当前位置:文档之家› 供配电系统无功补偿节能技术的发展

供配电系统无功补偿节能技术的发展

供配电系统无功补偿节能技术的发展
供配电系统无功补偿节能技术的发展

供配电系统无功补偿节能技术的发展

常州工学院电子信息与电气工程及其自动化江苏常州213002 摘要:电力是能源消耗领域中一种重要的资源,减少电能在传输过程中的能量损耗是电网节能降耗的一个重要方面。电力系统中无功的分层平衡,有利于减少输电路径上无功的流动,降低电网传输损耗。节能是我国的一项重要经济政策,低压电网的节能措施是多种多样的,无功功率自动补偿装置对电网进行无功功率补偿是降低线损,节约电能,改善电网电压质量最经济最普遍的方法之一。通过比较, 重点介绍一种新型低压无功动态补偿装置,其各项技术性能,都优于传统的补偿装置。

Pick to: electric power is an important field of energy consumption of resources, reduce the energy loss of energy in the process of transmission grid is an important aspect of the energy consumption. In the power system of reactive power balance layer, to reduce the flow path, reduce the reactive power transmission loss. Energy is one of our important economic policy, low-voltage power saving measures is varied, the reactive power compensation device for grid for automatic reactive power compensation is to reduce the loss, saving energy, improving the quality of the network voltage is the most economic and one of the most popular ways. Through the comparison, introduced a kind of new-type low-voltage reactive power compensation device and the dynamic performance of the technology and superior to the traditional compensation devices.

关键词:无功补偿,功率因数,配电网,节能,节能降损

Keywords: reactive power compensation, the power factor, and energy saving,Energy conservation

引言

我国现阶段发展中,能源的需求量大,消耗量也大,尤其是电能,所以进行有效的节约,也就显得更为重要。随着经济的发展,各产业和民用用电量大幅增加的用电负荷中,整流和变频设备所占的比例增加,无功负荷电流和谐波电流不仅增大供电系统损耗,谐波电流还可能引起通信系统和计算机系统故障。随着国民经济的高速发展和人民生活水平的提高,人们对电力的需求日益增长,同时对供电的可靠性和供电质量提出了更高的要求。由于负荷的不断增加,以及电源的大幅增加,不但改变了电力系统的网络结构,也改变了系统的电源分布,造成系统的无功分布不尽合理,甚至可能造成局部地区无功功率严重不足,电压水平普遍较低的情况。随着系统结构日趋复杂,当系统受到较大干扰时,就可能在电压稳定薄弱环节导致电压崩溃。解决上述问题的技术措施是加装补偿电容,从而减少系统损耗,提高电能质量。

电力系统无功潮流分布是否合理,不仅关系到电力系统向电力用户提供电能质量的优劣,而且还直接影响电网自身运行的安全性和经济性。这在与用户直接相关的配电网中显得同样的重要。若无功电源容量不足,系统运行电压将难以保证。由于电网容量的增加,对电网无功功率要求也与日增加,此外,网络的功率因素和电压的降低将使电气设备得不到充分利用,降低了网络传输能力,并引起损耗增加。因此,解决好配电网络无功补偿的问题,对电网的安全性和降损节能有着重要的意义。

无功补偿可以改善电压质量,提高功率因数,是电网采用的节能措施之一。一般配电网无功补偿方式有变电站集中补偿方式,低压集中补偿方式,杆上无功补偿方式和用户终端分散补偿方式。其性能比较如下表:

一.无功补偿原则

无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置应按照“分级补偿,就地平衡”的原则,合理布局。原则如下:

1)总体平衡与局部平衡相结合,以局部为主。

2)电力部门补偿与用户补偿相结合。

3)分散补偿与集中补偿相结合,以分散为主。

4)降损与调压相结合,以降损为主。

二.提高功率因数的意义

功率因数反映了电源输出的视存功率被有效利用的程度,我们希望的是功率因数越大越好。这样电路中的无功功率可以降到最小,视在功率将大部分用来供给有功功率,从而提高电能输送的功率。提高功率因数的意义如下:

(1)改善设备的利用率

在一定的电压和电流下,功率因数越大,设备输出的有功功率越大。因此,改善功率因数是充分发挥设备潜力,提高设备的利用率的有效方法。

(2)减少线路有功损耗

补偿前后线路传送的有功功率小变

由于cosφ提高,补偿后的电压U2稍大于补偿前的电压U1,可近似认为U2≈U1。

从而导出I1COSφ1=I2COSφ2。即I1/I2= COSφ2/ COSφ1,

这样线损P减少的百分数为:ΔP%= (1-I22/I12)×100%=(1- COS2φ1/ COS2φ2)×100%

当功率因数从0.70~0.85提高到0.95时,可求得有功损耗将降低20%~45%。

(3)减小电压损失

(4)提高电网的传输能力

三.影响功率因数的主要因素

1)大量的电感性设备,如异步电动机、感应电炉、交流电焊机等设备是无功功率的主要消耗者。

2)变压器消耗的无功功率一般约为其额定容量的10%~15%,它的空载无功功率约为满载时的1/3。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。

3)供电电压超出规定范围也会对功率因数造成很大影响。当供电电压高于额定值的10%

时,由于磁路饱和的影响,无功功率将增长得很快,当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。

四.无功补偿的分类

无功自动补偿按性质分为三相电容自动补偿和分相电容自动补偿。

(1)三相电容自动补偿适用于三相负载平衡的供配电系统。因三相回路平衡,回路中无功电流相同,所以在补偿时,调节无功功率参数的信号取自三相中的任意一相,根据检测结果,三相同时投切可保证三相电压的质量。

(2)在民用建筑中大量使用单相负荷,容易造成三相负载的严重不平衡,尤其是住宅楼在运行中三相不平衡更为严重。这种情况下用传统的三相无功补偿方式,不但不节能,反而浪费资源,难以对系统的无功补偿进行有效补偿,补偿过程中所产生的过、欠补偿等弊端更是对整个电网的正常运行带来了严重的危害。对于三相不平衡及单相配电系统要采用分相电容自动补偿,其原理是调节无功功率参数的信号取自三相中的每一相,根据每相感性负载的大小和功率因数的高低进行相应的补偿,对其它相不产生相互影响,故不会产生欠补偿和过补偿的情况。

以上介绍了影响功率因数的主要因素和提高功率因数的意义,并论述了无功补偿的补偿原则及分类,使读者对无功补偿有所认识,下面重点介绍一种新型无功补偿装置:SVS型无功补偿装置,并将其和普通无功补偿装置进行比较。

普通无功补偿装置和新型无功补偿装置(SVS)比较:

(1)投切器件:普通无功补偿装置通过中间继电器(或固态继电器)接通接触器、控制补偿电容器投入或切除,投切电容不能保证在零电位瞬间,容易引起很大的浪涌电流和电压,进而引起电气伤害,成为供电故障的主要原因;新型无功补偿装置采用进口芯片可控硅,电容采用零电位瞬间投切,无尖峰脉冲电流干扰电网,保证系统安全供电,这在有敏感电子设备的场合非常重要。

(2)滤波回路:新型无功补偿装置带有RC吸收回路,能滤除高次谐波,实现无投切振荡,无补偿呆区,该产品适用于谐波污染严重的三相电网中无功功率的分散或集中补偿。

(3)补偿方式:普通无功补偿装置对三相不对称负荷或单相负荷明显的场所,也只能实行三相等量补偿; 新型无功补偿装置可根据实际需要自动投入等量或不等量电容,实现三相对称或不对称补偿功能。

(4)响应时间:普通无功补偿装置机电开关投切的反应时间很慢,接通一组需要10-30s 的时间,完成全部补偿需要几分钟的时间;新型无功补偿装置对于50Hz电网,在每个周期内使用快速傅立叶算法,自动响应时间不超过20ms。

