当前位置:文档之家› 基于单片机的温室大棚的环境湿度控制

基于单片机的温室大棚的环境湿度控制

基于单片机的温室大棚的环境湿度控制
基于单片机的温室大棚的环境湿度控制

温室大棚环境的湿度监测和控制问题的研究

——基于单片机的湿度检测系统

1 前言

1.1 课题背景

1.1.1 发达国家温室产业的现状

温室产业及相关技术在国内外的发展速度很快。如在荷兰的阿姆斯特丹RAI展览馆每年11月举办一次国际花卉展览会,2003年就有来自世界各国的477个厂商展示了各自的产品和实力。荷兰、日本、以色列、美国、韩国、西班牙、意大利、法国、加拿大等国是设施农业十分发达的国家,温室以大型温室为主。这些高水平大型温室的环境控制系统能够根据传感器采集室温、叶湿、地湿、室内湿度、土壤含水量、溶液浓度、二氧化碳浓度、风速、风向、以及植物作物生长状态等有关参数,结合作物生长所需最佳条件,有效调节有关设备装置,将室内温、湿、光、水、肥、气等诸因素综合协调调节到最佳状态。

欧美等国家在30年代就相继建立了人工气候室。温室调控技术至今经历了几十年的发展过程。初期是使用仪表对温室设施中的光照、温度等参数进行测量,再使用手动或电动执行机构(如幕帘、通风设备等)施行简单控制,随着传感元件、仪表及执行器技术的进步,逐步发展成为对温度、湿度、光照等几乎所有室内环境参数分别进行自动控制。计算机技术的发展使环境参数的综合控制成为可能。70年代中期,荷兰、日本、美国、意大利等国家已使用微型计算机控制植物生长环境。从80年代开始,根据不同作物、不同生长阶段及外界环境变化对温室环境进行综合调节控制的技术得到了快速的发展。目前,在温室控制技术方面,荷兰、美国、以色列、日本等国较为先进。由于借鉴了工业、航空航天等领域的先进成果,技术水平不断提高,它能根据作物生长的最佳生长条件,调节温室气候使之一年四季满足植物生长需要,不受气候和土壤条件的影响,在有限的土地上周年地生产蔬菜和鲜花。除了对温室进行监控外,计算机优化环境参数、节能、节水及设施装备的可靠性等很多方面都取得了很好的技术成果,并推出了许多新

产品。美国开发的冬天保温用的双层充气膜、高压雾化降温加湿系统以及夏季降温用的湿帘降温系统处于世界领先水平;韩国的换气、灌水、二氧化碳浓度控制等设施比较先进;荷兰的顶面涂层隔热、加热系统、人工补光等方面有较高的水平;以色列的灌溉系统比较先进,室内设施齐全。日本、韩国开发了瓜类、茄果类蔬菜嫁接机器人。日本开发了育苗移栽、耕耘、施肥移动机器人,可完成多项功能的多功能机器,能在温室内完成各项作业的无人行走车,用于组织培养作用的机器人,柑橘、葡萄收获机器人等。资源相对贫瘠的荷兰温室生产最值得研究。国土面积不大的荷兰已经成为世界农业发展的典范。1999年一年四季全天候生产的大型温室有1.1万2

hm,其中90%为玻璃温室。国外现代温室单位面积的产量高经济效益高,荷兰温室番茄年产量达到60kg/2

m,5000 2

hm用于种植花卉,花卉产业每天向世界鲜花市场上出口1700万支鲜花和170万盆盆花,鲜花出口占全世界鲜花市场的60%以上,年收入高达110亿美元,占全国农业总产值的35%,经济效益高,成为欧洲的“菜篮子”,“花篮子”。荷兰大量投资与温室相关的基础研究。建立“蔬菜工厂”、“花卉工厂”、“苗木工厂”等用于研究和示范,成为温室业的坚实科研后盾。重视作物生理、产量、品质与环境因子之间的定量关系等方面研究,因而设施内综合环境控制系统智能化水平高,设施种植技术实现了规范化和标准化。

1.1.2 国内温室产业的现状及存在的问题

改革开放以来,我国的农业生产取得了可喜的成绩,但同时,我国农业发展中存在的问题也越来越凸现出来,如果这些问题得不到解决,将成为严重制约我国农业可持续发展的瓶颈。首先是我国人口众多。其次是资源短缺。第三是我国农产品成本高,科技含量低,无法形成产业规模。要解决这些问题,根本在于实现我国农业从传统农业向以优质、高效、高产为目的的现代化农业转化。农业环境综合控制作为农作物优质、高效、高产的手段,是农业现代化的重要标志,随着社会经济的发展,以温室为代表的设施农业将成为现代农业的发展主要方向之一,成为21世纪最有活力的农业新产业。

20世纪50年代末,我国在华北地区曾建造过屋脊式大型玻璃温室,到60年代初,在东北地区建成12

hm的大型玻璃温室。由于国内设施农业技术比国外落后,必然走一条引进、消化、吸收、创新的路子。1979-1987年,从保加利亚、荷兰、罗马尼亚、美国、日本、意大利等六国,引进现代温室24 座,共19.22

hm,分别建造在北京、黑龙江、广东、江苏、上海、新疆等六省市区,其中60%用于蔬菜生产,40%用于花卉生产。这次较大规模的引进温室,各地都重视了温室本身,但却忽视了对我国气候的实用性和配套的栽培技术,在运动中存在着冬季能耗高、夏季降温困难等问题,经济效益普遍不

佳。90年代中期开始,我国现代温室快速发展。“九五”期间,国家科技部将工厂化高效农业示范工程列为国家重大科技产业工程,这是唯一的一项农业产业示范工程项目。由此,又一个大规模引进国外大型现代温室,至1998年,共引进温室175.42

hm,引进的国家有荷兰、法国、以色列、西班牙、美国、日本、韩国以及我国的台湾地区,基本涵盖了现代温室发达的国家和地区;引进和建设的地点,北起黑龙江,南至海南岛,东起上海,西至新疆,包括了全国所有的省、市、自治区;引进温室的主要类型包括单屋脊和双屋脊的大型连栋玻璃温室,拱圆形、锯齿形、双层充气和双层结构的塑料膜温室,以及聚碳酸酯板温室等,代表了现代温室的所有类型;引进温室的配套设备包括遮阳、通风、降温、加温、保湿、自动控制和计算机管理,以及栽培床、活动苗床、喷滴灌和自走喷灌、自走式采摘车、自动化穴盘育苗、水培设备等等,也基本包括了所有先进的配套设备。这次大规模的引进温室,特别是北京、上海几个示范园区,在引进温室至温室园艺成套设施硬件的同时,还引进了配套品种、栽培技术、专家系统等软件成套技术,以及国外相关专家现场指导。

目前,我国是设施园艺栽培面积最大的国家。80年代中后期,随着高效节能日光温室生产技术在东北地区试验成功,就迅速在我国北方发展起来,各级政府把其作为带领农民致富奔小康、培育农村新的经济增长点的重点措施,各级农业科研机构也投入了大量的人力、物力进行节能日光温室建造及生产技术的专项研究,并取得了重大进展。日光温室发展到今天,已由生产各种反季节蔬菜的生产设施,发展为日光温室园艺设施,进而发展为设施农业,已成为种植业、养殖业和水产业全面发展的新兴产业。据统计,全国节能日光温室面积到2002年底已达到760万亩。

随着我国现代温室产业的快速发展,在温室产业的运营中暴露出了一些问题: 1)现代温室管理和种植的人才缺乏,温室种植技术落后,造成了现代温室的功能和优势不能充分发挥。

2)能源消耗大,以现代温室为代表的设施农业生产企业效益低下,导致温室产业出现了滑坡的现象。

3)不同地域的气候环境制约了进口大型温室的适用性,温室不能周年运行。

4)计算机控制水平低。目前国内温室计算机控制系统与国际选进技术存在很大差距,商用控制系统不能满足高效节能有效控制温室机构运行的要求。

1.2 国内外温室控制技术的研究现状

现代温室中常见的能自动控制的调控机构有:顶部通风窗、侧面通风窗、外遮阳帘幕、内遮阳帘幕、轴流通风机、降温湿帘、人工补光灯、二氧化碳施肥器、加热设备、喷雾系统及熏蒸设备。控制器综合调节各个机构,使系统在运行中节约能源的同时保证室内气候满足植物生长需求。使用的控制器可以有很多选择,如单片机、工控机、PLC、通用PC机等。控制器之间可以通过局域网或现场总线进行信息交换。国内外研究学者对控制系统和控制算法做了大量的研究。

1.2.1国外温室控制技术的研究现状

西方发达国家在现代温室测控技术上起步比较早。1949年,借助于工程技术的发展,美国建成了第一个植物人工气候室,开展了植物对自然环境的适应性和抗御能力的基础及应用研究。20世纪60年代,生产型的高级温室开始应用于农业生产,奥地利首先建成了番茄生产工厂,70年代后荷兰、日本、美国、英国、以色列等国家的温室园艺迅猛发展,温室设施广泛应用于园艺作物生产、畜牧业和水产养殖业。随着计算机技术的进步和智能控制理论的发展,近百年来,温室大棚作为设施农业的重要组成部分,其自动控制和管理技术不断得以提高,在世界各地都得到了长足的发展。特别是二十世纪70年代电子技术的迅猛发展和微型计算机的出现,更使温室大棚环境控制技术产生了革命性的变化。80年代,随着微型计算机日新月异的进步和价格大幅度下降,以及对温室控制要求的提高,以微机为核心的温室综合环境控制系统,在欧美得到了长足的发展,并迈入了网络化,智能化阶段。

