当前位置:文档之家› 矩阵理论答疑

矩阵理论答疑

矩阵理论答疑
矩阵理论答疑

矩阵理论在通信的应用

矩阵理论在通信网络中的应用 ——利用幺模矩阵分析最小费用流问题 摘要 将通信网络中节点间的业务看作是一个流,假设一对节点间存在v个流量的业务需求,怎样使得最终达到满足要求且费用最小。通过线性规划建模,利用矩阵理论中完全幺模矩阵以及幺模矩阵的知识,保证求得的最优解为整数解,使得最小费用流问题得以解决。 关键字:最小费用流,完全幺模矩阵,幺模矩阵,整数解 ABSTRACT View the business communication between nodes in the network as a stream, a v of the flow between nodes business needs, how to make the end meet the requirements and minimum cost. The linear programming model, by using matrix theory totally unimodular matrix

and knowledge unimodular matrix, guarantee to obtain the optimal solution for the integer solution, so that the minimum cost flow problem can be solved. Key Words: Minimum Cost Flow ,Totally Unimodular ,Unimodular , integer solution 第一章矩阵理论简介 根据世界数学发展史的记载,矩阵理论概念剩余19世纪50年代,是为了解决线性方程组的需要而诞生的。1855年,英国数学家Caylag在研究线性变换下的不变量时,为了简介、方便而引入了矩阵的概念。矩阵的理论发展非常的迅速,到19世纪末,矩阵理论体系已经基本形成。到20世纪,矩阵理论得到了进一步的发展。目前,它已近发展成为在物理、控制论、经济学、等学科有大量应用的分支。 用矩阵的理论与方法来处理通信网络技术中的各种问题已越来越普遍。在通信工程技术中引进矩阵理论不仅使理论的表达极为简捷,而且对理论的实质刻画也更为深刻,这一点是不容置疑的,更由于计算机和计算方法的普及发展,不仅为矩阵理论的应用开辟了广阔的前景,也使通信网络技术的研究发生新的变化,开拓了崭新的研究途径,例如网络中的最小费用流问题、最短分离路径对问题、多商品流问题等,无不与矩阵理论发生紧密结合。因此矩阵的理论与方法已成为研究通信工程技术的数学基础。

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

(完整版)第二章矩阵及其运算作业及答案

第二部分 矩阵及其运算作业 (一)选择题(15分) 1.设,均为n 阶矩阵,且,则必有( )A B 22 ()()A B A B A B +-=-(A) (B) (C) (D) A B =A E =AB BA =B E =2.设,均为n 阶矩阵,且,则和( ) A B AB O =A B (A)至多一个等于零 (B)都不等于零 (C) 只有一个等于零 (D) 都等于零 3.设,均为n 阶对称矩阵,仍为对称矩阵的充分必要条件是( ) A B AB (A) 可逆 (B)可逆 (C) (D) A B 0AB ≠AB BA =4.设为n 阶矩阵,是的伴随矩阵,则=( ) A A *A A *(A) (B) (C) (D) 1n A -2n A -n A A 5.设,均为n 阶可逆矩阵,则下列公式成立的是( ) A B (A) (B) ()T T T AB A B =()T T T A B A B +=+(C) (D) 111()AB A B ---=111 ()A B A B ---+=+(二)填空题(15分) 1.设,均为3阶矩阵,且,则= 。 A B 1 ,32A B ==2T B A 2.设矩阵,,则= 。 1123A -?? = ???232B A A E =-+1B -3.设为4阶矩阵,是的伴随矩阵,若,则= 。 A A *A 2A =-A *4.设,均为n 阶矩阵,,则= 。 A B 2,3A B ==-12A B *-5.设,为整数,则= 。 101020101A ? ? ?= ? ??? 2n ≥12n n A A --(三)计算题(50分) 1. 设,,且,求矩阵。 010111101A ?? ?=- ? ?--??112053B -? ? ? = ? ??? X AX B =+X

矩阵理论

2011学年 (A) 学号姓名成绩 考试科目:《矩阵理论》(A)考试日期:2011年 1 月10 日 注意事项:1、考试7个题目共7页 2、考试时间120分钟 题目:一(本题35分) 二(本题18分) 三(本题14分) 四(本题08分) 五(本题07分) 六(本题09分) 七(本题09分) (注: I表示单位矩阵;H A表示H转置;det(A)代表行列式)