(5)投切时间:普通无功补偿装置在投入或切除一步之间需要很长的时间,因此补偿系统的特性受到影响;新型无功补偿装置当负载变化需要投切不止一个组数时,可以同时精确控制相应组数。

(6)补偿精度:普通无功补偿装置由于电容组合配置精度不高,且跟踪不迅速,会造成超前或滞后等补偿不精确的现象;新型无功补偿装置由于每级电容按照2n-1 倍数(1≤n≤4)等容递增配置,可实现瞬时随机组合投切,并可实现三相不对称同时分别补偿,平均功率因数均为0.9~0.99

(7)运行性能:普通无功补偿装置接触器投切系统的控制器通常情况下需要拨码开关,小的显示让它非常困难地检查系统的特性,没有附加的远程控制和通信,保护功能落后;新型无功补偿装置采用先进的微电脑控制器,检测及跟踪投切自动控制完成,无须人工干预,使用大的LCD显示屏,提供非常方便的使用特性,可实现远程控制及报告系统和电网的情况。具有严格的抗干扰能力,对过压、缺相、欠压及输出端短路等线路故障均具有保护功能。(8)维护性能:普通无功补偿装置接触器寿命有限,需经常更换,接触器通断所引起的浪

涌会导致频繁的设备故障和额外的更换。投入的电容器总是从零电位开始,对电网及电容器本身具有相当大的冲击;新型无功补偿装置通过特有的吸收回路,可将回路中的尖峰脉冲吸收,通过特有的充电回路,可将准备投入的电容事先充电而保持一定电位的直流电平,减少对电网的冲击,更好的保护开关模块及电容器,具有很长的使用寿命,从而大大减少现场维护费用。

(9)经济性能:普通无功补偿装置最初成本因为器件的更换和维修而经常改变,当一段时间以后评估接触器开关投切系统,实际的费用和间接的损失将比初始的投资大;新型无功补偿装置初始投资比接触器系统高,但是当考虑到运行和维护传统所需要的费用,整体投资比接触器开关投切的系统低。同时因为补偿因数较高,供电部门可能还会有一定的奖励。

从上述比较中可以看出,新型低压无功动态补偿装置的各项技术性能,都优于传统的补偿装置。且使用寿命长、维护工作量小、长期节能效果好。因此,新型补偿装置是传统低压无功动态补偿装置的更新换代产品。随着社会事业不断的发展,科学技术的不断进步,将会有更多﹑更好的节能新产品问世,更多合理﹑可行的节能措施实行,最终更好的实现低压电网的节能降损,使得企业和社会得到更大的经济效益。

配网无功补偿遇到的问题。随着人们对配电网建设的重视及无功补偿技术的发展,低压侧无功补偿技术在配电系统中也开始普及。从静态补偿到动态补偿,从有触点补偿到无触点补偿,都取得了丰富的经验,但是在实践应用中也暴露出一些问题,必须引起重视。

优化的问题。目前,很多单位选择无功补偿的出发点还放在用户侧,只注意补偿用户的功率因数,而不是立足于降低电力网的损耗。例如,为提高某电力负荷的功率因数,增设1台补偿箱。这对降损有一定好处,但若要实现有效的降损,必须通过计算无功功率潮流,确定各点的最优补偿量和补偿方式,才能使有限的资金发挥最大的效益。这是从电力系统角度考虑问题的方法。

无功功率优化配置的目标是在保证配网电压水平的同时,尽可能降低网损。由于它要对补偿后的运行费用以及相应的安装成本同时达到最小化,计算过程相当复杂。为此,以前的文献中通常采取了许多不切实际的假设,比如固定负荷水平,统一线径,把树状配电网简化成梳状网,这样的结果并不理想。

谐波的问题。电容器本身具备一定的抗谐波能力,但同时也有放大谐波的副作用。谐波含量过大时,会对电容器的寿命产生影响,甚至造成电容器的过早损坏,由于电容器对谐波的放大作用,将使系统的谐波干扰更严重;另外,动态无功补偿柜的控制环节容易受谐波干扰影响,造成控制失灵,因而做无功补偿时必须考虑谐波治理,在有较大谐波干扰,又需要补偿无功功率的地点,应考虑增加滤波装置。

无功功率倒送的问题。无功功率倒送是电力系统所不允许的现象,因为它会增加线路和变压器的损耗,加重线路的负担。虽然生产厂家都强调自己的设备不会造成无功功率的倒送,但是实际情况并非如此。因为对于接触器控制的补偿柜,补偿量是三相同调的;对于晶闸管控制的补偿柜,虽然三相补偿量可以分调,但是很多生产厂家为了节约成本,往往只选择一相做采样及无功功率分析。于是在三相负荷不平衡的时候,就有可能造成无功功率倒送。至于采用固定电容器补偿方式的用户,则可能在负荷低谷时造成无功功率倒送,这应引起充分考虑。

综上所述,10 kV配电网的无功补偿工作应更多地考虑系统的特点,不应因电压等级低、补偿容量小而忽视补偿设备对系统侧的影响(包括网损)。如果需降损的线路能基于一个完善的补偿方案进行改造,则电力系统的收益将比分散的纯用户行为的补偿方式要大得多。

结束语

对配电网进行无功补偿,提高功率因数和搞好无功功率平衡,是一项建设性的降损技术措施。目前,配电网的无功补偿容量一般是根据供电部门要求达到的功率因数来确定的,而

不是依据用户用电时实际的节能效益、最佳电能质量、最小支付电费的经济功率因数来确定。如何确定无功补偿设备的合理配置和分布,需寻找技术上和经济上的最优方案。

参考文献:

【1】周志敏,周纪海,纪爱华.供配电网节电实用技术问答.[M].北京.电子工业出版社【2】《节能创新2006——首届全国电气节能大赛论文集》

【3】杨光.浅议配电系统节能——无功补偿技术.[M].黑龙江科技信息

【4】https://www.doczj.com/doc/643036714.html,

供配电系统节电技术措施

供配电系统节电技术措施 供配电系统节电技术措施 2003年以来,由于国民经济的迅猛发展,以及国际加工产业新格局的形成,一些高能耗低效益的加工业逐步转向国内,这无疑进一步加剧了能源紧张这一矛盾。发生在我国许多省市的“电荒”已成为相当普遍的严重问题,尽管我国电力建设超常规增长,电力供应仍严重不足。为此,节省能源及节约用电引起了全社会的高度重视,采取各种有效节电的技术措施显得尤为重要。 降低供配电系统的线损及配电损失,最大限度的减少无功功率,提高电能的利用率,是当前建筑电气领域中节电的重要课题之一。为了实现这一目标,采取了如下措施:选择及合理使用节电配电变压器、减少线路损耗、提高功率因数、平衡三相负荷、抑制谐波等技术措施,不仅节电10%~20%或以上,同时安全可靠,绿色环保,改善了用电环境,净化了电路,还有效地延长了用电设备的使用寿命。 1选择及合理使用高效节电非晶合金配电变压器 1.2低压箔绕线圈 (1)采用进口优质铜箔及H级绝缘材料绕制在成型绝缘筒上,层绝缘采用NOMEX纸,改善径向短路力承受能力,VPI真空压力浸渍成坚固整体,上下端部采用树脂端封,防尘、防潮、防盐雾能力强。