目前,国外现代化温室的内部设施己经发展到比较完备的程度,并形成了一定的标准。温室内的各环境因子大多由计算机集中控制,检测传感器也较为齐全,如温室内外的温度、湿度、光照度、二氧化碳浓度、营养液浓度等,由传感器的检测基本上可以实现对各个执行机构的自动控制,如无级调节的天窗通风系统,湿帘与风扇配套的降温系统,由热水锅炉或热风机组成的加温系统,可定时喷灌或滴灌的灌溉系统,二氧化碳施肥系统,以及适用于温室作业的农业机械等。计算机对这些系统的控制己经不是简单的、独立的、静态的直接数字控制,而是基于环境模型上的监督控制,以及基于专家系统上的人工智能控制,一些国家在实现自动化的基础上正在向着完全自动化、无人化的方向发展。

1.2.2国内温室控制技术的研究现状

我国温室产业起步比较晚。自70年代末起,我国先后从日本、美国、荷兰和保加利亚等国引进了40套左右的现代化温室成套设备。虽然这些温室技术领先、设备先进,

但在我国的使用过程中还存在较严重问题,主要有以下几点:引进价格高,运行经济效益差;技术要求过高,要求经营者既要懂农业技术,熟悉英文,还要掌握电脑操作和机械运营和维护;运营模式没有与中国的实际结合起来,不适合于我国的气候特征。所以,研究开发符合我国国情、产生明显经济效益并适用于大范围推广应用的自动控制温室系统己经迫在眉睫。基于以上的种种原因,我国的农业工程技术人员在吸收发达国家高科技温室生产技术的基础上,进行了温室中温度、湿度、光照等单因子控制技术的研究,并逐步推出既适宜我国经济发展水平又能满足不同生态气候条件要求的温室控制系统。

1.3 温室环境湿度要求及湿度对温室环境的重要性

1.3.1 温室环境中的湿度要求

不同的作物对空气的湿度也有不同的要求。针对温室中所种植的作物的特性,控制系统应当控制相应的湿度,满足作物的要求。

在温室中种植作物,湿度是一个重要的环境因素,湿度包括空气的相对湿度与土壤、基质的湿度。温度除了对植物水分关系和光合作用的影响之外,对几种叶部病害的传染也产生重要的影响。其原因为植物生长发育需要较高的蒸腾率,因此,叶面与空气间的水势梯度应当足够大。通常,白天温度下空气相对湿度为60%,夜间温度下85%较适宜。白天相对湿度太低会导致水量不适宜,又能满足蒸腾率需求,从而可能会导致作物凋萎,气孔关闭,光合作用降低。如相对湿度太高(大于90%),许多作物会因此导致吸肥不足,使落花率提高。湿度大,还会引起许多叶部病害,如叶霉病在北方地区温室中9、10月份及5、6月份常发生,就是由于此时气温降低,空气相对湿度增大。

在温室内要保持花卉适当的湿度,防止湿度过高或过低,此外,还要保持花卉充足的水分,维持空气中相对湿度和土壤基质中水分的协调。

相对温室而言,空气湿度大,温室内空气的绝对湿度和相对湿度一般大于露点。产生湿度大的原因主要是设施属于准封闭系统,室内外的空气交换受到抑制,特别是寒冷季节的夜晚,为了保温而不通风,常出现90%—100%的高湿环境;设施内壁面、屋面、窗帘内面结露滴在作物体上,形成水滴;作物本身的结露、吐水等;白天室内温度高、土壤蒸发和作物蒸腾大而水汽又不易逸散;室内雾霭的发生,散落在作物体上。

设施内相对湿度的变化大,尤其是塑料温室,其变幅可达到20%—40%。湿度的昼夜变化,与气温的日变化呈相反的趋势。在夜间,室内维持较高的湿度,有时湿空气遇冷后凝结成水滴附着在薄膜或玻璃的内表面上,或出现雾霭。日出后,室内温度升高,温度逐渐下降。设施内空气湿度的日变化受天气、加温和通风换气量的影响,阴天或灌水

后的湿度几乎都在90%以上。同时,还与设施的大小、结构、土壤的干湿等有关。

设施内的蒸腾量与蒸发量均为陆地的70%左右,甚至更小。据测定,太阳辐射较强时,平均日蒸散量为2-3mm,可见设施农业是一种节水型农业生产方式。设施内的水分收支状况决定了土壤湿度,而土壤湿度直接影响到作物根系对水分、养分的吸收,进而影响到作物的生育和产量品质。设施内空气湿度的大小是水分多少的反映。

水分不足,影响了作物细胞分离或生长,因而影响了干物质增长和分配,影响了作物的产量和品质。当植物内水分严重不足时,可导致气孔关闭,妨碍二氧化碳交换,使光合作用显著下降。通常,多数蔬菜作物光合作用的适宜的空气相对湿度为60%—85%,低于40%或高于90%时,光合作用会受到阻碍,从而使生长发育受到不良影响。因此对温室生产过程中空气湿度的监测和调控,对农业生产具有现实的意义。

1.3.2 湿度控制对温室环境的重要性

温室对花卉生产的重要性早为栽培者所熟知,使用温室栽培花卉,不仅可以有效地控制温度、光照、湿度、二氧化碳浓度等环境因素,生产优质的花卉产品,还可以打破花卉生长的季节限制,达到周年生产、供应鲜花。另外,对于那些不适宜本地栽培的花卉,也可以利用温室设施创造适宜的环境条件,进行引种和培育。使用各种环控设备齐全的现代化温室,可以维持温室内部良好的微气候环境,使花卉生长良好,具有较高品质。以色列便是因其先进的温室设施及喷、滴灌技术,使得外销花卉产品具有较高的市场竞争力。

如今,温室设施在人类经济生活中的作用和地位越来越明显,以哥伦比亚的玫瑰为例,由于每年冬季有两个多月时间大气温度太低,夏天又偶有温度太高的时段。往往造成全年在这两个时段玫瑰生产的缺口。虽已有二十余年的栽培经验,但由于玫瑰花品质与产量的不稳定,此段季节的市场逐渐被厄瓜多尔夺取,所以哥伦比亚不得不重视发展设施种植,不断研发新型温室及配套设施。再以国际盆栽花卉为例,无论是气候寒冷的北美国家加拿大、美国或者北欧国家丹麦、挪威,还是气候温暖的中南美国家哥伦比亚、墨西哥,以及非洲国家肯尼亚、津巴布韦,甚至还有东南亚的日本、韩国等,为了获取较高的经济效益,都广泛采用温室设施来生产商品花卉。可以说,发展花卉产业,温室已成为先决条件,没有先进的温室设施就很难生产出优质的盆栽花卉。

回顾我国花卉产业的发展历程也可以清晰地看出其与设施农业的紧密联系,花卉产业迅速崛起的二十年,正是我国温室行业迅速发展的二十年。我国北方花卉业的兴起,正好印证现代温室技术对于花卉生产的重要性。也正是温室的广泛推广,才使得年销花

不再是广东人的专利,而成为全国范围内的花卉销售时间概念,更是在特定时间内为广大花卉经销商提供了无限商机,使花香四季不绝。所以,要更好的发展花卉产业,不仅要依靠科技的进步,管理水平的提高,还必须很好地依靠和利用温室设施。

2 温室大棚内重要参数的调节与控制

2.1 温度的调节与控制

与其他环境因子比较,温度是设施栽培中相对容易调节控制的环境因子。温室内温度的调节和控制包括保温、加温和降温3种。温度调控要求达到能维持适宜于作物生育的设定温度。温度的空间分布均匀,时间变化平缓。

(1)保温,为了提高大棚的保温能力,常采用各种保温覆盖。具体方法就是增加保温覆盖的层数,采用隔热性能好的保温覆盖材料,以提高设施的气密性。

(2)加温,我国传统的单屋面温室,大多采用炉灶煤火加温,近年来也有采用锅炉水暖加温或地热水暖加温的。大型连栋温室和花卉温室,则多采用集中供暖方式的水暖加温,也有部分采用热水或蒸汽转换成热风的采暖方式。

(3)降温,保护设施内降温最简单的途径是通风,但在温度过高,依靠自然通风不能满足作物生育要求时,必须进行人工降温。降温包括遮光降温法、屋面流水降温法、蒸发冷却法及强制通风法。遮光降温法是一种在室外与温室屋顶部相距40cm处张挂遮光幕,对温室降温很有效。另一种在室内挂遮光幕,降温效果比挂在室外差;屋面流水降温法采用时须考虑安装成本,清除玻璃表面的水垢污染问题;蒸发冷却法使空气先经过水的蒸发冷却降温后再送入室内,达到降温目的。蒸发冷却法有湿帘—风机降温法、细雾降温法、屋顶喷雾法。

2.2 湿度的调节与控制

土壤湿度要与空气相对湿度协调一致才能达到温室湿度的有效控制,湿度调控范围一般在60%RH—80%RH,精度为±5%。湿度的调控影响温度,要求湿度与温度的调控需按一定的程序进行。常用的湿度调节方式是加湿和去湿。

(1)加湿,一般常用的方法是水喷雾法和蒸汽加湿。水喷雾法采用双位或多位控制来实现;蒸汽加湿则采用电极加湿器或浇蒸加湿器实现。

(2)去湿,在温室中去湿常用以下三种方式:加热控制法、吸附法—化学除湿器、排湿换气。在湿度的调节系统中,温室内的加湿和去湿则由温室内的调节部件完成,这些部件有天窗、侧窗、湿帘、风机等。