姓名: 学号: A 一. 填空(35分) ( 任意选择填写其中35个空即可 ) (1)1113A ??= ?-??,则2 (2)A I -= ,A 的Jordan 形A J = (2)若3阶阵2≠A I ,且2440-+=A A I ,则Jordan 形A J = (3) I 是单位矩阵,则范数1 ||I||||I||∞== ;cos 0n n ?= (4)Hermite 阵的特征根全为 , 斜(反)Hermite 阵的特征根必为纯虚数或 (5)秩 ()()()r A B r A r B ?-= ; ()A B A B +++?-?= ;; ()T T T A B A B ?-?= ;()H H H A B A B ?-?= (6) 若2320++=A A I ,则A 一定相似于 (7)d dt tA e = ,d dt tA e -= ,dsin(At)dt = (8)2()A A += ;00A B + ??= ??? ; (, 0)0A A + + ??- ??? = (9)设A 的各列互相正交且模长为1,则 H A A +-= (10)(),ij A a =则 2 2 ,,()()H H ij ij i j i j A A a AA a -=-=∑∑tr ||tr || (11) 若 ()0H A A =tr 则A = (12) (正规阵无偏性)若A 是上三角形正规阵,则A 一定是 (13) 若0n n n n B D C ???? ??? 为正规阵, 则D = (14)021, ,103a A B b ???? == ? ????? 则A B ?的特征根为 (15) 0.2 0.30.210.5 0.20.310.30.4 0.21A x ???? ???== ??? ???? ?? ?, , 则谱半径(最大特征根) ()A ρ范围是 ;且A x ∞ = ;||A||∞= (16)01,10A -??= ??? 则 ()=A H A e e

矩阵理论在信号系统中的应用

五邑大学研究生矩阵理论论文

矩阵理论在信号系统中的应用 摘要:在20世纪50年代蓬勃兴起的航天技术的推动下,现代控制理论在上世纪60年代开始形成并得到了迅速的发展。现代控制理论的重要标志和基础就是状态空间方法。现代控制理论用状态空间法描述输入、状态、输出等各种变量间的因果关系。不但反映系统输入与输出的外部特性,而且揭示了系统内部的结果特性,可以研究更复杂而优良的控制算法。现代控制理论及使用于单变量控制系统,有适用于多变量控制系统,既可以用于线性定常系统,又可以用于线性时变系统,还可用于复杂的非线性系统。 本文主要介绍了连续时间线性时不变系统零输入响应运动分析,如何利用数学模型,求解线性定常系统的零输入响应问题。是矩阵理论中约当标准形和对角线标准形在线性系统理论中的一个很典型的应用。 状态与状态变量:系统在时间域中运动信息的集合称为状态。确定系统状态的一组独立(数目最少的)变量称为状态变量。它是能完整地确定地描述系统的时间行为的最少的一组变量。 状态向量:如果n 个状态变量用()1x t 、()2x t 、…()n x t 表示,并把这些状态变量看做是 向量X (t )的分量,则向量X (t )称为状态向量,记为()()()()12n x t x t X t x t ????? ?=???????? 或者()()()()12T n X t x t x t x t =???? 状态空间:以状态变量()1x t 、()2x t 、…()n x t 为坐标轴构成的n 维空间。 状态方程:描述系统的状态变量之间及其和系统输入量之间关系的一阶微分方程组 线性系统:满足叠加原理的系统具有线性特性 零输入响应:若输入的激励信号为零,仅有储能元件的初始储能所激发的响应,称为零输入响应。 一、线性系统状态方程: A :表示系统内部状态关系的系数矩阵 B :表示输入对状态作用的输入矩阵 从数学的角度上,就是相对于给定的初绐状态x0和外输入u (t ),来求解状态方程的解,即系统响应。解的存在性和唯一条件:如果系统A 、B 的所有元在时间定义区间 []0t t α上均为 t 的实值连续函数,而输入u(t)的元在时间定义区间[]0t t α上是连续 实函数,则其状态方程的解X(t)存在且唯一。 ()()[] ()()0 )0(x t t :)(x t t :0 000≥=+=∈=+=t x Bu A t t t x t Bu A x x x x 时不变时变α

