的选择:选择AT89C51单片机构成炉温控制系统。它具有8位CPU,3 2根I/O线,4 kB片内ROM存储器,128 kB的RAM存储器。AT89C51对温度是通过可控硅调功器实现的。在系统开发过程中修改程序容易,可以大大缩短开发周期。同时,系统工作过程中能有效地保存一些数据信息,不受系统掉电或断电等突发情况的影响。AT89C51单片机内部有128 B的RAM存储器,不够本系统使用,因此,采用6264(8 kB)的RAM作为外部数据存储器。 b)热电偶的选择:本设计采用DBW型热电偶--镍络-镍硅(线性度较好,热电势较大,灵敏度较高,稳定性和复现性较好,抗氧化性强,价格便宜)对温度进行检测。由于温度是非线性输出的,而与输入的mV信号成线性关系,所以在软件上将此非线性关系加以修正,以便正确反映输入mV信号与温度之间的关系。ADC0809把检测到的连续变化的温度模拟量转换成离散的数字量,输人到单片机中进行处理。 c)键盘输入的选择:采用4片BCD拨码盘作为温度设定的输入单元,输入范围为0~9999,可满足本系统的要求。每位BCD码盘占4条线,通过上拉电阻接入8255可编程并行I/O扩展口。4片BCD码盘占8255的A、B两口,8255工作方式设为"0 模式",A、B 两口均为输入方式。开机后,CPU读8255口操作,即可将BCD码盘的设定温度读入并存人相应的存储单元。 d) 显示器的选择:采用字符型LCD(液晶显示器)模块TC1602A,并且它把LCD控制器、ROM和LCD显示器用PCB(印制板)连接到一起,只要向LCD送人相应的命令和数据便可实现所需要的显示,使用特别方便灵活。第1行显示设定温度,第2行显示实际温度,这样,温差一目了然,方便控制。 3 系统软件设计

加热炉温度控制系统..

第1章绪论 1.1 综述 在人类的生活环境中,温度扮演着极其重要的角色。温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。 1.2 加热炉温度控制系统的研究现状 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。单片机温度控制系统是数控系统的一个简单应用,在冶金、化工、建材、机械、食品、石油等各类工业中,广泛使用于加热炉、热处理炉、反应炉等。 温度是工业对象中的一个重要的被控参数。由于炉子的种类不同,因而所使用的燃料和加热方法也不同,例如煤气、天然气、油、电等;由于工艺不同,所需要的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,控制温度的精度也不同,因而对数据采集的精度和所采用的控制算法也不同。 传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。不仅如此,传统的控制方式不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于它主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效

基于PLC的大棚温度自动控制系统设计

清华大学 毕业设计(论文) 题目基于PLC的大棚温度自动控制 系统设计 系(院)自动化系 专业电气工程与自动化班级2009级3班 学生姓名雷大锋 学号2009022321 指导教师王晓峰 职称副教授 二〇一三年六月二十日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。据我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 年月日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 年月日

基于PLC的大棚温度自动控制系统设计 摘要 大棚温度自动控制系统是一种为作物提供最好环境、避免各种棚内外环境变化对其影响的控制系统。该系统采用FX2N系列PLC作为下位机,PC机作为上位机,采用三菱D-720通用变频器,采用温度、湿度、光照传感器采集现场信号,这些模拟量经PLC转化为数字信号,把转化来的数据与设定值比较,PLC经处理后给出相应的控制信号使环流风机、遮阴帘、微雾加湿机等设备动作,大棚温度就能实现自动控制。这种技术不但实现了生产自动化,而且非常适合规模化生产,劳动生产率也得到了相应的提高,通过种植者对设定值的改变,可以实现对大棚内温度的自动调节。 关键词:大棚,温度控制,PLC

单片机温度控制系统PID设计

毕业论文(论文) 题目名称:单片机温度控制系统PID设计 题目类别:毕业设计 系(部): 专业班级: 学生姓名: 指导教师: 辅导教师: 时间:至 目录 任务书............................................................ I