2.3 温度、湿度之间的耦合

温度与湿度之间有一定的耦合关系,对一个因子的控制常会带来另一个因子的变

化。在冬季温室环境控制中,默认为温度控制优先的原则,在温度条件满足后,再来满足湿度条件。如温度过低、湿度过大的情况下,以加温为主导,只有当温度上升到一定值后,才能通风降湿,另一方面,温度提高本身可以使相对湿度降低。在夏季降温加湿的过程中,采用以湿度优先的原则。当湿度过小时,开启蒸发降温加湿装置。而当温度过高需要启动蒸发降温执行机构时,必须先检测室内的相对湿度,只有湿度低于某一设定范围时,才能启动蒸发装置。

3 温室自动控制系统的种类

从控制器类型来划分,主要有以下几种温室自动控制系统:

1. 基于电路控制的温室自动控制系统。

该系统是采用集成电路及附设电路对湿度控制的。从功能模块上来分有:电源电路,

振荡电路,湿度检测电路,控制电路组成。

图1 基于电路控制的温室自动控制系统

Figure 1 The greenhouse automatic control system based on circuit

2. 基于单片机控制的的温室自动控制系统。

该电路系统主要由控制电路、湿度测量电路、接口电路、显示电路和键盘组成,如下图所示。其中,控制电路采用AT89C51单片机以及外围元件构成,主要完成定时、湿度频率数据采集、数据处理和结果显示等任务。湿度测量电路实现环境湿度与频率的转换,其输出信号的频率与湿度单值对应。接口电路主要完成输出频率信号的整形、电平匹配等,送入单片机的定时/计数器T1。T1工作于计数器方式,定时记录脉冲数并存入内存缓冲区。 电源V 220电源电路加湿设备

通风设备

控湿系统

指示电路

测湿系统

图2 基于单片机控制的温室自动控制系统

Figure 2 The greenhouse automatic control system based on single-chip computer

3. 基于PLC 控制的的温室自动控制系统。

图3 基于PLC 控制的温室自动控制系统

Figure 3 The greenhouse automatic control system based on PLC

该温室控制系统是利用 PLC 把传感器采集的有关参数 (如温度、湿度 )转换为数字信号,并把这些数据暂存起来 ,与给定值进行比较 ,经一定的控制算法后 ,给出相应的控制信号进行控制。传感器把与生物有关的参量 (温度、湿度等 )转换为电压信号 ,经运算放大器组成的信号处理电路变换成压频转换器 (V/F)需要的电压信号。其中温度传感器的输出电流与绝对温度成正比 ,且具有温度响应快、线性度好及高阻抗电流输出等特点 ,适于长距离传输 ,可把-5~55℃的温度转换成1~4V 的电压;测湿调理电路是将湿度传感器测试到的10%~90%的相对湿度转换成4~20mA 的电流输出信号。温室控制系统的执行机构包括风机、气泵、水帘、遮阴帘、电磁阀等设备。系统工作时 , PLC 通过温湿度传感器来测量温室内的温湿度并与设定值相比较 ,如果温室内的温度或湿度超出了设定范围的上下限值 , PLC 就输出指令 ,控制接通相应的设备;当温室的温度和湿度都在范围内时 , PLC 就输出指令 ,切断设备的电源。

4 基于单片机控制的温室大棚湿度检测系统的研究方案设计

4.1 该系统设计内容 湿度测量电路接口电路单片机显示器

键盘

本系统以单片机为核心,配以湿度传感器模块、A/D转换电路、显示电路、报警电路。主要实现以下功能:

1.通过湿度传感器模块对环境的湿度进行数据采集;

2.通过单片机对采样的数据进行处理;

3.当环境湿度低于或高于设置湿度时启动报警。

4.2 本系统的电路组成及工作原理

4.2.1系统的电路组成

本系统通过HM1500采集湿度,经过含有单片机的检测系统的进一步分析处理,用户可以通过单片机键盘输入湿度的上下限值和预置值,从而实现大棚内作物生长的控制。如果环境的实时参数超越上下限值,系统自动报警并启动执行机构调节大棚内湿度状态,直到湿度状态处于上下限值内为止。如果有预置初值,且与当前状态不相等时,系统也会报警并启动执行机构实时动态调节湿度状态,直到所处的平衡状态与预置值相等为止。

系统原理图如图4所示。

图4 基于单片机的温室大棚湿度测量系统原理图

Figure 4 The greenhouse humidity measurement system schematic based on SCM

4.2.2 湿度检测的原理

本系统通过单片机AT89C51及其各种接口电路来实现湿度的检测。其工作原理是: 湿度传感器HM1500线性输出电压,再由A/D转换器把模拟电压信号转换为数字信号并送入到单片机中,单片机对采集到的信号进行滤波处理并通过查表得到实际测量的湿度值,之后通过单片机的各外部接口电路显示该湿度值。

4.3 各部分电路的选择与设计

4.3.1 单片机控制

4.3.1.1 单片机的概念

单片微型计算机简称单片机,它是把微型计算机的各个功能部件,即中央处理器CPU、随机存储器RAM、只读存储器ROM、定时器/计时器及I/O接口电路等集成在一块芯片上,构成一个完整的微型计算机。

4.3.1.2 单片机的发展概述

单片机是将CPU、存储器、定时/计数器、I/O接口电路和必要的外设集成在一块芯片上,构成一个既小巧又完善的计算机硬件系统,可实现微型计算机的基本功能,因此早期称为单片微型计算机,简称单片机。随着科学技术的发展,单片机芯片内扩展了各种控制功能,现今的单片机集成了许多面向测控对象的接口电路,已经突破了微型计算机的传统内容,国际上逐渐采用微控制器来代替。因此在国内“单片机”一词已约定俗成,故仍继续沿用。

4.3.1.2.1 单片机的发展过程

自从1974年美国Fairchild公司研制出第一台8位单片机F8以来,单片机就以惊人的速度在发展,各公司竞相推出自己的产品,各种新、高性能单片机不断涌现。迄今为止,单片机的发展主要可分为以下四个阶段。

第一阶段(1974-1978年):初级单片机阶段。以Intel公司的MCS-48为代表,这个系列的单片机在片内集成了8位CPU、并行I/O口、8位定时/计数器、RAM等,无串行I/O口,寻址范围小于4KB。

第二阶段(1978-1982年):高性能8位机阶段。这个阶段的单片机均带有串行I/O口,具有多级中断处理系统,定时/计数器为16位,片内RAM和ROM容量相对增大,且寻址范围可达64KB,有的片内还带有A/D转换接口。这类单片机的典型代表有Intel公司的MCS-51系列、Motorola公司的6801系列和log

Zi公司的Z8系列等。这类单片机的应用领域极其广泛,其结构和性能还在不断地改进和发展。

第三阶段(1982-1990年):8位单片机巩固、完善及16位单片机推出阶段。在此阶段,一方面不断完善高档8位机,改善其结构以满足不同用户的需要;另一方面发展16位单片机及专用单片机。16位单片机工艺先进、集成度高、内部功能强,而且允许用户采用面向工业控制的语言,如Intel公司的MCS-96系列单片机。

第四阶段(1990年-现今):单片机全面发展阶段。继16位单片机出现不久,几大公司先后推出了代表当前最高性能和技术水平的32位单片机系列。32位单片机具有极高的集成度,CPU可与其他微控制器兼容,指令系统进一步优化,运算速度可动态改变,具有强大的中断控制系统、同步/异步通信控制系统。这类单片机主要应用于汽车、航空航天、高级机器人、军事装备等方面,它代表着单片机发展的高新技术水平。

4.3.1.2.2单片机的发展趋势

单片机的发展趋势将是大容量、高性能化、低功耗化、外围电路内装化等。为满足不同用户的需求,各公司竞相推出能满足不同需要的产品。

a 高性能化

高性能化主要是指进一步改进CPU的性能,加快指令运算的速度和提高系统控制的可靠性,并加强了位处理功能、中断和定时控制功能;采用流水线结构,指令以队列形式出现在CPU中,从而有很高的运算速度,尤其适合于作数字信号处理用,这类单片机的运算速度比标准的单片机高出10倍以上;采用串行总线结构,从而大大减少了单片机的引线,降低了单片机的成本。

b 存储大容量化

运用新的工艺可使内部存储器大容量化,得以存储较大型的应用程序,这样可适应一些复杂控制的要求。当今单片机的寻址能力早已突破早期的64KB限制,内部ROM容量可达64KB,RAM容量可达2MB,今后还将继续扩大。

c 外围电路内装化

随着集成度的不断提高,可以把众多的外围功能器件集成在片内。除了一般必须具有的ROM、RAM、定时/计数器、中断系统外,随着单片机档次的提高,以适应检测、控制功能更高的要求,片内集成的部件还有DMA控制器、中断控制器、锁相环、频率合成器、声音发生器、CRT控制器和译码驱动器等。

d 片内I/O口的改进

大多数单片机I/O引脚输出的都是微弱电信号,驱动能力较弱,需增加外部驱动电路以驱动外围设备。现在增加并行口的驱动能力,这样可减少外部驱动芯片,有些单片机可以直接输出大电流和高电压,不需额外驱动模块即可驱动外围设备。

为进一步加快I/O口的传输速度,有的单片机设置了高速I/O口,能以更快的速度触发外部设备,也能以更快的速度读取外部数据。

e 低功耗化、宽电压

现在的单片机基本都采用了CMOS(互补金属氧化物)化,其特点是功耗低,而CHMOS工艺是CMOS和HMOS(高密度、高速度MOS)工艺的结合,同时具备了高速和低功耗的特点;不断采用的新工艺使功耗从mW级降到μW,甚至1μW以下。工作电压在2—6V范围内均能正常运行。