(2)引线铜排、铜箔经专用设备采用氩弧焊接,提高了铁芯的空间利用率,增强产品的抗短路能力,消除螺旋角,减小轴向受力。 (3)线圈机械强度高,局放降低。 1.3高压缠绕线圈 (1)高压线圈直接套绕在低压线圈上,装配时绕组支撑在单独的绕组系统上并压紧固定,这样可以使铁芯不受压力,减少了变压器短路时径向的内缩和扩大,从而有效地保证了变压器的抗短路能力。采用多层分段圆筒式,纵向多气道结构,抗热抗冲击能力强,耐突波能力强。 (2)采用NOMEX纸包扁铜线做导体,以NOMEX纸做层绝缘,以H级材料作端部绝缘经VPI真空压力浸渍高温烘焙固化成型,上下端部采用树脂端封,防尘、防潮、防盐雾力强。 (3)线圈机械强度高,散热性能好。 该产品的性能特点如下: (1)高效节电——产品由于采用非晶合金铁芯制作及创新的三相三柱制造工艺,铁损大幅度下降,空载损耗约为常规干变的25%左右。投资非晶合金铁芯虽然初期投资较高,但是非晶合金变压器由于其超高效率、节约能源的特性,在平均负载60%的情况下,3~5年内可回收额外投资,在变压器30年寿命中可节约可观的电费支出。 (2)可靠性高——产品满足国家标准GB1094.11-2007、GB/T22072-2008以及IEC60076-11标准、产品为H级(工作温度180°

供配电技术方案

1.1.1.供配电系统 1.1.1.1.工程界面 南方电网调度控制中心搬迁和升级改造等工程自动化机房配电施工部分包括包含3 个配电室和3 个蓄电池室,本期使用2 个配电室和2 个蓄电池室,配电室3 和蓄电池室3 作为远期扩容.同时在调控中心1F 布置1 个配电室和1 个蓄电池室提供非通信自动化电源室.本工程自动化机房共5 个主机房区包含控制区机房,非控制区机房,信息管理机房,镜像机房,托管1,2 机房以及配电室和蓄电池室提供供电.供配电系统包含设备负荷和动力市电负荷两类,主要对控制大区机房,非控制大区机房,信息管理机房,信息管理机房,镜像机房,托管1 区机房以及托管2 区机房的系统设备和动力设备提供供电。UPS 按照<< 南方电网调度生产供电电源配置技术规范>>(Q/CSG)自动化机房供电负荷均按照一类负荷设计中特别重要负荷进行设计. 第一部分:UPS供电部分 2F自动化机房整体供电工程界面示意图

1F非通信自动化UPS整体供电工程界面示意图 UPS电源:按分区分期设计.本期配置3套UPS系统,分别为核心UPS,非核心UPS以及非通信自动化UPS,本工程包含具体建设范围如下:1)核心UPS系统:A、UPS主机与UPS输入输出配电柜之间、UPS主机与蓄电池组开关箱之间以及UPS市电输入总配电柜与UPS输入配电柜之间的连接电缆的供货和实施在本工程建设范围。B、UPS主机与配电柜的承重支架。C、UPS主机与配电柜的电缆桥架。D、UPS输出配电柜至各主机房的输出主干密集母线槽。E、机柜端机柜供电母线槽。另外,UPS主机设备、蓄电池组及蓄电池组(蓄电池之间连接电缆)、UPS输入输出配电柜、UPS输出配电柜的输出至调度大厅的电缆不在本工程范围,但本工程应提供UPS主机及配电柜的安装配合。见图 核心UPS系统建设范围示意图 2)非核心UPS系统:A、UPS主机与UPS输入输出配电柜之间、UPS主机与蓄电池组开关箱之间、UPS市电输入总配电柜与UPS输入配电柜之间以

供配电系统无功补偿方案的选择

0引言 韶钢新一钢供电系统负荷存在多样性,无功功率消耗大,自然功率因数低,谐波大。因此解决好电网的无功功率补偿和谐波治理问题,对于提高炼钢供配电系统电能质量、保证设备安全运行、节能降耗、充分利用电气设备的出力等具有重要的意义。 1无功补偿 1.1无功补偿作用 在炼钢供配电系统中,电动机、变压器等设备是无功功率消耗大户,电力线路、变频器、气体放电电灯、电焊机、空调及其它大多数设备也都是无功功率消耗户。如果所需要的无功功率由外部供电网络经过长距离传送,通常不合理也不可能。如果这些所需要的无功功率不能及时得到补偿,对炼钢供电系统电能质量就会造成严重影响。无功功率补偿作用有:(1)稳定受电端及电网的电压,提高供电质量。 (2)提高供用电系统及负载的功率因数,降低设备容量,减小功率损耗。 (3)减少线路损失,提高电网的有功传输能力。 (4)降低电网的功率损耗,提高变压器的输出功率及运行经济效益。 (5)降低设备发热,延长设备寿命,改善设备的利用率。 (6)高水平平衡三相的有功功率和无功功率。1.2无功补偿方法及原则 配电网中常用的无功补偿方式包括:在高低压配电线路中分散安装并联电容器组;在配电变压器低压侧和车间配电屏间安装并联电容器以及在单台用电设备附近安装并联电容器(就地补偿)等。目前,常采用的无功补偿方式有就地无功补偿、分散无功补偿和集中无功补偿。就地无功补偿采用电容器直接装于用电设备附近,与其供电回路相并联,常用于低压网络;分散无功补偿常采用高压电容器分组安装于电网的10kV和6kV配电线路的杆架上、公用配电变压器的低压侧、用户各车间的配电母线上,达到提高电网的功率因数、降低供电线路的电流、减少线损的目的;集中无功补偿采用变电站或高压供电电力用户降压变电站母线上的高压电容器组,也包括集中装设于电力用户总配电高低压母线上的电容器组,其优点是有利于控制电压水平,且易于实现自动投切,利用率高,维护方便,能减少配电网、用户变压器及专供线路的无功负荷和电能损耗,但是不能减少电力用户内部各条配电线路的无功负荷和电能损耗。 根据P=S cosφ,当功率因数cosφ=1时,有功功率P等于变压器的视在功率S,而当功率因数为0.6~0.7时,如不进行补偿,供电变压器的效率就很难提高,如1000kVA的变压器仅能带600~700kW的有功功率。 供配电系统无功补偿方案的选择 刘火红,陆吉利,李权辉,左文瑞 (宝钢集团广东韶关钢铁有限公司炼钢厂,广东韶关512123) 摘要:介绍无功补偿的作用、方法及原则,分析炼钢供配电系统负荷性质及无功补偿的必要性,并提出各供配电系统的无功补偿方案。 关键词:负荷;无功补偿;功率因数 Selection of Reactive Power Compensation Scheme for Distribution System LIU Huo-hong,LU Ji-li,LI Quan-hui,ZUO Wen-rui (Steel Plant of Guangdong Shaoguan Iron&Steel Co.,LTD of Baosteel Group,Shaoguan512123,China) Abstract:The function,method and principle of reactive power compensation are introduced.The nature of the supply load and distribution system of steel making and the necessity of reactive power compensation are analyzed.The reactive pow-er compensation programs of the power supply and distribution system are proposed. Keywords:load;reactive power compensation;power factor 作者简介:刘火红(1972-),三电主管,电气工程师,从事电 气自动化管理工作。 收稿日期:2013-10-15 电力专栏 89 2014 自动化应用3期