毕业设计(论文)开题报告........................................... IV 毕业设计(论文)指导教师审查意见.................... 错误!未定义书签。教师评语.......................................... 错误!未定义书签。摘要............................................................. V Abstract ......................................................... VI 前言........................................................... VII 1 绪论 (1) 1.1选题背景 (1) 1.2 PID算法在控制领域中的应用 (2) 1.3 课题研究的目的及意义 (3) 2 总体方案论证与设计 (4) 2.1方案设计的要求与指标 (4) 2.2方案的可行性分析与方案选择 (4) 2.2.1方案可行性分析 (4) 2.2.2 方案的选择与确定 (6) 2.2.3系统结构框图 (6) 3 温度控制系统硬件设计和软件设计 (8) 3.1 系统硬件设计 (8) 3.1.1系统硬件组成 (8) 3.1.1.1AT89C51单片机的介绍 (8) 3.1.1.2测量温度元件的选择 (9) 3.1.1.3模数转换器ADC0809的介绍 (10) 3.1.1.4键盘和LED显示电路设计 (10) 3.1.1.5温度控制电路设计 (11) 3.2 系统软件设计 (11) 3.2.1主程序流程图及主程序 (11) 3.2.2 T0中断子程序 (15) 3.2.3 A/D转换子程序 (16) 3.2.4 数字滤波子程序 (18) 3.2.5温度标度变换子程序 (19) 3.2.6键盘显示子程序 (19) 3.2.7 PID算法介绍 (21) 4 系统仿真与调试分析 (21) 4.1系统仿真 (21) 4.2系统调试 (21) 5 结束语 (23) 参考文献 (23)

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

PWM温度自动控制系统的设计

《计算机控制技术》 课程设计 学生姓名: 学号: 专业班级:电气工程及其自动化(1)班 指导教师: 二○一二年十月二十九日

目录 1.课程设计目的 (3) 2.课程设计题目和要求 (3) 3.设计内容 (3) 4.设计总结 (10) 4.参考书目 (11) 5.附录

1.课程设计目的 通过本课程设计, 主要训练和培养学生的以下能力: (1).查阅资料:搜集与本设计有关部门的资料(包括从已发表的文献中和从生产现场中搜集)的能力; (2).方案的选择:树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意提高分析和解决实际问题的能力; (3).迅速准确的进行工程计算的能力,计算机应用能力; (4).用简洁的文字,清晰的图表来表达自己设计思想的能力。 2.课程设计题目和要求 题目:PWM温度自动控制系统的设计 要求: 1.要求设计温度控制系统,设定温度为230度,采用电阻丝作为加热器件,要求无余差,超调小,加热速度快。 2.硬件采用51系列单片机,采用固态继电器作为控制元件。 3采用keil c作为编程语言,采用结构化的设计方法。 4.要求用protel设计出硬件电路图。 5画出系统控制框图。 6 画出软件流程图。 3.设计内容 3.1 PID控制原理 将偏差的比例,积分和微分通过线性组合构成控制量,用这一控制对被控对象进行控制,这一样的控制器称PID控制器

3.1.1.模拟PID控制原理 在模拟控制系统中,控制器最常用的控制规律是PID控制。为了说明控制器 (t)与实际输出信号n(t)进行比的原理,以图1.1的例子说明。给定输入信号n (t)-n(t),经过PID控制器调整输出控制信号u(t),u(t)对目较,其差值e(t)=n 标进行作用,使其按照期望运行。 常规的模拟PID控制系统原理框图如同1.2所示。该系统有模拟PID和被控对象组成。图中r(t)是给定的期望值,y(t)是系统的实际输出值,给定值与实际输出值,给定值与实际值构成控制偏差e(t): e(t)作为PID控制的输入,u(t)作为PID控制的输出和被控对象的输入。构成PID和被控对象的输入。构成PID控制的规律为: 其中:Kp为控制器的比例系数 Ti为控制器的积分时间,也称积分系数 Td为控制器的未分时间,也称微分系数

数字PID控制器设计

数字PID控制器设计 实验报告 学院电子信息学院 专业电气工程及其自动化学号 姓名 指导教师杨奕飞

数字PID控制器设计报告 一.设计目的 采用增量算法实现该PID控制器。 二.设计要求 掌握PID设计方法及MATLAB设计仿真。 三.设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于,超调量不大于20%,调节时间不大于。采用增量算法实现该PID控制器。 四.设计原理 数字PID原理结构图 PID控制器的数学描述为:

式中,Kp为比例系数;T1为积分时间常数;T D为微分时间常数。 设u(k)为第K次采样时刻控制器的输出值,可得离散的PID表达式为:? 使用模拟控制器离散化的方法,将理想模拟PID控制器D(s)转化为响应的理想数字PID控制器D(z).采用后向差分法,得到数字控制器的脉冲传递函数。

2.增量式PID控制算法 u(k)=u(k-1)+Δu(k) 增量式PID控制系统框图 五.Matlab仿真选择数字PID参数 利用扩充临界比例带法选择数字PID参数,扩充临界比例带法是以模拟PID调节器中使用的临界比例带法为基础的一种数字PID参数

的整定方法。其整定步骤如下 1)选择合适的采样周期T:,因为Tmin<1/10 T,选择采样周期为; 2)在纯比例的作用下,给定输入阶跃变化时,逐渐加大比例作用 Kp(即减小比例带δ),直至系统出现等幅震荡,记录比例增益 Kr,及振荡周期Tr 。Kr成为临界振荡比例增益(对应的临界比 例带δ),Tr成为临界振荡周期。 在Matlab中输入如下程序? G=tf(1,[1/150,36/150,185/150,1]); p=[35:2:45]; for i=1:length(p) Gc=feedback(p(i)*G,1); step(Gc),hold on end; axis([0,3,0,]) 得到如下所示图形: 改变其中的参数P=[35:2:45]为p=[40:1:45]得到下图曲线,得Kr约为43,Tr

电阻加热炉温度控制

电阻加热炉温度控制精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:07001139

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID 控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

基于51单片机的水温自动控制系统的设计

基于51单片机的水温自动控制系统的设计 学生:汪凡,信息工程学院 指导教师:朱嵘涛,信息工程学院 一、题目来源 题目来源于生产/社会实际。 二、研究背景及其意义目的 随着社会主义现代化的发展,在科学技术突飞猛进的今天,人工智能起到不可忽视的作用。尤其是各种智能化的仪器、仪表在农、工业的广泛应用给社会带来了极大的便利。文章就是一个利用温度来实现简单智能控制的例子。它完成了从温度的采集、转换、显示以及控制的一系列任务。由于篇幅关系,文章并未深入探讨温度的具体实例。例如根据温度来控制热水器、电风扇等与温度有关的设备,提供了一个通过温度来控制设备的基本思想和原理。 测温仪器在各个领域的应用,智能化是现代温控系统发展的主流方向,特别是今年来,温度控制系统已应用到生活的各个方面,但是温度控制一直是一个未开发的领域,是与人们息息相关的一个问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景和实际意义。温度是科学技术中最基本的物理量之一。物理、化学、生物等学科都离不开温度,在工业生产等许多领域,温度常常是表征对象和过渡状态的重要物理量。各行各业对温度的要求越来越高,可见温度的测量和控制是非常重要的。单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。随着温度控制器应用越来越广泛,各种试用于不同场和的温度控制器应运而生。 目前市场上经销的温度控制系统大多是采用模拟电路及继电器控制,存在电路繁琐,可调节性差,受温度影响大,响应速度慢,有噪音等缺点,针对这些缺点我们对它进行了再次设计。实现满足题目要求的水温自动控制系统需要解决以下两个方面的问题:一是高精度的水温测量电路及其数据处理的实现,另一个是控制方法及其控制电路实现的研究。数字控制方法远远优于模拟控制方法。目前,实现水温的高精度控制常采用数字控制方法,可用的控制算法有开关控制、经典PID控制、模糊控制等。为了追求控制系统具有最小的稳态误差、最好的动态过