4.3.1.3 单片机的特点及分类

单片机具有结构简单、控制功能强、可靠性高、体积小、价格低等优点,在许多行业都得到了广泛应用。在航空航天、地质、石油、冶金、采矿、机械、电子等诸多领域,单片机都发挥了巨大作用。

4.3.1.3.1 单片机的特点

单片机以其卓越的性能,得到了广泛的应用,已深入到各个领域。单片机应用在检测、控制领域中,具有以下特点。

a 单片机具有体积小、控制功能强、成本低等特点,可非常方便地嵌入到各种应用场合,组装各种智能式控制设备和仪器,做到机、电、仪一体化。

b 可靠性好,适用温度范围宽,芯片本身是按工业测控环境要求设计的,能适应各种恶劣的环境,这是其他机种无法比拟的,且程序指令、表格数据等可固化在ROM中,不易被破坏。

c 易于扩展,很容易构成各种规模的应用系统。片内具有计算机正常运行所必需的部件,芯片外部有许多供扩展用得三级总线及并行、串行I/O口,为应用系统的设计和生产带来极大方便。

d 低电压、低功耗:单片机广泛应用于便携式产品和家电消费类产品。对此类产品,低电压、低功耗尤为重要。许多单片机可在2.2V电压以下工作。目前,0.8V 供电的单片机问世,工作电流为μA级,一粒纽扣电池就可使单片机长期运行。

e 可以方便地实现多机和分布式控制,从而使整个控制系统的效率和可靠性大为提高。

4.3.1.3.2 单片机的应用领域

单片机的应用范围很广,根据使用情况大致可分为以下几类。

a 在智能仪器仪表中的应用

单片机应用于各种仪器仪表中,使得仪器仪表数字化、智能化、微型化,使功能大大提高,如精密数字温度计、智能电度表、智能流速仪、微机多功能pH测试纸等。

b 在工业控制中的应用

用单片机可以构成各种工业控制系统、自适应控制系统、数据采集系统等,如MCS-51单片机控制电镀生产线、温度人工气候控制、报警系统控制等。在军事工业中,单片机可用于导弹控制、鱼雷制导控制、智能武器装置及航天导航系统等。

c 在计算机网络与通信技术中的应用

单片机具有通信接口,为单片机在计算机网络与应通信设备中的应用提供了良好的条件。例如,MCS系列单片机控制的串行自动呼叫应答系统、列车无线通信系统、无线遥控系统等。

d 在日常生活及家电中的应用

目前,各种家用电器已普遍采用单片机控制取代传统的控制电路,如洗衣机、电冰箱、空调、微波炉、电饭煲及其他视频音像设备的控制器,各类信号指示、手机通信、电子玩具、智能楼宇及防盗系统等。

e 在办公自动化领域的应用

现代办公室使用的大量通信、信息产品多数采用了单片机,如通用计算机系统中的键盘译码、磁盘驱动、打印机、绘图仪、复印机和传真机等。

f 在汽车电子与航空航天电子系统中的应用

在汽车工业中,可用于点火控制、变速器控制、防滑刹车控制、排气控制及自动驾驶系统等;在航空航天中,可用于集中显示系统、动力检测控制系统、通信系统及动态监视器等。

4.3.1.4 本系统单片机的选择

本系统选择AT89C51单片机,它是一种带4 KB闪烁可编程可擦除只读存储器、高性能的CMOS 8位微处理器,具有软件编程灵活、自由度大、性价比高的特点。AT89C51芯片时钟可达12 MHz,运算速度快,控制功能完善。

4.3.1.4.1 AT89C51简介

AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。

AT89C2051是一种带2K字节闪存可编程可擦除只读存储器的单片机。单片机的可擦除只读存储器可以反复擦除1000次。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,AT89C2051是它的一种精简版本。AT89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

4.3.1.4.2 AT89C51的主要特性

·与MCS-51 兼容

·4K字节可编程FLASH存储器

·寿命:1000写/擦循环

·数据保留时间:10年

·全静态工作:0Hz-24MHz

·三级程序存储器锁定

·128×8位内部RAM

·32可编程I/O线

·两个16位定时器/计数器

·5个中断源

·可编程串行通道

·低功耗的闲置和掉电模式

·片内振荡器和时钟电路

4.3.1.4.3 AT89C51的特性概述

AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。

4.3.1.4.4 AT89C51的管脚说明

图5 AT89C51的管脚说明

Figure 5 AT89C51 pin description

VCC: 供电电压

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2

口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如表1所示:

表1 P3各端口引脚与复用功能表

Table 1 P3 port pins and multiplexing function table

管脚备选功能

P3.0 RXD(串行输入口)

P3.1 TXD(串行输出口)

P3.2 /INT0(外部中断0)

P3.3 /INT1(外部中断1)

P3.4 T0(记时器0外部输入)

P3.5 T1(记时器1外部输入)

P3.6 /WR(外部数据存储器写选通)

P3.7 /RD(外部数据存储器读选通)

P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令时ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周

期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

4.3.2 电源控制

电源电路是给电子设备提供必要的电源能量的电路,就输入和输出而言,在集成电路中主要使用的是由交流(AC)220V,50/60Hz的市电转换成直流电。该部分电路由降压、整流、滤波、稳压四部分组成,其电路图如图6所示。

图6 电源控制电路

Figure 6 Power control circuit

4.3.3 湿度传感器

这里,湿度传感器采用美国Humirel公司生产的HM1500/HM1520,它是电压输出型集成湿度传感器,它是将湿敏电容与湿度信号处理器集成在一个模块内封装而形成的。有GND,VCC(+5 V电源端)、Vo(电压输出端)3个引脚,输出阻抗为70 Ω,适合与ADC 单片机相连。由于集成度高,不需外围元件,使用很方便。该器件具有以下特点。

①内部包含由HS1101型湿敏电容构成的桥式振荡器、低通滤波器和放大器,能输出与相对湿度成线性关系的直流电压信号。

② HM1500是通用型产品,测湿范围在0~100%RH,输出电压为1~4V,相对湿度为55%时的标称输出电压为2.48V,其测量精度为±3%RH,灵敏度为+25mV/RH,温度系数为 +0.1%RH/℃,响应时间为10s。

③ HM1520是专门用于测量低湿度的产品,测湿范围为0~20%RH适用于微量水分环境条件下的湿度检测。输出电压为1~1.6V,相对湿度为55%时的标称输出电压为1.24V。其测量精度为±2%RH,灵敏度为+26mV/RH,温度系数小于0.1%RH/℃,响应时间为5s。HM1520属于比例输出式,其输出电压与电源电压成正比。

④稳定性较好,长期稳定性为0.5%RH/年。

⑤抗腐蚀能力强,有良好的互换性。

⑥工作电压范围为4.75~5.25V,典型值为5V。

⑦工作电流为0.4mV,漏电流不大于300μA。

⑧工作温度范围为-30℃~+60℃。

HM1500/HM1520的外形如图7所示,湿敏电容位于传感器的前部。

图7 HM1500/HM1520的外形

Figure 7 The shape of HM1500/HM1520

HM1500/HM1520的工作原理框图如图8所示。湿敏电容HS1101作为湿度传感器接入桥式振荡电路,当湿度发生变化时,HS1101的电容量随之发生变化,使得振荡电路的频率也随之改变,经过整流滤波器和放大器,即可输出与相对湿度成线性关系的电压线号

V。

图8 HM1500/HM1520的工作原理框图

Figure 8 The schematic block diagram of HM1500/HM1520

V与相对湿度的对应关系见表2和表3所示。

输出电压

表2 HM1500的0V 与RH 的对应关系(A T =+23℃)

Table 2 The corresponding relations between 0V in HM1500 and RH (A T equal s

+ 23 °C)

RH(%) )(0V V RH(%) )(0V V RH(%) )(0

V V 10 1.325

40 2.110 70 2.860 15 1.465

45 2.235 75 2.990 20 1.600

50 2.360 80 3.125 25 1.735

55 2.480 85 3.260 30 1.860

60 2.605 90 3.405 35 1.990 65 2.730 95 3.555

其中, HM1500的0V 与RH 的对应关系计算式:RH V 2568.0079.10+=

表3 HM1520的0V 与RH 的对应关系(A T =+23℃)

Table 3 The corresponding relations between 0V in HM1520 and RH (A T equal s

+ 23 °C)

RH(%) )(0V V RH(%) )(0V V RH(%) )(0

V V 0 — 7 1.166 14 1.346 1 1.013 8 1.192 15 1.371 2 1.038 9 1.217 16 1.397 3 1.064 10 1.243 17 1.422 4 1.089 11 1.269 18 1.448 5 1.115 12 1.294 19 1.474 6 1.141 13 1.320 20 1.499

其中,HM1520的0V 与RH 的对应关系计算式: )0512.0197.0(0RH V V CC += 4.3.4 A /D 转换电路

本系统 A /D 转换器采用ADC0809,它是美国国家半导体公司生产的CMOS 工艺8通道,8位逐次逼近式A/D 模数转换器。其内部有一个8通道多路开关,它可以根据地址码锁存译码后的信号,只选通8路模拟输入信号中的一个进行A/D 转换,是目前国内应