配电网无功补偿方式

配电网无功补偿方式 合理的无功补偿点的选择以及补偿容量的确定,能够有效地维持系统的电压水平,提高系统的电压稳定性,避免大量无功的远距离传输,从而降低有功网损。而且由于我国配电网长期以来无功缺乏,造成的网损相当大,因此无功功率补偿是降损措施中投资少回收高的有效方案。配电网无功补偿方式常用的有:变电站集中补偿方式、低压集中补偿方式、杆上无功补偿方式和用户终端分散补偿方式。 配电网无功补偿方案 1 变电站集中补偿方式 针对输电网的无功平衡,在变电站进行集中补偿(如图1的方式1),补偿装置包括并联电容器、同步调相机、静止补偿器等,主要目的是改善输电网的功率因数、提高终端变电所的电压和补偿主变的无功损耗。这些补偿装置一般连接在变电站的10kV母线上,因此具有管理容易、维护方便等优点。 为了实现变电站的电压控制,通常采用无功补偿装置(一般是并联电容器组)结合变压器有载调压共同调节。通过两者的协调来进行电压/无功控制在国内已经积累了丰富的经验,九区图便是一种变电站电压/无功控制的有效方法。然而操作上还是较为麻烦的,因为由于限值需要随不同运行方式进行相应的调整,甚至在某些区上会产生振荡现象;而且由于实际操作中变压器有载分接头的调节和电容器组的投切次数是有限的,而在九区图没有相应的判断。因此,现行九区图的调节效果还有待进一步改善。 2 低压集中补偿方式 在配电网中,目前国内较普遍采用的无功补偿方式是在配电变压器380V侧进行集中补偿(如图1的方式2),通常采用微机控制的低压并联电容器柜,容量在几十至几百千乏左右,根据用户负荷水平的波动投入相应数量的电容器进行跟踪补偿。它主要目的是提高专用变用户的功率因数,实现无功补偿的就地平衡,对配电网和配电变的降损有积极作用,同时也有助于保证该用户的电压水平。这种补偿方式的投资及维护均由专用变用户承担。目前国内各厂家生产的自动补偿装置通常是根据功率因数来进行电容器的自动投切。就这种方案而言,虽然有助于保证用户的电能质量,但对电力系统并不可取。虽然线路电压的波动主要由无功量变化引起,但线路的电压水平往往是由系统情况决定的。当线路电压基准值偏高或偏低时,无功的投切量可能与实际需求相去甚远,易出现无功过补偿或欠补偿。 对配电系统来说,除了专用变之外,还有许多公用变。而面向广大家庭用户及其他小型用户的公用变,由于其通常安装在户外的杆架上,实现低压无功集中补偿则是不现实的:难于维护、控制和管理,且容易造成生产安全隐患。这样,配电网的无功补偿受到了很大地限制。 3 杆上补偿方式 由于配电网中大量存在的公用变压器没有进行低压补偿,使得补偿度受到限制。由此造成很大的无功缺口需要由变电站或发电厂来填,大量的无功沿线传输使得配电网网损仍然居高难下。因此可以采用10kV户外并联电容器安装在架空线路的杆塔上(或另行架杆)进行无功补偿(如图1的方式3),以提高配电网功率因数,达到降损升压的目的。但由于杆上安装的并联电容器远离变电站,容易出现保护不易配置、控制成本高、维护工作量大、受安装环境和空间等客观条件限制等问题。因此,杆上无功优化补偿必须结合以下实际工程要求来进行: (1)补偿点宜少,建议一条配电线路上宜采用单点补偿,不宜采用多点补偿; (2)控制方式从简。建议杆上补偿不设分组投切; (3)建议补偿容量不宜过大。补偿容量太大将会导致配电线路在轻载时出现过电压和过补偿现象;另外杆上空间有限,太多数电容器同杆架设,既不安全,也不利于电容器散热; (4)建议保护方式应简化。主要采用熔断器和氧化锌避雷器作简单保护。 显然,杆上无功补偿主要是针对10kV馈线上的公用变所需无功进行补偿,因其具有投资小,回收快,补偿效率较高,便于管理和维护等优点,适合于功率因数较低且负荷较重的

高层建筑供配电系统节能设计技术要点

高层建筑供配电系统节能设计技术要点 发表时间:2018-10-18T13:15:11.257Z 来源:《河南电力》2018年8期作者:徐国耀1,2 潘琦1,2 [导读] 目前,城市高层建筑承载着多样化的建筑需求,其供配电系统的节能建筑的设计工作就显得十分必要。 (1.国网乌鲁木齐供电公司;2.新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830011)摘要:目前,城市高层建筑承载着多样化的建筑需求,其供配电系统的节能建筑的设计工作就显得十分必要。高层建筑的供配电系统比较复杂,节能设计的要求较高。在高层建筑实际的供配电系统节能设计工作中,既要满足建筑的用电要求,又要发挥节能功能,就需要了解其主要的内容和技术要点。本文针对高层建筑供配电系统节能设计技术要点进行了分析。 关键词:高层建筑;供配电系统;节能优化设计 1高层建筑供配电系统节能设计主要内容 节能设计是高层建筑供配电系统设计的重要原则,旨在降低能耗,其节能设计的主要内容有以下几个方面:首先,供电系统节能优化设计。在高层建筑供配电系统设计过程中,要对高层建筑的用电总负荷情况进行计算,明确供配电系统的设计方案,从而实现对高层建筑供配电系统的综合治理。 其次,照明系统节能优化设计。照明系统是高层建筑中的主要电气系统,其用电负荷较高,照明系统的节能设计具有十分广阔的前景,照明系统的节能设计包括对照明供电系统进行优化、对照明灯具进行节能优化、对照明控制系统进行优化。 再次,电气设备用电方案的优化节能设计。电气设备也是高层建筑供配电系统中的重要组成部分,电气设备的能耗占高层建筑电能需求的比例较高,在进行节能改造的时候,可以从电机拖动系统优化、给排水系统优化、深井电机回馈优化等方面着手,减少电气设备运行过程中的能耗。 最后,新能源综合利用的优化节能设计。在高层建筑供配电系统设计过程中,为了达到节能目标,则可以加强对一些新技术、新工艺的应用。比如太阳能发电、风力发电、冰蓄制冷等技术,都可以实现对再生能源的有效利用,以此弥补高层建筑供配电系统中的用电需求。 2高层建筑供配电系统总体规划节能设计方案 在进行高层楼宇建筑供配电系统总体规划设计过程中,首先应充分统计建筑内容用电负荷类型、容量等数据信息,在进行有效用电等级划分和整理后,充分考虑整个供配电系统的整体供电方案、供电距离等因素。其次,在确定高层楼宇建筑供配电方案时,要从供电方案清晰明了、简单可靠、操作维护方便等方案进行方案设计。总降压变配所的布设位置选择应尽量靠近整个高层楼宇用电负荷中心部位,以缩短供电系统的供电半径,降低供配电系统在运行过程中产生的线路损耗,提高供配电系统供电可靠性、供电质量、以及节能降耗水平。最后,要对结合用电负荷总量、供配电方案等对变压器容量、台数、型号,以及供电线路型号、截面、敷设方式等进行详细的优化选型设计,设计出能够随季节性负荷变化而动态调节的供配电方案,有效提高配电变压器的节能经济运行水平,降低变压器运行能耗,提高供电线路供电功率因素,达到节能降耗的目的。 3高层建筑供配电系统节能设计要点 3.1总体规划节能优化设计 3.1.1合理进行供配电方案设计 应根据电源点、电力负荷容量、供电距离等因素,经详细计算分析,合理设计供配电系统方案和选择供电电压等级。在变电所安装位置选择时,应尽量选择靠近负荷中心部位,这样可以缩短供电半径,降低供电线损,提高电能输送效率。提高供配电系统的供电电压等级可以降低供电电流,达到节能降耗的目的,但提高供电电压会增加供配电设备投资,对此必须结合工程实际情况从技术、经济等方面进行全面比较分析,拿出技术上可行,经济上较合理的节能优化方案。 3.1.2合理设计供配电系统网架 合理供配电系统网架,一方面可以简化供配电系统内部接线,降低系统运行维护工作量;另一方面,合理供电方案,可以减少线路损耗,提高末端供电电压,确保用电设备安全稳定的运行,达到节能降耗的目的。 3.2配电变压器节能优化设计 配电变压器是建筑供配电系统中的核心设备,其节能优化设计是建筑电气节能至关重要的环境。在节能优化设计过程中,要优选节能型配电变压器,如S11、S13等节能型配电变压器用卷铁心改变常规叠片式铁心结构,这样可以大大降低磁阻,其空载电流可以减少约60%~80%,大大提高了配电变压器电能转换效率,提高了供配电系统电能功率因数,降低了供配电系统线损,使配电变压器空载损耗降低约20%~35%,节能效果十分明显。 3.3电线电缆节能优化设计 选择电线电缆首先要考虑供电安全性,其次要考虑电缆运行节能经济性。若所选电线电缆截面偏大,则可能会倒在线路投资增大,当然线损也会有所降低;反之,若电线电缆截面选择偏小,投资虽然会节省一些,可线损偏大,安全系数偏低,不利于后期扩建需求。在建筑供配电系统节能优化设计过程中,当供电线路最大负荷年运行时间小于4000h时,推荐按照导体载流量进行导线截面选择;当供电线路最大负荷年运行时间大于4000h时,推荐采用经济电流密度进行电线电缆截面选择。 3.4用电设备节能优化设计 照明节能设计就是在保证不降低照明场所照度、色温、显色等视觉技术指标要求,即在不降低照明系统照明质量的基础上,力求减少照明系统中光能资源损耗,从而最大限度的利用建筑物室内有限光能。减少电动机等用电设备的运用损耗的主要途径,是采取相关技术措施提高电动机的工作效率和运行功率因数。在实际工程节能优化设计过程中,应根据功能需求选择合适的高效率节能电动机。需要结合就地电容器补偿等措施,以降低电机拖动系统的线路损耗外,避免或缩短电动机轻载和空载运行时间。另外,还可以结合变频调速等先进控制系统,有效提高电机拖动系统的电能资源综合利用效率,达到节能降耗的目的。