根据SIMULINK的PID自动控制控制器设计与仿真

基于SIMULINK的PID控制器设计与仿真 1.引言 MATLAB是一个适用于科学计算和工程用的数学软件系统,历经多年的发展,已是科学与工程领域应用最广的软件工具。该软件具有以下特点:数值计算功能强大;编程环简单;数据可视化功能强;丰富的程序工具箱;可扩展性能强等。Simulink是MATLAB下用于建立系统框图和仿真的环境。Simulink环境仿真的优点是:框图搭建方便、仿真参数可以随时修改、可实现完全可视化编程。 比例-积分-微分(Proporitional-Integral-Derivative,PID)是在工业过程控制中最常见、应用最广泛的一种控制策略。PID控制是目前工程上应用最广的一种控制方法,其结构简单,且不依赖被控对象模型,控制所需的信息量也很少,因而易于工程实现,同时也可获得较好的控制效果。 2.PID控制原理 当我们不能将被控对象的结构和参数完全地掌握,或者是不能得到精确的数学模型时,在这种情况下最便捷的方法便是采用PID 控制技术。为了使控制系统满足性能指标要求,PID 控制器一般地是依据设定值与实际值的误差,利用比例(P)、积分(I)、微分(D)等基本控制规律,或者是三者进行适当地配合形成相关的复合控制规律,例如,PD、PI、PID 等。 图2-1 是典型PID 控制系统结构图。在PID 调节器作用下,对误差信号 分别进行比例、积分、微分组合控制。调节器的输出量作为被控对象的输入控制量。

图2-1典型PID 控制系统结构图 PID 控制器主要是依据给定值r (t )与实际输出值y (t )构成控制偏差,用公式表示即e (t )=r (t )-y (t ),它本身属于一种线性控制器。通过线性组合偏差的比例(P )、积分(I )、微分(D ),将三者构成控制量,进而控制受控对象。控制规律如下: 1 01() ()[()()]p d i de t u t K e t e t dt T T dt =++? 其传递函数为: ()1()(1)()p d i U s G s K T S E s T s = =++ 式中:Kp--比例系数; Ti--积分时间常数; Td--微分时间常数。 3.Simulink 仿真 3.1 建立数学建模 3.2 仿真实验 在传统的PID 调节器中,参数的整定问题是控制面临的最主要的问题,控制系统的关键之处便是将Kp 、Ti 、Td 三个参数的值最终确定下来。而在工业

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

温湿度的自动控制系统

引言 目前我国土地沙漠化日益严重,所以在沙漠种植植物,防沙固土便显得很重要。但是,沙漠植物的存活率一直很低,在沙漠种植植物,如果存活不了,那么既不能改善环境,又浪费了人力物力资源。沙漠植物存活的环境由多个因子组成,如温度、光照、湿度及二氧化碳浓度等。时下,我国沙漠环境控制目前仍靠人工经验来管理,严重影响了沙漠植物生产的效益,阻碍了环境的发展进度,因此,采用先进的人工智能技术,科学、合理地控制影响植物的环境因子,通过计算机控制设备进行环境控制,以便给植物生长创造一个最佳的环境条件,既做到防沙固土,同时又改善了环境,这对沙漠环境施行自动检测和控制是非常必要的。沙漠设施的关键技术是环境控制,主要是温湿度的控制,其目的是提高控制及作业精度。温湿度控制仪的发展相当迅速,近几十年内,由于电子行业的迅速发展和集成电路和高集成电路的产生,控制仪走向微型化、多功能化。温湿度传感器在工农业生产、气象、环保、医学等领域得到越来越广泛的应用。温湿度控制仪目前普遍采用的方案: 方案:采用集温湿度传感器于一体的 SHT11 芯片为主要芯片的控制仪。由于传统的模拟式湿度传感器(方案一)一般不仅要设计信号调理电路,还要经过复杂的校准和标定过程,其测量精度难以保证。而SHT11是瑞士Sensiri-on公司生产的具有二线串行接口的单片全校准数字式新型相对湿度和温度传感器,可用来测量相对湿度、温度和露点等参数,具有数字式输出、免调试、免标定免外围电路及全互换的特点。该传感器将CMOS芯片技术与传感器技术融合,为开发高集成度、高精度、高可靠性的温湿度测控系统提供了解决方案。