温室大棚施工方案

温室大棚施工方案 一、编制说明 1、本工程施工方案设计依据施工图纸编制。 2、本施工方案依据水利、民建等有关施工规范进行施工。 3、本工程按农业开发项目设计要求和相关部门规范,进行验收。 4、依据工程具体情况进行施工场地布设。 二、工程概况 本工程位于五大连池市城南,新发乡青山村。北五公路东侧。温室为砖混保温塑料棚膜,大棚为钢架棚膜结构。建设数量:育苗大棚20栋,每栋667平方米;温室4栋,每栋667平方米。 三、施工组织构成 职务姓名岗位职责 项目经理负责项目全面工作 技术负责人协助项目经理,负责现场技术 材料负责人负责所需的各种材料及检测 安全员负责安全生产 木工组长负责木工工作,保证木材料规范制作 钢筋组长负责钢筋加工安装 砌筑组长负责按规定要求砌筑 力工组长负责所需力工工作 四、施工准备

1、技术准备:工程开工前,由项目经理、技术负责人组织各工种到现场熟悉图纸,进行技术交底及安全教育工作,技术负责人组织现场施工放样,以及相关的准备工作。 2、现场准备:施工及生活用水,由甲方已经打好的机电井供给,须自接管线30米,引到施工场地用水处即可;电,与甲方协商,申请电力主管部门在工地现有电力供给点接入,容量200KV,可满足施工用电需要;道路,施工处距北五主干公里仅100米,路基须填筑压实,才能满足项目建设道路运输要求。 3、机械准备 (1)搅拌机:350型1台 (2)电焊机:BX3-330:1台 (3)钩机1台 (4)铲车1辆 (5)钢筋加工机械1套 (6)运输翻斗车1辆 (7)温室、大棚专业安装设备一套 (8)振捣棒等施工施工必备机械、设备1套。 4、人员准备 钢筋工2人、木工2人、架子工2人、电工1人、瓦工5人,小工等10人。人员要视工程建设需要随时调整。 5、主要材料准备 名称规格单位数量备注序号 1 砖红砖 m? 620 2 水泥 325 t 50 沙子混合 m? 160 3

农作物温室环境智能监控系统研究背景意义及国内外现状

农作物温室环境智能监控系统研究背景意义及国内外现状 1研究背景及其研究意义 (1) 研究背景概述 (1) 项目研究意义 (2) 2国内外研究现状 (3) 国外研究现状 (3) 国内研究现状 (4) 1研究背景及其研究意义 研究背景概述 农业是国家重要的支柱产业,我国作为世界第一农业大国,农业生产在我国经济建设和社会发展中占有举足轻重的地位。良好的气候与生态环境条件是农业生产的重要保障,而我国幅员辽阔,气候与生态环境条件相对恶劣,制约农业的发展。 我国作为世界第一农业大国,在农业也是积累的相当多的经验和知识,但我国大部分地区都存在山多土地少,土质不好,土壤资源匮乏,气候条件复杂多变等劣势,这些劣势对农作物的生长极其不利;况且随着社会的进步,从事农业生产的人也日趋减少,而社会的对农产品的需求却日益增高,原有农作种植方式已经不能满足社会发展的需要,必须对传统的农业进行技术更新和改造。因此,在我国发展现代化农业和生态农业是今后农业发展的必然趋势,推广高新技术在农业生产中的应用势在必行。而现代温室农业技术就能满足以上的要求。 温室控制技术主要针对湿度、温度、光照度等温室作物生长必须的外在物理要素进行调节,以达到作物生长的最佳条件。现代温室控制技术主要是能通过系统实时采集温室环境的温湿度和光照度,以达到温室植物生长环境实时监控的目的。近年来,我国在温室控制技术方面也做了很多的研究,并在温室栽培等方面取得了显着成果。但由于我国在这方面的研究时间不算长,在配套技术与设备上都比较匮乏,使得环境的监控能力不高,生产力有限。能够实现全年生产的大型现代化温室很少。而且需要进口温室设备,但投资又太大,需要的操作人员的素质要求也高。所以我国温室环境控制还有很多地方需要改善与提高。 温室环境智能监控系统的研究涉及到计算机技术、传感器技术、控制技术、通讯技

智能温室大棚整体控制设计报告

智能温室大棚整体控制设计报告设计人员:

目录 一、智能温室大棚简介 (3) 二、智能温室大棚结构设计 (3) 一、温室结构设计 (3) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (4) 二、温室运行机构 (4) 1.电力系统 (4) 2.降温增湿系统 (4) 3.遮阳系统 (4) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (5) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (6) 4、上位机 (6) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统主要有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统、移动苗床等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选

大棚监控系统设计方案

大棚监控系统设计方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

农业温室大棚监控系统设计方案 一、概述 .......................................................................................................... 错误!未定义书签。 二、项目需求 .................................................................................................. 错误!未定义书签。 三、系统架构设计 .......................................................................................... 错误!未定义书签。 四、大棚现场布点 .......................................................................................... 错误!未定义书签。 五、平台软件 .................................................................................................. 错误!未定义书签。光照度传感器................................................................................................... 错误!未定义书签。 1 、简介............................................................................................................ 错误!未定义书签。 2、用途 ............................................................................................................ 错误!未定义书签。 3、技术参数..................................................................................................... 错误!未定义书签。 4、安装与使用................................................................................................. 错误!未定义书签。

蔬菜大棚施工组织设计模板

蔬菜大棚施工组织 设计

目录 一、编制说明与依据 ............................................ 错误!未定义书签。 1、编制说明.................................................... 错误!未定义书签。 2、编制依据.................................................... 错误!未定义书签。 二、工程概况 ........................................................ 错误!未定义书签。 三、施工总体部署 ................................................ 错误!未定义书签。 1、工期............................................................ 错误!未定义书签。 2、进度计划.................................................... 错误!未定义书签。 3、质量............................................................ 错误!未定义书签。 4、施工工序.................................................... 错误!未定义书签。 5、施工资料准备............................................ 错误!未定义书签。 6、施工现场准备............................................ 错误!未定义书签。 四、主要项目施工方案 ........................................ 错误!未定义书签。 1、测量放线.................................................... 错误!未定义书签。 2、土方工程.................................................... 错误!未定义书签。 3、基础工程.................................................... 错误!未定义书签。 4、墙体砌筑.................................................... 错误!未定义书签。 5、钢筋工程.................................................... 错误!未定义书签。 6、混凝土工程................................................ 错误!未定义书签。 7、模板工程.................................................... 错误!未定义书签。 8、钢结构工程................................................ 错误!未定义书签。 五、工程质量管理及保证 .................................... 错误!未定义书签。

基于单片机的无线通信环境检测系统

基于单片机的无线通信环境检测系统 本文设计了一个基于单片机的无线通信的综合环境监控系统。系统以STC89C52单片机为控制核心,采用DSl8820数字温度计芯片来检测温度,以DHT11数字湿度传感器来检测环境湿度。系统与上位机系统采用无线通信模块NRF905构建系统的通信模块。经过实践检验,以上方案设计的环境监控系统运行稳定、检测准确。 标签:环境检测;STC89C51单片机;远程通信 一、硬件系统设计 (一)温度检测模块设计 DSl820是Dallas半导体公司的数字化温度传感器。它采用一线总线接口。DSl8820的测温原理采用如下方法,低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数当计数器1的预置值减到0时,温度寄存器的值将加1,计数器l的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 (二)湿度检测模块设计 测量空气湿度的方式很多,其原理是根据某种物质从其周围的空气吸收水分后引起的物理或化学性质的变化,间接地获得该物质的吸水量及周围空气的湿度。2002年Sensiron公司在世界上率先研制成功DHT11、DHT15型智能化温度/温度传感器,其体积非常小。测量相对温度的范围是0~100%,分辨力达0.03%RH,最高精度为±2%RH。测量温度的范围是-40℃~123.8℃,分辨力为0.01℃。控制电路连接也简单,只占用控制器的一个I/O口即可完成数据的通信。 (三)无线通信模块设计 nRF905模块是由Nordic公司开发而成,nRF905单片无线收发器工作在433/868/915 MHz的ISM频段由一个完全集成的频率调制器一个带解调器的接收器一个功率放大器一个晶体震荡器和一个调节器组成。nRF905可以有四种工作模式,两种活动的模式:ShockBurst RX和ShoekBurst TX;两种节电模式:掉电SPI模式和STANDY SPI模式。nRF905的工作模式由TRX_CE、TX_EN和PWR_UP三个引脚决定。ShockBurst TM收发模式下,使用片内的先入先出堆栈区,数据低速从微控制器送入,但高速发射,这样可以尽量节能,因此,使用低

农业温室大棚智能控制系统详解

随着温室大棚近年来的发展,农业智能温室大棚控制系统也被广泛的应用,该监控系统充分应用现代信息技术,集成软件、物联网技术、音视频技术、智能控制、3S技术、无线通信技术及专家智慧与知识,实现大棚控制各关键环节的信息化、标准化,是云计算、物联网、地理信息系统等多种信息技术在大棚控制中综合、的应用,实现更完备的信息化基础支撑、更透彻的农业信息感知、更集中的数据资源、更广泛的互联互通、更深入的智能控制、更贴心的公众服务。 【温室大棚控制系统作用】 (农业温室大棚智能控制系统构架-图例) 农业智能温室大棚控制系统可以实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像、通过模型分析,自动控制温室湿帘风机、喷淋灌溉、内外遮阳、顶窗侧窗、加温补光等设备。同时,系统还可以通过手机、计算机等信息终端向管理者发送实时监测信息、