供配电系统中的注意事项及其解决方案(1)

广东科技2007.02.总第164期 供配电系统中的注意事项及其解决方案 □吴兵 1负荷等级研究 建筑供配电系统的可靠性,直接关系到人身安全,任何事 故都将造成公共场所秩序混乱,由此产生经济损失乃至政治影响等,因此是一个重大的课题。电力负荷根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度,分为一级负荷、二级负荷、三级负荷。一类高层建筑的消防控制室、消防水泵、消防电梯、防排烟设施、火灾自动报警、漏电火灾自动报警系统、自动灭火系统、应急照明、疏散指示标志和电动的防火门、窗、卷帘、阀门等消防设备为一级负荷,二类高层建筑的消防设备为二级负荷。而柴油发电机房送风机、专供变电所使用的送、排风机,以及专供消防水泵房使用的污水泵等设备,负荷等级建议也应与消防设备负荷等级一致,不能作为非消防设备在火灾时切除供电电源。 对不同等级的负荷,其供电电源的要求也不一样。一级负荷中特别重要负荷,除有两个电源外,还必须增设应急电源。为保证对特别重要负荷的供电,严禁将其他负荷接入应急供电系统。 在建筑电气设计中,最常用的应急电源是柴油发电机组和EPS应急电源。应急电源的选用不仅要从造价、环保等方面进行分析比较确定,还应注意以下几个问题:(1)允许中断供电时间为毫秒级的设备如计算机、程控交换机、数据处理系统、精密电子仪器等不可选用发电机组或EPS作为备用电源,而应选用UPS电源。(2)EPS应急电源系统一般的备用供电时间为30-120min,因此在设计时应根据设备性质标明备用供电时间,例如根据建筑物的性质、类别,消防泵在火灾时应满足持续工作时间为3h和2h,喷洒泵在火灾时应满足持续工作时间为1h,用于防火卷帘的水幕泵在火灾时应满足持续工作时间为3h。同时还必须认识到:EPS是一种应急电源产品,不是长时间性质的备用电源,它只用于当正常电源故障时,维持重要负载的供电可靠性,保证重要负荷在一段时间内或规定时间范围内供电的连续性。所以,对正常电源供电可靠性较差的场所,EPS应急电源不能用作常用设备的备用电源,而应选用柴油发电机组作为备用电源。(3)消防电梯及平时和火灾时合用的排烟机、送风机等消防设备采用EPS应急电源作为备用电源不合适,而应采用独立于正常电源的发电机组等。因为市电停电,作为EPS应急电源的核心蓄电池就没有了充电电源,其储存的电能在市电停电时就有可能被用完,一旦此时发生火灾,这些消防设备将无法投入使用。 2安全供配电方案 供电电源在满足电力负荷的要求下,变电所的安全以及供 配电系统可靠性至关重要。 高层民用建筑存在大量的一级或二级负荷,变压器台数往往为两台及以上,同时还设有一台柴油发电机组。因此本文对最常见的不并列运行的两台变压器和一台柴油发电机组成的各种供配电系统方案优缺点加以分析和比较,以便在实际工程 项目的设计中,能够选择最佳的供配电方案,提高供电的可靠性。下面对具体的供配电方案加以论述。(1)变压器和柴油发电机组的低压母线各自独立,互不联系,如图1所示的方案l。其优点是不要联锁,柴油发电机也不会倒送给市电,缺点是平时市电停电时,柴油发电机无法供电给一般性负荷,以及III段母线平时没电,其断路器和电缆是否有故障不易被发现。(2)为了解决III段母线平时不带电的问题,由变压器的低压母线引一路电源到III段母线,如图2所示的方案2。QF、4QF断路器设置机械、电气联锁,以保证柴油发电机不倒送给市电,其缺点也是平时市电停电时,柴油发电机无法供电给一般性负荷。 (3)为了能够最大限度地发挥柴油发电机的作用,即当平时市电停电时,能够直接供电给一般性负荷,柴油发电机不设专用母线,而是与变压器母线共用,如图3中方案三所示。其缺点是当TMl变压器检修或故障,QL断开,3QF合闸时,恰逢市电停电,柴油发电机自启动,由于QL断开,无法供电给一级负 荷。另外为了保证柴油发电机自启动成功, I段母线上的一般性负荷必须失压断开,从而造成平时电网电压波动。也有可能跳闸,影响供电的可靠性。 (4)为了克服方案3的缺点,设置柴油发电机专供一级负 荷的母线段Ⅲ,为了保证柴油发电机自启动成功,QL开关必须 摘要:着重论述提高变电所、供配电系统方案、配电线路的可靠性注意事项及其解决方案。关键词:负荷等级;供电线路;供配电方案;可靠性 建设行业专版工艺与设备 业界86