目录 1. 整体设计 (1) 1.1 设计要求及框图 (1) 1.2 元器件的选择 (2) 1.2.1 单片机的选择 (2) 1.2.2 温度传感器的选择 (2) 1.2.3 显示模块的选择 (2) 1.2.4 系统设计方案的确定 (2) 2. 系统的硬件设计 (4) 2.1 单片机的最小系统 (4) 2.2 温湿度传感器SHT11 (4) 2.3 LCD 显示--LCD1604 (5) 2.3.1 LCD1604的连接电路 (5) 2.3.2 LCD1604的连接电路 (5) 2.4 报警电路的设计 (6) 2.5 控制电路的设计 (7) 3. 软件系统设计 (8) 3.1 软件设计的整体思想 (8) 3.2 程序流程图设计 (8) 4. 调试 (10) 4.1 软件调试 (10) 4.2 硬件调试 (10) 4.3 液晶模块调试 (11) 4.4 报警电路调试 (1) 结论 (13) 致谢 (14) 参考文献 (14) 附录 (16) 附录A:系统电路图 (16)

变速积分PID控制系统设计

课程设计报告设计题目变速积分PID控制系统设计课程名称计算机控制技术B 姓名苏丹学号2008100731 班级自动化0803 教师闫高伟

设计日期2011年7月5日 目录 摘要............................................................ 错误!未定义书签。Abstract .. (4) 第1章数字PID及变速积分简介.................................... 错误!未定义书签。 1.1 数字PID发展介绍 (1) 1.2 PID控制器工作原理 (2) 1.2.1 模拟式PID控制算法.................................. 错误!未定义书签。 1.2.2 数字式PID控制算法 (3) 1.3 变速积分简介............................................... 错误!未定义书签。第2章系统分析与设计............................................ 错误!未定义书签。 2.1 系统功能分析............................................... 错误!未定义书签。 2.1.1 对象整体分析 (5) 2.1.2系统分析与设计与系统开环增益 (6) 2.2计算机系统选择分析 (6) 2.2.1 8088CPU简介 (6) 2.2.2 其余模块的使用 (7) 2.3 软件设计分析 (12) 第3章硬件设计与软件编程 (12) 3.1 硬件设计 (12) 3.1.1 系统方框图 (12) 3.1.2 线路原理图 (12) 3.2 软件编程 (13) 3.2.1 软件流程图 (14) 3.2.2 程序源代码 (21) 第4章设计仿真与运行分析 (21) 4.1 结果分析 (21) 4.2 matlab仿真 (22) 总结.............................................................................错误!未定义书签。附录....... (26) 附录1 线路原理图 (28) 附录2 TDN-AC/ACS+教学实验系统介绍 (28) 附录3 参考资料 (30)

计算机控制系统课设报告--数字温度PID控制器的设计

《计算机控制系统A》课程设计 任务书 一、目的与要求 1、通过本课程设计教学环节,使学生加深对所学课程内容的理解和掌握; 2、结合工程问题,培养提高学生查阅文献、相关资料以及组织素材的能力; 3、培养锻炼学生结合工程问题独立分析思考和解决问题的能力; 4、要求学生能够运用所学课程的基本理论和设计方法,根据工程问题和实际应用方案的要 求,进行方案的总体设计和分析评估; 5、报告原则上要求依据相应工程技术规范进行设计、制图、分析和撰写等。 二、主要内容 1、数字控制算法分析设计; 2、现代控制理论算法分析设计; 3、模糊控制理论算法分析设计; 4、过程数字控制系统方案分析设计; 5、微机硬件应用接口电路设计; 6、微机应用装置硬件电路、软件方案设计; 7、数字控制系统I/O通道方案设计与实现; 8、PLC应用控制方案分析与设计; 9、数据通信接口电路硬件方案设计与性能分析; 10、现场总线控制技术应用方案设计; 11、数控系统中模拟量过程参数的检测与数字处理方法; 12、基于嵌入式处理器技术的应用方案设计; 13、计算机控制系统抗干扰技术与安全可靠性措施分析设计; 14、计算机控制系统差错控制技术分析设计; 15、计算机控制系统容错技术分析设计; 16、工程过程建模方法分析; 三、进度计划 序号设计内容完成时间备注 1 选择课程设计题目,查阅相关文献资料7月13日 2 文献资料的学习,根据所选题目进行方案设计7月14日