报警信息,以实现温室大棚智能化远程管理,充分发挥物联网技术在设施农业生产中的作用,保证温室大棚内环境适宜作物生长,实现精细化的管理,为作物的高产、生态、安全创造条件,帮助客户提率、降低成本、增加收益。 【温室大棚控制系统组成部分】 (农业温室大棚智能控制系统-图例) 一、智能控制 通过控制系统,可以对农业生产区域内各种设备运行条件进行设定,当传感器采集的实时数据结果超出设定的阈值时,系统会自动通过继电器控制设备或模拟输出模块对温室大棚自动化设备进行控制操作,如自动喷洒系统、自动换气系统等,确保温室内为植物生长适宜环境。 常用的现场设备包括灌溉设备、风机、水帘、遮阳板等,这些设备均可以通过信号线进行控制,服务

器发送的指令被转化成控制信号后即可实现远程启动/关闭现场设备的运转。 用户通过点击界面上的按钮即可完成启动/关闭现场设备的指令发送。 除了手工进行指令的发送之外,系统还能够根据检测到的环境指标进行自动控制现场设备的启动/关闭。用户可以自定义温湿度、光照、CO2浓度等指标的上限值、下限值,并定义当指标超过上限或者下限时,现场设备如何响应(启动/关闭);此外,用户可以设置触发后的设备工作时间。 建立手机系统,客户直接采用微信客户端就可以控制和查看实时数据,手机端具有手动启动、关闭电磁阀,水泵等设备功能。 二、视频监控 (农业温室大棚智能控制系统-图例) 通过在农业生产区域内安装高清摄像机置,对包括种植作物的生长情况、投入品使用情况、病虫害状况情况进行实时视频监控,实现现场无人职守情况下,种植者对作物生长状况的远程在线监控,农业专家远程在线病虫害作物图像信息获取,质量监督检验检疫部门及上主管部门对生产过程的有效监督和及时干预,以及信息技术管理人员对现场数据信息和图像信息的获取、备份和分析处理。

农业大棚环境监控系统方案

农业大棚环境监控系统方案 2014.9

一简介 (3) 二农业大棚环境监控概述 (3) 三背景与需求 (4) 四系统的组成 (4) 1)总体架构 (4) (2)系统有两种典型配置结构 (4) (3)传感信息采集 (5) 五大棚监测点现场分布 (6) 六系统的软件 (7) 七常用的传感器 (8) 1、空气温湿度传感器 (8) 2、土壤温度传感器 (8) 3、土壤水分传感器 (8) 4、CO2含量传感器 (9) 5、NH3含量传感器 (9) 6、光照度传感器 (9)

一简介 近年来,温室大棚种植为提高人们的生活水平带来极大的便利,得到了迅速的推广和应用。种植环境中的温度、湿度、光照度、CO2浓度等环境因子对作物的生产有很大的影响。传统的人工控制方式难以达到科学合理种植的要求,目前国内可以实现上述环境因子自动监控的系统还不多见,而引进国外具有多功能的大型连栋温室控制系统价格昂贵,不适合国情。 针对目前大棚发展的趋势,提出了一种大棚智能监控系统的设计。根据大棚智能监控的特殊性,需要传输大棚现场参数给管理者,并把管理者的命令下发到现场执行设备,同时又要使上级部门可随时通过互连网或者手机信息了解区域大棚的实时状况。基于GPRS的智能大棚监控系统使这些成为可能。 二农业大棚环境监控概述 农业温室大棚监控系统通过实时采集农业大棚内空气温度、湿度、光照、土壤温度、土壤水分等环境参数,根据农作物生长需要进行实时智能决策,并自动开启或者关闭指定的环境调节设备。通过该系统的部署实施,可以为农业生态信息自动监测、对设施进行自动控制和智能化管理提供科学依据和有效手段。 开拓者kitozer系列的农业温室大棚监控及智能控制解决方案是通过可在大棚内灵活部署的各类无线传感器和网络传输设备,对农作物温室内的温度,湿度、光照、土壤温度、土壤含水量、CO2浓度等与农作物生长密切相关环境参数进

(最新)(最新)日光温室大棚施工组织设计

(最新)(最新)日光温室大棚施工组织设计 一、主要施工方法 第一节施工准备 1、技术准备 (1)与建设单位办理有关地质勘探报告、文物钻探记录等技术资料的交接手续;根据工程施工需要准备相应的技术资料,如标准图集、施工规范、规程等。 (2)开工前组织施工人员熟悉、审查施工图纸,理解设计意图,并作好施工技术交底的准备工作。进行图纸会审,形成图纸会审记录。 (3)组织编制施工组织设计、分项工程工艺卡,对重要部位编制详细的施工方案。 (4)对于采用的新技术、新工艺组织施工人员进行实地培训,考核合格后方可上岗。 (5)组织施工技术人员学习施工组织设计,并向各专业、各工种技术人员进行工程施工实施细则和施工技术标准的交底。技术负责人向施工员进行设计要求和关键工程部位施工技术的交底;施工员向各专业施工队进行分部分项工程的施工技术和安全要求的交底。交底方式采用书面交底、口头交底和现场操作交底。 (6)做好构件翻样,根据施工进度计划编制材料采购进场计划,组织施工力量作好半成品的定货工作。 (7)根据需要准备相应的技术资料和表格。 2、生产准备 (1)抓紧施工现场的场地平整,作好临时水、电管线的埋设和设施的搭设。 (2)施工用周转材料、施工机具及施工材料根据施工计划有组织陆续进场,按施工总平面布置图合理堆放。

(3)《施工许可证》等手续应在开工前办完。 3、编制原则 ? 确保工程质量达到合格工程标准,并按此目标编制本工程质量、安全、工期保证措施,建立质量、安全保证体系。 ? 建立以项目经理为中心的安全管理体系,推行安全标准工地建设,切实保证施工过程中的人身及设备安全。 ? 合理安排工期,尽可能减少气候的影响,并保证满足总工期的要求。 ? 组建高素质的施工队伍,以标准化管理为基础,现代化科技为手段,结合当地的气候、环境条件,把握控制工期的关键工序,排除制约因素,确保按要求完成。 ? 针对本工程特点和现场实际情况制定施工技术组织措施,并对工程重点、难点问题制定解决方案和措施,推广新技术、新工艺,提高工程质量。 第二节土石方工程 一、土石方开挖 土方工程采用机械开挖与人工修槽相结合的方法。在土方开挖过程中严格控制,不超深、不欠挖。在槽外侧围以土堤并开挖水沟,防止地面水流入。基槽开挖完成后,按规定进行钎探,使基底标高和土质满足设计要求。 二、土方回填 1.施工准备 A、材料 ?回填土:且优先利用基槽中挖出的优质土。回填土内不得含有有机杂质,粒径不应大于50mm,含水量应符合压实要求。 ?填土材料如无设计要求,应符合下列规定:

基于单片机的温度检测与控制系统的设计(论文)开题报告

河南中医学院 本科生毕业设计(论文)开题报告 题目:基于单片机温度检测与控制系统设计 院系:信息技术学院 专业:计算机科学与技术 班级:2010级计科班 学号:2010180042 学生姓名:郭文珠 指导教师:谢志豪 2013年11月13日 一、立题依据(包括研究的目的与意义及国内外现状): 研究的目的与意义 这次毕业设计选题的目的主要是让我们将所学的知识应用与生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制系统的设计、制作、控制、测试的全过程,提高对单片机的认识和实际操作的能力,初步培养在完成工程项目中所应具备的基本素质和要求,培养自己的研发能力,提高自己的查阅资料,语言表达和理论联系实际的能力。 温度控制无论在日常生活还是工业生产中都有分厂重要的作用,随着社会经济的高速发展,更多方面对温度控制的可靠性和稳定性有了更高的要求,而单片机进行温度的调节就具备很高的可靠性[1]。 国内外现状 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并行指进示、记录和控制。80年代末出现了分布式控制系统[2]。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展[3]。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展[4]。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享可靠性差等缺点[5]。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。 二、研究主要内容(包括计划解决的具体问题或实现的基本功能,研究中的重难点分析、实用性及创新性分析,预期达到的成果等。不得低于800字): 计划实现的基本功能 温度控制系统主要是完成温度信号采集、处理、显示等功能[6]。设 计叙述了基于单片机的温度检测与控制系统的设计,包括硬件的设计以 及软件的设计,该系统在硬件设计上主要是通过温度传感器对温度进行 采集,把温度转成变化的电压,然后由放大器将信号放大,通过转化器

物联网温室智能控制系统的应用案例

物联网温室智能控制系统的应用案例 在全国各地区,现代化的农场种引进物联网技术是时代发展的需要,也是现代科技农业的重要体现。在乌拉特中旗海流图镇设施农业科技示范园区的温室内,物联网温室智能控制系统正在在紧罗密鼓的安装中。 物联网温室智能控制系统通过基于物联网技术对温室内外监测数据的分析,结合作物生长发育规律,利用相关设备,对温室进行实时监控,实现对作物优质、高产、高效的栽培目的。该套智能监控系统具有自动开启关闭卷帘、补光、滴灌等功能,并凭借智能化、自动化控制技术,调节作物的最佳生长环境。种植户可通过电脑、手机等信息终端随时随地查看温室内实时环境监测、预警信息,实现对温室大棚的网络智能化远程管理,充分发挥物联网技术在设施农业生产中的作用。 在地区农业的发展中,引进物联网温室智能控制系统有利于建设该地区的科技农业设施,起到示范作用,也有利于提高地区设施农业生产的科技含量和综合生产水平,促进设施农业现代化发展。另外通过农产品的安全质量追溯,可以改善市民的食品安全条件,增强市民的购买信心,提升农产品的市场竞争力。目前来看,农业物联网技术是现代农业逐步实现智能化、精确化、信息化的有力保障,而随着种植规模的扩大和温室大棚的普及推广,物联网温室智能控制系统将会得到越来越多的应用。 对于规模化的温室种植而言,借助人工管理需要大量人手和时间,并且存在难以避免的 人工误差。物联网技术的应用,真正实现了农业信息数字化、农业生产自动化、农业管理智能化,使温室大棚种植可达到提高产量、改善品质、节省人力、降低人工误差、提高经济效益的目的,实现温室种植的高效和精准化管理。托普温室种植监控系统,改变了传统温室种植管理在技术上的桎梏状态。

大棚施工方案.