矩阵理论

矩阵理论 通过学习矩阵理论这门课,发现在这个大数据的时代,矩阵理论是这个时代的基础学科,也是计算机飞速发展的引擎,它的重要性令我咂舌。一下内容是我对矩阵理论这门课程的总结和描述。 本门课程主要包含以下几部分内容:线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题。 一 线性方程组 对*m n 矩阵A 施行一次初等行变换(初等行变换),相当于在A 的左边(右边)乘以相应的m 阶(n 阶)初等矩阵。 由于现代计算机处理的数据越来越多,运行的任务越来越大,因此,对矩阵的处理复杂度就是我们关注的重点。 对行列式的拉普拉斯变换是将一个n 阶行列式的计算转化为n 个1n -阶行列式的计算,但是它的计算时间是!n 级。所以拉普拉斯展开定理在理论上非常重要,但在计算上一般仅用于低阶或特殊的行列式。 判断一个算法的优劣,有很多标准,包括时间复杂度和空间复杂度,显然,时间复杂度越小,说明算法效率越高,因此算法也越有价值;而空间复杂度越小,说明算法越好。但主要考虑时间复杂度,因为人生苦短嘛哈哈。 对于一些常用的()f n ,成立下列重要关系: 23(1)(log )()(log )()() (2)(3)(!)()n n n O O n O n O n n O n O n O O O n O n <<<<<<<<< LU 分解就是致力于对降低对方程组求解的复杂度。LU 分解就是在可以的情况下,将矩阵A 分解成单位下三角矩阵和一个上三角的乘积。这样的话,对Ax b =求解,可以转化为对Ly b =求解,然后对Ux y =求解。但是,不是每一个矩阵都可以这样分解,是要满足一定的要求的,这个要求就是矩阵A 的顺序主子式均不为零。 但是不满足这个条件的矩阵就不能分解了吗?当然不是啦!加入一个方阵A 不是顺序主子式不全为零的时候,但是通过行变换,可以满足要求,这样就得了下面这个定理。 如果存在置换矩阵P 、单位下三角矩阵L 与上三角矩阵U ,使得方阵A 满足P A L U =,称作带置换的LU 分解。

矩阵理论

1. 在R 22?中求矩阵 ?? ????=3021A 在基123111111,,,111000E E E ??????===????????????41000E ??=???? 下的坐标。 2. 试证:在R 22?中矩阵 123411111110,,,11011011αααα????????====????????????????线性无关,并求??????=d c b a α在1234,,,αααα下的坐标。 3. 在R 22?空间中,线性变换T : ()221240,2114T X X X R ?-????=∈???????? , 求T 在基123101111,,,000010ααα??????===????????????41111α??=???? 下的矩阵表示。 4. 设T 是线性空间3R 上的线性变换,它在R 3中基123,,ααα下的矩阵表示是 ???? ??????-=512301321A (1)求T 在基112123123,,ααααααβββ==+=++下的矩阵表示; (2)求T 在基123,,ααα下的核与值域。 5. 求下列矩阵的Jordan 标准及其相似变换矩阵P (1)??????????-----211212112 , (2)????? ???????-2000120010201012 . 6. 已知矩阵 310121013A -????=--????-??

验证A 是正规矩阵,并求A 的谱分解表达式。 7. 已知3阶矩阵 1114335A x y -????=????--?? 的二重特征值2λ=对应两个线性无关的特征向量 (1)求,x y ; (2)求可逆矩阵P ,使得1P AP -为对角矩阵; (3)求A 的谱分解表达式。 8. 已知矩阵 011101110A ????=?????? 验证A 是正规矩阵,并求A 的谱分解表达式。 9. 已知矩阵 024*********A ????????=???????? 验证A 是单纯矩阵,并求A 的谱分解表达式。 10. 设 000a a A a a a a ????=?????? 问a 取何值时,有lim 0k k A →∞ =。 11. 判断矩阵幂级数01 1634136k k ∞=??-??? ???-??? ?∑的敛散性。 12. 已知 13553 155A ????=????????,

矩阵论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4 A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出23,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 112211111 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-????????=+==?? ???????? n ∑。 2.设11 22 (1,0),0 a A P P a A E λλ-??===?? ?? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112222 0 0 000 0 0 a λλλλλλ?? ????==?????????????? 1时,知1i λ=±所以所求矩阵为1i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -??????===?????? --?????? 。 注:2 A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩阵,

2016矩阵论复习题

矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设33:R R T →是线性变换, ()()321323213212,,2,,x x x x x x x x x x x T -++-+= 求T 的零空间)(T N 和像空间)(T R 的基和维数. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++= 1)确定T 在基},,{k j i 下的矩阵; 2)求T 的像空间的基与维数.