3 讨论设计内容,修改设计方案7月15日 4 撰写课程设计报告7月16日 5 课程设计答辩7月17日 四、设计成果要求 1、针对所选题目的国内外应用发展概述; 2、课程设计正文内容包括设计方案、硬件电路和软件流程,以及综述、分析等; 3、课程设计总结或结论以及参考文献; 4、要求设计报告规范完整。 五、考核方式 通过系统设计方案、总结报告、图文质量和学习与设计态度综合考评,并结合学生的动手能力,独立分析解决问题的能力和创新精神等。 《计算机控制系统课程设计》成绩评定依据如下: 1、撰写的课程设计报告; 2、独立工作能力及设计过程的表现; 3、答辩时回答问题的情况。 优秀:设计认真,设计思路新颖,设计正确,功能完善,且有一定的独到之处,打印文档规范; 良好:设计认真,设计正确,功能较完善,且有一定的独到之处,打印文档规范; 及格:设计基本认真,设计有个别不完善,但完成基本内容要求,打印文档较规范; 不及格:设计不认真,未能完成设计任务,打印文档较乱或出现抄袭现象者。 说明: 同学选择题目要尽量分散,并且多位同学选同一个题目时,要求各自独立设计,避免相互参考太多,甚至抄袭等现象。 学生姓名:苏印广 指导教师:李士哲 2015年7月17日

课程设计退火炉温度控制系统

课程设计设计题目: 退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB 仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案?5 2.1概述?5 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计?9 3.2程序清单与电路图 (11) 3.3温度控制电路................................ 错误!未定义书签。第4章控制算法?18 4.1程序框图? 18 4.2算法设计 (19) 第5章课程设计总结?错误!未定义书签。

第1章 绪论 1.1 设计背景与算法 背景:退火炉是冶金和机械行业常用的热处理工业设备。一般说来,退货处理工艺师冶金和机械产品的最后处理工序,它的处理效果将直接影响产品的质量。因此,对退火炉的基本要求就是根据退火处理工艺曲线,提供准确的升温,保温及降温操作,同时保证颅内各处的温度均匀。在目前实际生产中,退火炉的种类很多,按燃料分有燃油炉、燃气炉、电炉等。电炉按台数计算占80%,燃油炉和燃气炉占20%。 退火是金属热处理中的重要工序,它是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善其塑性和韧性,使其化学成分均匀化,并去除其参与应力,或得到预期的物理性能。温度控制是热处理质量控制的重要技术措施,是退火控制的核心。智能温控将大大提高热处理质量,消除认为的不稳定因素,提高温度控制的精确程度,满足特殊材料的热处理要求。 同时,退火炉采用自动化技术控制温度,对保护生态环境方面也具有重要意义。退火炉的炉温动态特性直接影响产品的质量,生产过程中对钢材的温升曲线有较高的要求,温度过低,达不到退火的预期目的;温度过高将导致过热,甚至过烧。通过对退火炉中生产过程的优化控制和自动工艺管理控制,不但可以缩短生产周期,提高产量和质量,还可以减少人为因素造成的废品率。热处理后产生的废气对自然环境的污染很大,退火炉的燃料如果是欠氧燃烧,燃料燃烧不充分,则会产生大量黑烟,而过氧燃烧又会产生氮氧化合物等有害气体。若通过对燃烧过程进行有效控制,使燃烧在合理的空燃比下运行,则可以极大的减少退火炉对周边环境的污染,对构建科持续发展型社会就有积极的意义。 目前世界各国对能源消耗和大气环境的污染越来越重视,而我国既是钢铁大国又是能源大国,因此研究高性能退火炉温度控制系统具有极为重要的现实意义。 算法:在数字随动控制系统中,要求系统的输出值尽快地跟踪给定值的变化,最少拍控制是满足这一要求的一种离散化设计方法。 最少拍控制是一种直接数字设计方法。所谓最少拍,就是要求闭环系统对于某种特定的输入在最少个采样周期内达到无静差的稳态,是系统输出值尽快地跟踪期望值的变化。 闭环Z传函具有形式 z z z z N N ---+++=Φφφφ 221)(1

相关主题
相关文档 最新文档