技术投标文件(正本)

施工组织设计目录 一、工程概况及编制依据; 二、施工方案及技术措施; 三、质量保证措施和创优计划; 四、施工总进度计划及保证措施; 五、施工安全措施计划; 六、文明施工措施计划; 七、施工场地治安保卫管理计划; 八、施工环保措施计划; 九、冬季和雨季施工方案; 十、施工现场总平面布置; 十一、承包人自行施工范围内拟分包的非主体和非关键性工作、材料计划和劳动力计划; 十二、成品保护和工程保修工作的管理措施和承诺; 十三、任何可能的紧急情况的处理措施、预案以及抵抗风险的措施; 十四、对总包管理的认识以及对专业分包工程的配合、协调、管理、服务方案;十五、与发包人、监理及设计人的配合; 十六、招标文件规定的其他内容。

一、工程概况及编制依据 (一)工程概况: 本工程为武川县上秃亥乡2016年食用菌大棚项目,建筑结构形式为砖混,基础类型为毛石基础。 项目名称:武川县上秃亥乡上秃亥村、桃力盖村食用菌生产基地建设项目。 建设地点:武川县上秃亥乡上秃亥村,桃力盖村委会后渠子村、五家村林场。 项目规模:项目占地约470.1亩,规划新建温室(640.29㎡)88栋,新建温室(367.29㎡)45栋,维修改造温室(336㎡)11栋,新建(400㎡)9栋,新建(600㎡)7栋,新建温室(330㎡)2栋,改造温室(366.6㎡)6栋,并配置卷帘机、卷管、微喷管等设施;硬化道路15539㎡;铺砂石路面52063㎡;安装铁艺围栏5550m;安装金属网围栏719m;修筑河槽防洪堤1350m。 (二)编制依据 武川县上秃亥乡上秃亥村、桃力盖村食用菌生产基地建设项目招标文件。 现行建设工程标准、规范、验评标准。 根据《中华人民共和国建筑法》。 根据国务院《建筑工程质量管理条例》。 现场条件及同类型工程施工经验。 我公司的技术、机械设备情况及管理制度。 有关国家现行设计、施工规范的标准: 《工程测量规范》(GB50026---93); 《建筑地基处理技术规范》(JGJ79---2002); 《建筑地基基础工程施工质量验收规范》(GB50202----2002); 《混凝土结构工程施工质量验收规范》(GB50204---2002); 《钢筋焊接及验收规程》(JGJ18---96); 《建筑工程施工质量验收统一标准》(GB50300---2001); 根据建设部发布的《工程建设强制性条文》。 《施工现场临时用电安全技术规程》(JGJ46-88) 《钢筋焊接及验收规程》(JGJ18-2003) 二、施工方案及技术措施 (一)测量放线 1、检查校核经纬仪和水准仪并检定钢尺。

温室大棚智能控制系统

摘要 本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和 M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词: STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、温室、自动控制、自动检测 目录 第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择

§2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.2.3 DS18B20的管脚排列 §2.2.4 DS18B20的内部结构 §2.2.5 DS18B20的控制方法 §2.2.6 DS18B20的测温原理 §2.2.7 DS18B20的时序 §2.2.8 DS18B20使用中的注意事项 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.3.3 AT89C2051芯片的内部结构框图 §2.3.4 AT89C2051芯片的引脚说明 §2.3.5使用AT89C2051芯片编程时的注意事项§2.4 RS-485通信设计 §2.4.1串行通信的分类 §2.4.2串行通信的制式

农业大棚环境监控系统的监测内容及应用解决方案

农业大棚环境监控系统的监测内容及应用解决方案 1.前言 1.1国内外农业温室大棚系统的现状 我国是一个农业大国,目前在广大农村,农业温室比比皆是。近年来,随着我国农业和农村经济的发展,农业生产方式逐步由传统的粗放经营式向现代集约型经营方式转变,农业科技示范园,作为现代集约型农业和高新科技应用的示范窗口,应运而生。随着科学技术的进步,温室的结构档次在逐步的提高,建设一种可提高温室内作物产量和质量,降低生产成本,减轻工作人员劳动强度的农业温室大棚智能监控系统,是广大温室作物生产人员的迫切需求。 目前,虽然也有不少单位或个人引进了一些国外的计算机智能监控系统,如温室环境监控系统,施肥灌溉监控系统,工厂化育苗智能监控系统等,这些系统真正实现了温室控制的智能化和自动化,但往往存在投资过大.系统维护不方便等各种发展制约瓶颈,再者就是要求温室的管理操作人员本身有较高的文化素质和较丰富的工程技术经验,目前我国广大农民还不具备,这也限制了国外同类产品在国内的推广应用。开发低价位、实用型的农业温室大棚智能监控系统对于推进我国农业自动化、智能化进程具有重要的意义,同时也具有很大的市场潜力。据调查,目前市场上迫切需要的是一种低成本、操作使用简便的实用农业温室大棚智能监控系统。针对这一要求及我国日光温室量大、面广的特点,研究一种既符合我国农业水平实际又适合农民经济承受能力、技术上不低于国外同类产品的农业温室智能集成监控系统是非常必要的。智能化农业温室大棚是集农业科技上的高、精、尖技术和计算机自动控制技术于一体的先进的农业生产设施,是现代农业科技向产业转化的物质基础。它能营造相对独立的作物生长环境,彻底摆脱传统农业对自然环境的依赖性。目前,计算机监控在农业温室大棚种植中得到了越来越广泛的应用,并正在成为农业温室大棚监控的核心。智能化农业温室大棚研究是当今兴起的一门横跨生物学、计算机科学、电子科学、机械设计和环境控制等几大学科的综合了多种高新技术的边缘学科。从目前我国农业发展政策看,未来10一15年我国农业科技进步的重要内容就是推动规模经营和农业产业化的发展,所以研究开发适合我国的国情的农业温室大棚智能监控系统是非常必要的。

温室大棚施工方案

温室大棚施工方案 一、工程概况 本工程位于内蒙古自治区呼和浩特市土默特左旗。本工程为我公司依据多年施工经验,针对当地土质、水质及气侯条件,建造第五代高性能日光温室。既减少投资又适合一年四季各种蔬菜瓜果及花卉的种植。 二、分期施工 1、东西土墙和山墙,采用推土机推平轧实基础后,用挖掘机上土,分多次上土推平轧实,每次上土70厘米左右,依次类推,直到所需高度,最后用挖机裁切基本整齐。 2、立柱、采用混凝土立柱,用挖坑栽埋方式植入地下,要求栽埋牢固整齐,倾斜度一致。 3、主架、采用1.5寸镀锌管和1.2寸镀锌管对接及焊接,吞套处下方或两侧用钻尾丝固定。要求焊接均匀,与立柱绑扎牢固。 4、钢丝涨拉及地锚,两端地锚采用专用钢丝绑扎红砖,植理于两端土墙外侧,要求地锚深度70厘米左右,绑扎结实牢固,排列整齐,环扣均匀无损伤。钢丝涨拉时,钢丝统一在一端地锚环扣上系好后,在另一端涨拉,在铺放时按照下疏上密的原则进行,不得有折扣现象,涨拉时用力均匀,涨拉拴绑牢固,涨拉完后检查地锚扣及地锚有无松动,钢丝有无折扣损伤。

5、辅助骨架,采用青竹竿附扎在涨紧后的钢丝上,要求排列整齐,分布均匀,与钢丝绑扎牢固。 6、覆膜,采用多功能塑料膜,覆膜时应在晴天,风力小于3级情况下,进行施工。施工时检查棚面有无锐凸起物,清理地面环境,防止损伤膜,涨覆膜涨拉时要求用力均匀,拴扣牢固,压绳在膜上分布均匀,两端拉压用力均匀,拴扣牢固,放风膜处放风手动滑轮悬挂牢固。绑扎结实。放风口滑轮绳,垂放高度宜于工人操作。 7、卷帘机,采用专用高强度卷帘机,卷帘机骨架采用前屈伸臂式,包括主机支撑杆卷杆三部分,支撑杆有立杆和横杆构成,立杆安装在大棚前方1.5—2.2米处,横杆前端安装主机,主机两侧安装卷杆,卷杆随棚体长度而定,卷帘机两端采用60焊管,焊管两端焊接法兰盘,用120*300螺栓固定。 8、保温被,采用多层无纺布机械缝制而成,上加防水材料,施工中要求摆放整齐,连接牢固,在铺放棉被时,注意不要踢破覆膜。 9、施工过程中,甲乙双方密切配合,做了沟通,保质保量完成这一项惠民工程。