10kV配电网无功补偿技术的应用和要点

10kV配电网无功补偿技术的应用和要点 发表时间:2018-11-13T19:04:56.750Z 来源:《电力设备》2018年第20期作者:单颖 [导读] 摘要:10kV电网运行过程中,存在电能损耗过大的情况,选择合理的无功补偿方式,能够使配电网线路电能损耗大大降低,从而使配电网的运行更好的满足生产和生活需要,更好的保障电网的安全运行,提高了电力企业的经济效益,值得进行推广。 (保定电力职业技术学院河北保定 071051) 摘要:10kV电网运行过程中,存在电能损耗过大的情况,选择合理的无功补偿方式,能够使配电网线路电能损耗大大降低,从而使配电网的运行更好的满足生产和生活需要,更好的保障电网的安全运行,提高了电力企业的经济效益,值得进行推广。 关键词:10kV配电网;无功补偿技术;应用;要点 引言 当前社会发展迅速,人们对电能的依赖程度不断增加,保证电能供应质量,关系着供电单位的外在形象以及经济效益的增长。无功补偿可保证电气设备的正常运行,降低给有功功率造成的不良影响,降小配电网线损的同时,保证供电质量,因此,供电单位应做好无功补偿技术的研究,保证配电网安全稳定运行,为人们的生产生活提供优质的电能,满意的服务。 1无功功率及补偿原理 配电网中的功率分为有功功率、无功功率与视在功率,其中有功功率指做功消耗的功率,视在功率是有功功率与无功功率的向量和。为加深对无功补偿的理解,在探讨无功补偿原理之前,有必要对配电网中无功功率进行分析,以正确认识无功功率存在的客观性与必要性。 1.1无功功率 众所周知,配电网中存在电流与磁场间的转换,电气设备中用于建立与维持磁场的电功率,即为无功功率。无功功率不对外做功,但是维持电气设备及配电网正常运行的重要功率,例如,变压器线圈产生的磁场、电动机转子磁场,都需要从电源中获得无功功率加以维持。考虑到配电网中电磁间的转化复杂,配电网提供的无功功率无法满足负荷要求,因此,需应用专业技术对无功功率进行补偿,确保用电设备在额定功率状态下工作。 1.2无功补偿原理 无功补偿的原理为:将感性功率负荷和容性功率负荷装置并联接入到同一电路中,当感性负荷释放能量时,容性负荷会吸收释放的能量,反之,感性负荷会吸收容性负荷释放的能量,这样能量便在两者之间相互交换,最终实现无功补偿的目的。 1.3无功补偿原则 配电网无功补偿是一项专业性较强的工作,为实现更好的补偿效果,供电单位应注重遵守以下原则:全面规划原则。设计与构建配电网时,应做好充分的调查,认真考虑配电网负荷情况,以及所用电气设备数量、类型等内容,将无功补偿纳入设计工作的重点,对无功补偿进行全面规划。如此才能在保证配电网建设工作稳步推进的基础上,更好的投入运营。合理布局原则。配电网无功补偿时,还应注重合理性,既要考虑补偿位置选择的合理性,又要保证补偿装置、补偿容量选择的合理性。分级补偿原则。对配电线路无功补偿方案进行充分的论证,分析影响无功补偿的因素,从经济投入,实施难易程度上加以权衡,确定最佳的分级补偿方案。就地平衡原则。配电网无功补偿时,应注重遵守就地平衡原则,提高补偿质量的同时,降低给配电网正常运行的影响。 210kV配电网运行现状分析 目前,城市和农村中10kV配电网的覆盖率非常高,但是在运行过程中,10KV配电网却存在许多问题,比如供电能力不足、损耗过大,不能解决这些问题和矛盾,就会影响正常的经济和生活,以下对10kV配电网的运行情况进行分析。 2.110kV配电网出现的问题 目前,10kV配电网在实际运行过程中,出现的主要问题包括:(1)10kV配电网运行设备落后,不能满足实际工作和生活中所需的电力要求,超负荷运行的情况频频出现,因此10kV配电网电能损耗特别大。(2)10kV配电网到达用户端的的电压很低,原因是供电线路过长、线路设计不合理。(3)10kV配电网的网点单一,变电所位置不合理。 2.210kV配电网电能损失大的原因 实际运行过程中,10kV配电网存在的问题包括:无功损耗大、电压低、线路损耗过高、电网容量低等,以上问题会引起10kV配电网的线路和设备电力损耗,使生产和生活都造成不便,电力企业效益受到影响。 310kV配电网无功补偿技术的应用方式 无功补偿技术在配电网中应用,可以使线路损耗大大降低,是一种高效节能的配电网施工方法。目前无功补偿技术在配电网中的应用方式包括:(1)变电站集中配网;(2)低压分散无功补偿;(3)用户终端分散补偿以及杆上无功补偿。 3.1变电站集中补偿 要想使输电网降低线路的损耗,供电网络无功功率取得平衡,可以对变电站进行集中补偿。集中补偿方法需要的设备有:并联形式的电容器、同步调相机和静止补偿器等。变电站采用集中补偿方法的作用是,对输电网和输电线路的功率因数进行改善,选择集中补偿,补偿需要的设备要安装在变电站的主干线路上。集中补偿的优势为,设备安装在变电站内,管理方便、设备维护方便,缺点是降低线路损耗的效果不明显。 3.2低压分散无功补偿 低压分散无功补偿技术,指的是变压器电压低的一侧安装补偿设备,对电容器采用分散固定容量补偿,它能够避免电容器并联集中补充方式由于容量太大导致涌流太大的问题,同时还能增强配电网输供电能力,有效降低损耗,节能明显。分散补偿的优点是,电压负荷比较低时,可以减少变压器运行组数,避免补偿过量,同时设备应用简单,可以节省经济成本。缺点是操作需要人工进行投切,如果操作人员出现操作失误,就会发生补偿过量或者补偿不足的情况。 3.3无功功率就地补偿 无功功率就地补偿指的是,把电力感应负载和电容器实施并联,这样就可以同电机运行和停止一起同步,电机在停止运行后,可以对电容器直接供电,这样就不用其他的供电方式。实际运行过程中,电机的无功由电容器直接供给。采用此种方法,优点是能量交换距离非

配电网无功补偿

配电网无功补偿 发表时间:2018-04-16T09:30:22.227Z 来源:《电力设备》2017年第31期作者:田金文展瑞磊段其岳 [导读] 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。 (国网阳谷县供电公司山东聊城 252300) 摘要:随着社会进步、科技的发展,电力企业在如何更好地满足用户不断提高的用电需求同时,还要对用户电网进行更全面的管理、监控,提高供用电的安全可靠性,保证用户设备和配电网的安全运行,降低能量损耗。在这个过程中,将有各种新技术、新设备发展起来,未来的无功补偿技术将会更加合理和经济有效。 关键词:无功功率产生;无功补偿现状;发展趋势 一、配电网无功功率的产生 在交流电力系统中,发电机在发有功功率的同时也发无功功率,它是主要的无功功率电源;运行中的输电线路,由于线间和线对地间的电容效应也产生部分无功功率,称为线路的充电功率,它和电压的高低、线路的长短以及线路的结构等因素有关。电能的用户(负荷)在需要有功功率的同时还需要无功功率,其大小和负荷的功率因数有关;由此可见,无功功率在输、配电线、变压器中的流动会增加有功功率损耗,产生电压降落。 二、低压配电网无功补偿的含义及现状 低压配电网中的无功补偿是对低压配电网中的无功功率进行补偿的措施,旨在提高低压配电网的功率因数,降低供电变压器及输送线路的损耗,提高供电效率,改善低压配电网的供电环境。低压配电网中的无功补偿通过选择合适的补偿方法和补偿装置,可以最大限度的减少低压配电网的损耗,使电网质量提高,减少电压波动和降低谐波,从而提高电压稳定性和电能质量。 目前低压电网无功补偿普遍采取在配电房集中补偿、分散就地补偿和个别补偿三种方式。无功信号的采集使用单相信号,利用三相电容器进行三相共补:现在控制信号采集一般在单相上进行,这种方式不能满足三相负荷量在同一时间不同变化要求。三相共补偿方式适用于负荷主要是使用三相负载的地方,如工业开发区的工业用电。多采用集中补偿和就地补偿,即随机补偿。但对于当前的负载主要为居民用户,由于电源接入点不同和用电负荷不同,三相负荷很可能不平衡,各相无功需量也不同,采用这种补偿方式会在不同程度上出现过补或欠补。无功控制物理量多用电压、功率因数、无功电流,投切方式为:循环投切、编码投切。这种策略没有考虑电压的平衡关系与区域的无功优化。使用电容器容量大,且由多个电容器并列分组进行循环投切,投切开关多采用交流接触器,其缺点是响应速度较慢,在投切过程中会对电网和交流接触器的接点产生冲击涌流,影响电网质量降低交流接触器使用寿命。现价段低压配电网的无功补偿都不具备配电监测功能,依靠人为操作普遍存在时效性差的缺点,从而影响它的经济性和全安性。 三、无功补偿的作用 (一)提高用电户的功率因数,提高用电设备的利用率,降低用电成本; (二)装设静止无功补偿器还能改善电网的电压波形,减小谐波分量和解决负序电流问题。对电容器、电缆、电机、变压器等还能避免高次谐波引起的附加电能损失和局部过热。 (三)减少供电网络的有功损耗,提高线路的供电能力; (四)合理地控制电力系统的无功功率流动,从而提高电力系统的电压水平,改善电能质量,提高了电力系统的抗干扰能力; (五)在动态的无功补偿装置上,配置自动补偿调节器,可以改善电力系统的动态性能,提高输电线的输送能力和稳定性; 四、无功补偿发展方向 为适应当前社会发展,满足用电户负荷类型的要求和用电负荷的需求,提高补偿精度,减少欠补偿和过补偿情况发生,要做好低压电网的无功补偿从以下方法进行: (一)补偿方式 1、固定补偿与动态补偿相结合 随着新技术,新设备的应用和发展,负载类型越来越复杂,电网对无功要求也越来越高,用电户要求的供电可靠性不断提高,因此单纯的固定补偿已经不能满足要求,新的动态自动无功补偿技术能较好地适应负载变化。 2、稳态补偿与快速跟踪补偿相结合 稳态补偿与快速跟踪补偿相结合的补偿方式是未来发展的一个趋势。主要是针对大型的钢铁冶金等企业,工艺复杂、用电量大、负载变化快、波动大,充分有效地进行无功补偿,不仅可以提高功率因数、降损节能,而且可以充分挖掘设备的工作容量,充分发挥设备能力,提高工作效率,提高产量和质量,经济效益大。 3、三相共补与分相补偿相结合 随着人们的生产水平不断提高,大量的家用电器进入家庭,且多为单相用电设备,电网中三相不平衡的情况越来越多,导致控制开关跳闸情况频发,三相共补同投同切已无法解决三相不平衡的问题,而全部采用单相补偿则投资较大,目前还不能普及。因此根据负载情况充分考虑经济性的共分结合方式在新的经济条件下日益广泛应用。 (二)采用先进的投切开关种类 1、过零触发固态继电器 其特点是动态响应快,在投切过程中对电网无冲击、无涌流,寿命较长,但有一定的功耗和谐波污染,目前运用比较普遍。 2、无涌流电容投切器 无涌流电容投切器是无触点开关在电压过零时投入电容器,然后转接到专用接触器下运行,优点无涌流、不发热、节能、安全、寿命长。目前正在逐步推广应用,是无功补偿设备的发展趋向。 3、智能复合开关 复合开关投切装置工作原理是先由可控硅在电压过零时投入电容器,然后再由磁保持交流接触器触点并联闭合,可控硅退出,电容器在磁保持继电器触点闭合下运行,既实现了快速投切,又降低了功耗。目前主要由于成本及可靠性原因应用较少。