基于单片机的室内空气质量检测的设计开题报告

基于单片机的室内空气质量检测的设计开题报告 1研究课题的目的和意义,以及国内外现状 经济持续快速的发展,人们生活水平不断改善,但空气质量却急剧下降。人们对各种室内环境的要求也越来越高0。传统的室内环境监测设施实时性差、精度低、体积大、功能不齐全等,难以适应人们的要求。基于以上背景,本文设计了基于单片机的室内环境监控系统,它能实时自动地采集室内的所需数据,并分析数据传输到我们需要的界面。减轻室外空气污染最早为14世纪,以英国伦敦的烟雾法为代表。随着社会的进步,经济不断发展,我们对环境也造成了很大的危害。最近随着空气质量的不断恶化,人们最多提及的就是保护环境,为我们创造一片蓝天。生活环境的PM2.5值的上升,让近几年涌现出一大批的空气净化系统,可见空气质量现在对人们的重要性。随着不断的研究,人们对空气质量污染的成因和影响因素有了深刻的认识,解决空气污染的措施也不断完善。人们对不同环境下,不同污染物在室内和室外的相互关系有了一定的认识,也有了检测系统。国外对环境改善处理技术研究较早,正向自动化方向发展。我国对于环境监控技术的起步较晚,目前仍有局限性。国内市场室内环境的监测仪器主要是有害气体检测,功能单一且价格较贵,所以非常必要设计一种多功能且经济的室内环境监测系统。 2系统设计方案 2.1.主要设计内容 本系统是实现一个具备温湿度、烟雾、甲醛、一氧化碳为一体的多功能监测系统,要求其精度合适,适用于家庭、综合办公楼等室内环境监测,与硬件设计部分配合完成室内环境监测系统的总体方案设计。完成系统软件设计部分包括:各个模块软件设计、系统总体软件设计,以及对应的软件代码调试。各个模块包括:传感器数据采集与处理模块、报警、显示、输出驱动模块、与上位机监控中心的RS-485通讯模块及上位机的人机交互模块等。主要完成的内容如下:

温室大棚环境监测系统在温室大棚的作用

温室大棚环境监测系统在温室大棚的作用对于植物生长来说,农业气象环境非常重要,虽然现在随着温室大棚的推广,植物的生长不再受太多自然环境的影响,但是由于温室大棚是一个封闭的环境,因此在这个环境中,利用温室大棚环境监测系统创造适合植物生长的条件,是现代农业温室生产的重要内容。 温室大棚环境监测系统集传感器、自动化控制、通讯、计算等技术于一体,通过用户自定仪作物生长所需的适宜环境参数,搭建温室智能化软硬件平台,实现对温室中温度、湿度、光照、二氧化碳等因子的自动监测和控制。温室大棚环境监测系统可以为植物提供一个理想的生长环境,并能起到减轻人的劳动强度、提高设备利用率、改善温室气候、减少病虫害、增加作物产量等作用。 在现代智能温室大棚中,温室环境监测是其中一项重要的功能,智能温室大棚内湿度、温度、光照强弱及土壤的温度和含水量等因素,对大棚内的农作物生长起着关键性作用。而通过温室环境监测,可以帮助种植户通过计算机监测整个大棚内农作物生长情况,从而更便于记录农作物生长各种数据,也有利于新品种的实验。同时,温室环境监测的另外一个重要意义在于,通过环境的监测,可以获知温室中环境的变化,从而方便种植户采取措施进行调控,保证植物所处的环境始终是合适的,这样更加便于育苗工作的开展,育苗也更成功,需要的工作人员也少了很多。 温室大棚环境监测系统可以模拟基本的生态环境因子,如温度、湿度、光照、CO2浓度等,以适应不同生物生长繁育的需要,它由智能监控单元组成,按照预设参数,精确的测量温室的气候、土壤参数等,并利用手动、自动两种方式启动或关闭不同的执行结构(遮阳幕、湿帘水泵及风机、通风系统等),程序所需的数据都是通过各类传感器实时采集的。

生态农业智能温室大棚监测控制系统措施

生态农业智能温室大棚监测控制系统设计方案背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。因为温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可通过串口发射接收设备传送给上位PC 机进行分析处理。 第一部分:客户需求 <1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室项目成为高效农业的重要组成部分。

温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度、湿度等对生物生长的限制。能使不同的农作物在不适合生长的季节产出,部分或完全的摆脱农作物对自然条件的依赖。 浙江托普仪器有限公司托普物联网部自主研发的智能温室大棚控制系统是针对温室大棚正常有效运转的控制要求配置的远程监控与管理系统。采用传感器技术、依托传统温室大棚生产工艺、设计的具有高可靠性、安全性、可扩展性的软硬件系统。 智能温室大棚监测控制系统充分利用物联网技术和组态软件实时远程获取温室大棚内部的空气温度、湿度、光照强度、土壤水分温度、二氧化碳浓度、叶面湿度、露点温度等环境参数及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内的环境最适宜作物生长;同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理。 第二部分:系统结构及控制模式 <1)系统两大组成部分

农业温室大棚智能环境监控系统解决方案

智能温室大棚环境监控系统 1、系统简介 该系统利用物联网技术,可实时远程获取温室大棚内部的空气温湿度、土壤水分温度、二氧化碳浓度、光照强度及视频图像,通过模型分析,远程或自动控制湿帘风机、喷淋滴灌、内外遮阳、顶窗侧窗、加温补光等设备,保证温室大棚内环境最适宜作物生长,为作物高产、优质、高效、生态、安全创造条件。同时,该系统还可以通过手机、PDA、计算机等信息终端向农户推送实时监测信息、预警信息、农技知识等,实现温室大棚集约化、网络化远程管理,充分发挥物联网技术在设施农业生产中的作用。本系统适用于各种类型的日光温室、连栋温室、智能温室。 2、系统组成 该系统包括:传感终端、通信终端、无线传感网、控制终端、监控中心和应用软件平台。 (1)传感终端 温室大棚环境信息感知单元由无线采集终端和各种环境信息传感器组成。环境信息传感器监测空气温湿度、土壤水分温度、光照强度、二氧化碳浓度等多点环境参数,通过无线采集终端以GPRS方式将采集数据传输至监控中心,以指导生产。 (2)通信终端及传感网络建设 温室大棚无线传感通信网络主要由如下两部分组成:温室大棚内部感知节点间的自组织网络建设;温室大棚间及温室大棚与农场监控中心的通信网络建设。前者主要实现传感器数据的采集及传感器与执行控制器间的数据交互。温室大棚环境信息通过内部自组织网络在中继节点汇聚后,将通过温室大棚间及温室大棚与农场监控中心的通信网络实现监控中心对各温室大棚环境信息的监控。 (3)控制终端 温室大棚环境智能控制单元由测控模块、电磁阀、配电控制柜及安装附件组成,通过GPRS模块与管理监控中心连接。根据温室大棚内空气温湿度、土壤温度水分、光照强度及二氧化碳浓度等参数,对环境调节设备进行控制,包括内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备。 (4)视频监控系统

温室大棚施工解决方案(工程流程及措施).docx

温室大棚施工方案(工程流程及措施) 土石方工程 一、土石方开挖 土石方工程采用机械开挖与人工修槽相结合的方法。在土方开挖过程中严格控制:不超深、不欠挖。在槽外侧围以土堤并开挖水沟,防止地面水流入。基槽开挖完成后,按规定进行钎深,使基底标高和土质满足设计要求。 二、土方回填 1.施工准备 A、材料 ⑴回填土:且优先利用基槽中挖出的优质土。回填土内不得含有有机杂质,粒径不应大于50mm,含水量应符合压实要求。 ⑵填土材料如无设计要求,应符合下列规定: 1)碎石、砂土(使用细、粉砂时应取得设计单位同意,并办好签证手续)和爆破石碴;可作表层以下的填料。 2)含水量符合压实要求的粘性土,可作各层的填料。 3)碎块草皮和有机含量大于8%的粘性土,仅用于无压实要求的填方。 4)淤泥和淤泥质土一般不能用作填料,但在软土或沼泽地区,经处理其含水率符合压实要求的,可用于填方中的次要部位。 5)含有机质的生活垃圾土、流动状态的泥炭土和有机质含量大于8%的粘性土等,不得用作填方材料。 B、作业条件 ⑴填土基底已按设计要求完成或处理好,并办理验槽签证。

⑵填土前,应做好水平高程的测设。 砌筑工程 砖墙的砌筑工艺:抄平、放线→立皮数杆→铺灰砌砖→修缝、清理等。 1、抄平、放线:砌筑前应认真抄平、放线先放出墙轴线,再根据轴线放出砌墙轮廓及门洞口位置。 2、砌体施工中做到无皮数杆不施工,皮数杆间距为15~20m,转角处均应设立,砌砖前应先对皮数杆进行预检。 3、墙体砌筑时严格按照施工操作规程及设计要求施工,做好技术交底,砌体用砖提前浇水湿润,严禁干砖上墙,以确保砌筑及粉刷质量。 4、砌筑砂浆采用重量配合比,计量准确,试块按规定留置。砂浆应随伴随用,水泥砂浆和水泥混合砂浆必须在拌成后3h 和4h 内使用完毕,隔夜砂浆不得使用。 5、构造柱处墙体砌成凸凹槎,槎深为60mm,高度为5 皮砖,从底部先退后进,并按要求设置拉结筋。 6、砖砌体的转角处和交接处尽量同时砌筑,如在转角处砌筑确有困难时考虑留斜槎,斜槎底长不小于高度的三分之二,槎子必须平直、通顺;分段位置在变形缝、门口、构造柱处;隔墙与墙交接处留斜槎确有困难时可留直槎,且为阳槎,并加设拉结筋,拉结筋的数量为120mm 厚墙加根6 钢筋,间距沿墙高不超过500mm,埋入深度从墙的留槎处算起大于500mm,外露长度大于500mm,末端成90°弯钩。接槎时,将接槎处的表面清理干净,浇水湿润,并填实砂浆,保证灰缝顺直。后砌隔墙顶应用立砖斜砌挤紧。

相关主题
文本预览
相关文档 最新文档