楼宇自动化供配电系统解决方案

楼宇自动化供配电系统解决方案 楼宇自动化供配电系统解决方案 智能建筑是为了适应现代信息社会对建筑物各功能、环境和高效管理的要求,在传统建筑的基础上发展起来的。智能化建筑通过对建筑物的四个基本要素,即结构、系统、服务、管理以及它们之间的内在关联的最优化设计,使其发挥最高效率,同时又以最低的保养成本,最有效的方式来管理本身资源,给业主提供一个投资合理又拥有高效率的优雅舒适、便利快捷、高度安全的环境空间帮助大厦的主人、财产的管理者和拥有者意识到他们在诸如费用开支、商务活动和人身安全等方面得到最大利益的回报并提供反应快、效率高和有支持力的环境,使用户能达到其业务目标。 1智能建筑它具备三个基本条件: (1)安全、舒适的环境,即具有消防功能、温度和湿度控制功能以及灯光及其它楼宇设备的控制功能 (2)良好的通信网络设施,使数据信息能够在大厦内传输 (3)足够的对外通信设施与通信能力。 可见,智能化建筑是一个综合性概念,我国智能建筑权威机构一中国智能建筑专业委员会对智能建筑的定义是:利用系统集成的方法,将智能型计算机、计算机网络技术、通信技术、信息技术与建筑艺术有机地结合在一起,通过对设备的自动监控、对信息资源的管理和对使用者的信息服务及其与建筑的优化组合以获得的投资合理、适合信息社会需要并且具有安全、高效、舒适、便利和灵活等特点的建筑物。由此可见,智能建筑是先立足于建筑物本身,然后是配备许多现代的能给人们营造舒适、便利、灵活、安全生活的相关技术与服务。 2 智能建筑的构成 智能建筑(Intelligent Bu ild ing,I B)主要采用计算机技术对建筑物内的设备进行自动控制和管理,并对用户提供信息和通信服务等。目前它能提供的主要功能和特点如下:(1)能对各种信息进行通信并具有信息处理功能(2)能实现办公自动化(OA)(3)能对建筑物内机械电气设备等进行综合自动控制,实现各种设备运行状态监视和统计记录的设备管理自动化(4)建筑物具有充分的适应性和可扩展性,具有良好的节能和环境保护功能。在此功能和特点的基础上,建筑智能化结构由四大系统组成:楼宇自动化系统(Bu ild ing Automat ionSystem,BAS)、办公自动化系统(Offic eAutomat ionSystem,OAS)、通信网络系统(Commun ic ation Netw orkSystem,CNS)、结构化综合布线系统(Struc tureCablingSystem,SCS)。楼宇自动化系统是采用计算机对建筑物内所有机电设施进行自动控制。一般有以下两个子系统:环境控制管理子系统安防与消防子系统。环境控制主要包括:暖通空调系统控制、给排水控制系统控制、运输系统控制、供配电系统的控制。楼宇供配电系统是智能建筑十分重要的组成部分。我国楼宇供配电系统设计管理尚处于初创阶段,1997年建设部颁布了(建筑智能化系统系统工程设计管理暂行条例》,这是第一部行业管理规定。随后,许多省、市、自治区制订了自己的《智能建筑设计标准》,国家标准BG/T50314-2000于2000年7月正式颁布。 3 楼宇供配电自动化系统设计原则 3.1 稳定可靠性原则 必须保证供配电自动化系统具有高的可靠性和抗干扰能力。宜选用成熟的、通过

工厂供配电系统无功补偿的作用与收益

工厂供配电系统无功补偿的作用与收益 1.无功补偿的基本原理 在交流电路中,如果是纯电阻电路,电能都转化成了热能,而在通过纯容性或纯感性负载的时候,并不做功,也就是不消耗电能,即为无功功率。当然实际负载一般都是混合性负载,这样电能在通过负载时,就有一部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。 无论是工业负荷还是民用负荷,大多数均为感性。所有电感负载均需要补偿大量的无功功率,提供这些无功功率有两条途径:一是输电系统提供;二是补偿电容器提供。如果由输电系统提供,则设计输电系统时,既要考虑有功功率,也要考虑无功功率。由输电系统传输无功功率,将造成输电线路及变压器损耗的增加,降低系统的经济效益。而由并联补偿电容器就地提供无功功率,就可以避免由输电系统传输无功功率,从而降低无功损耗,提高系统的传输功率。 S1为功率因数改善前的视在功率;S2为功率因数改善后的视在功率 2.无功补偿的效益 2.1 提高功率因数 2.1.1 基本原理 在交流纯电阻电路中,负载中的电流IR与电压U同相位,纯电感负载中的电流IL滞后于电压90°,而纯电容的电流IC则超前于电压

90°,如图所示。可见,电容中的电流与电感中的电流相差180°,它们能够互相抵消。 电力系统中的负载大部分是感性的,因此总电流I将滞后于电压一个角度φ,如果将并联电容器与负载并联,则电容器的电流IC将抵消一部分电感电流,从而使电感电流IL减小到IL',总电流从I减小到I',功率因数将由cosφ提高到cosφ',这就是并联电容器补偿无功功率提高功率因数的原理(如图2)。 由于电容器与电感性负载并联安装,所以,当电感性负载吸收能量时,正好并联电容器释放能量。而电感性负荷放出能量时,并联电容器却在吸收能量,能量在两者之间转换。即:电感性负载所吸收的无功功率,可由并联电容器所输出的 2.1.2 节省企业电费开支 提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对用电企业的功率因数规定了最低数值(一般规定基数为cosφ=0.9),低于规定的数值,需要罚款多收电费,高于规定的数值,可奖励相应的减少电费。 供电部门在收取电费时,按照行业标准规定:根据每月的实际功率因数,在高于或低于基数0.9时,按照规定的电价计算出当月的电费后,再按照上表所规定的百分数进行奖惩,增减电费。 无功功率的节能对用户来说,就是最大可能的提高功率因数,减少无功计量,把实际功率因数保持在0.95以上,以降低电费。以我公司

供配电设计节能技术分析

供配电设计节能技术分析 发表时间:2019-04-18T11:48:42.600Z 来源:《电力设备》2018年第30期作者:蒋雷 [导读] 摘要:近年来,节能技术发展迅速,并且广泛应用于人们的生产和生活中。 (身份证:3411821983****2633 安徽马鞍山 243000) 摘要:近年来,节能技术发展迅速,并且广泛应用于人们的生产和生活中。配电网处于电力系统各个环节的底层,作为电网末端直接与用户相联系,是电力系统的窗口。一方面,配电网中各种线路和负荷密集繁杂,其损耗占全网总损耗的40%以上,深入挖掘其降损潜力具有重要的经济和社会效益;另一方面,配电网线损过大,将会扩大供电缺口,甚至引起受端电压降低,电网频率和功率因数受影响,使用电设备得不到良好的运行,特别严重时,还会导致电压崩溃乃至系统解列,因此有必要加强对配电网节能降耗的管理。 关键词:供配电设计;节能技术;节能措施 在能源短缺问题越发凸显的背景下,节能问题受到社会普遍关注。电力能源是能源的一个重要组成,和社会生活、生产有直接关系,且需求量不断增加。为了有效节约电力能源,需要加强对节能技术的研究。 1供配电设计中应用节能技术的价值 如今供配电设计的主要基础就是节能,以确保社会、环境和资源可以协同发展,并提升利用电力能源的效率。供配电设计中应用节能技术,一方面可以使单位用电量使用率得到提高,另一方面也能优化配置资源,为此有关部门在建设工程的初期就要考虑到节能技术。建设中,要依照电力工程实际建设情况加以应用,从而缓解电力资源被过度使用或浪费的情况。 2供配电设计的节能问题 2.1设计中的节能意识薄弱,节能设计工作落实不到位 某些电力设计人员在设计中因自身的节能意识薄弱,对电力节能设计的重要性缺乏足够的重视,致使与之相关的节能设计工作落实不到位,无形之中加大了电力生产方面的能耗问题发生率。 2.2导体截面及电气设备选择不当 导体截面及电气设备选择不当,设计方面节能技术运用不充分。基于电力设计的节能分析及其设计方案的形成,受到导体截面、电气设备选择不当以及设计方面节能技术运用不充分的影响,从而引发了电力设计的节能问题。 2.3输电线路出现较大波动的损耗,过程控制能力较低 配电网出现线损状况,其中一部分原因是因为输电线路出现较大波动的损耗,过程控制能力较低,比如因为关口电量没有足够的数据出现估计电量的现象;变电站对电能表进行更换或者因为CT出现异常没有完整的记录损失电量;没有对关口电量以及具体的售电电量进行同时记录,没有实时记录与跟踪供电情况以及售电情况,没有把握处理电力事故的最好时机,都会出现较大的损耗。 3供配电设计节能技术 3.1选择高效节能的电气设备 在供配电设计中,为了有效融入节能技术,有关设计人员要从多角度选择。(1)选择节能高效的电气设备,变配电的变压器就是有较高消耗的设备,若选择的变压器不合适,会使电能损耗增加。工业企业中,无功功率的消耗包括有线路、异步电动机与变压器等,和异步电动机有关的设备大概占百分之七十,线路占大概百分之十,变压器设备大概占百分之二十。因此,通过选择合适的电动机与变压器可以使线路感抗降低,一般企业所用的节能变压器是35kV或10kV。在有关功率达到一定范围的时候,为提高有关自然功率的因数,需要结合间隙工作制的设备与同步电动机,不过间隙工作制的设备应该具有空载切除这一功能。在选择电工机负荷的时候,有关参数应该比百分之四十的额定容量高;而在变压器负荷率超过百分之六十的时候,应该将有关参数控制在额定容量百分之七十五到百分之八十五的范围内。不管供电企业的基础是何种形式,都应该考虑到变压器回收率,通过使能源消耗降低,有效节约电能,企业的运营成本也得到降低。 3.2配电设计过程中选用合适的导线截面 因为线路中出现的损耗和电阻之间成正比关系,所以要降低损耗,可以在10kV配电设计中选择合适的导线截面。在对导线截面进行选择时要参照电流的密度,在此基础上要满足载流量,同时要保证电压的质量。从实际操作可以看出,10kV配电设计中经常出现损耗的部位就是主干线的前两部分,当回路受到大负荷,就会出现低压线损。基于这一状况,当回路出现较大电流时,要增大导线截面,选择直径较大的导线,同时对供电距离进行一定程度的缩短。 3.3在供配电设计中应用抑制谐波 供配电设计中,抑制谐波是节能的一个重要技术,一般可以把谐波理解成影响供配电系统的一种事物,供配电系统内谐波不但会使有关供配电系统耗费大量电能,也会破坏到有关设备,比如变压器。所以,为提高供配电设备工作的效率,采取抑制谐波这一方式可以有效处理,通常能借助谐波器加以抑制。不过实际安装中,要结合无源和有源使用滤波器,此外要在变压器低压范围中安装滤波器。供配电设计的节能技术会涉及有关设备、灯具和线路等内容,所以节能设计中要考虑到有关因素的影响,采取针对性的节能措施加以处理。 3.4合理设置供配电系统的电压等级,提高功率因数 由于供配电系统运行中若电压等级设置不当,则会加大该系统运行中的能耗问题发生率,因此,需要电力设计人员能够在其设计中注重供配电系统电压等级的合理设置。在此期间,应做到:①通过对供配电系统功能特性的考虑,电力设计中应采用高电压深入负荷中心供电,避免因低电压、大容量、长距离等因素的影响而造成输电线路电能损失,从而满足电力节能设计要求。②通过对用电设备的用电容量、供电距离及特性等因素的考虑,应在电力设计中确定供电系统的电压等级,确保其设置合理性,实现对节能问题的科学应对。同时,由于输电线路的损耗大小与功率因数密切相关,因此,电力设计人员应在其设计方案形成中重视功率因数的提高,并通过对自动控制无功功率补偿装置的配合使用,从而降低电力设计方面的节能问题发生率,保持其良好的节能设计工况。 3.5科学规划电网,系统处理 电网合理规划可以有效的降低输配线路中存在的能源消耗问题。电力企业通过金策技术、动态监测技术以及自动化的基础手段提升电能的调度效率,可以有效的降低电网的消耗。而电力企业通过计算机技术手段、网络技术手段计算电网参数信息,确定运算方式,可以有效的降低电网损耗等问题。在电网运行中,要合理的设置配电电压,加强对电压的控制。较高的电压会导致电能损耗等问题,而电压如果过低就会无法满足配电的用电需求。对此,电力企业要通过科学的方式合理配置电压,进而降低能耗。同时,在电网中的无功电流会消耗

相关主题
文本预览
相关文档 最新文档