矩阵理论报告

电子科技大学 矩阵理论课程报告 报告题目:线性投影非负矩阵分解 指导老师:高中喜 学生姓名:陈汪学号: 201521090515 专业:生命科学与技术学院

线性投影非负矩阵分解 摘要对非负矩阵分解迭代方法比较复杂的问题,提出了一种线性投影非负矩阵分解方法.从投影和线性变换角度出发,将Frobenius范数作为目标函数,利用泰勒展开式,严格导出基矩阵和线性变换矩阵的迭代算法,并证明了算法的收敛性.实验结果表明:该算法是收敛的;相对于非负矩阵分解等方法,该方法的基矩阵具有更好的正交性和稀疏性;人脸识别结果说明该方法具有较高的识别率.线性投影非负矩阵分解方法是有效的. 关键词投影非负矩阵分解,线性变换,人脸识别 Method for Linear Projective Non-negative Matrix Factorization Abstract To solve the problem that the iterative method for Non-negative Matrix Factorization,called Linear Projective Non-negative Matrix Factorization(LP-NMF) was proposed.LP-NMF,from projection and linear transformation angle,an objective function of Frobenius norm is considered.The Taylor series expansion is used.An itemtive algorithm for basis matrix and linear transformation matrix is derived strictly and a proof of algorithm convergence is provided.Experimental results show that the algorithm is convergent,and relative to Non-negative Matrix Factorization(NMF)and so on.The orthogonality and the sparseness of the basis matrix ale better,in face recognition,there is higher recognition accuracy.The method for LP-NMF is effective.Keywords Projective non-negative matrix hctorization,Linear transformafion,Face recognition X≈是从“对整体的感知由对组成整体的部分感知构成”观点出非负矩阵分解(NMF)WH 发而构建的数据处理方法.该方法揭示了描述数据的本质,并被广泛应用到数据降维、文本挖掘、光谱数据分析嘲、图像分析、人脸识别等诸多领域. X≈是基于线性变换Q而构建的.在LPBNMF 基于线性投影结构的非负矩阵分解(LPBNMF)WQX 中,提出了一个单调递减算法,定量地分析了基矩阵的正交性和稀疏性,并将它应用到有遮挡的人脸识别问题中. 本文基于LPBNMF方法,实现一种新的非负矩阵分解方法,我们称该方法为线性投影非负矩 X≈. 阵分解((Line project Non-negative Matrix Factorization, LPNUM)方法,WQX

矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业 姓名:学号: 学院:专业: 类别:组数: 成绩:

人口迁移问题和航班问题 (重庆大学 机械工程学院,机械传动国家重点实验室) 摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。 人口迁移问题 假设有两个地区——如南方和北方,之间发生人口迁移。每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示: 问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样? 解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。则我们可得,1=n 时,一年后北方和南方的人口为 ???+=+=001 00175.05.025.05.0y x y y x x (1-1) 将上述方程组(1-1)写成矩阵的形式 ??? ? ??= ??? ? ??0011y x A y x 其中 ?? ? ???=75.05.025.05.0A

2=n 时,两年后北方和南方的人口为 ???? ??=???? ??=???? ??0021122y x A y x A y x 依次类推下去,n 年后北方和南方的人口为 ???? ??=???? ??00y x A y x n n n (1-2) 现在只需求出n A 就可得出若干年后北方和南方的人口数。 下面将使用待定系数法[1]求n A )1)(25.0(25 .025.125 .05.0)75.0)(5.0(75 .05.025 .05 .02--=+-=?---=----= -λλλλλλλλλA E 所以 1,25.021==λλ 矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组 ???=+=+125.025.01010a a a a n 解方程组得 ??? ????-= +-=75.025.0175.025.025.010n n a a 所以 ?? ????+?--?+=-++-=+=++11 1025.05.025.05.05.025.025.025.05.025.075.0175 .025.0175.025.025.0n n n n n n n A E A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口

矩阵理论1

§4 线性变换的矩阵表示 引言:数域P 上线性空间V 上的所有线性变换组成的集合—L (V )是数域P 的线性空间。若V 是n 维线性空间,那么L (V )的维数是多少呢?L (V )与n n P ?之间具有什么关系?为此,我们先研究一下线性变换的矩阵表示。 一、线性变换在一组基下的矩阵表示: 设n εεε,,,21 是数域P 上的n 维线性空间V 的一组基,A 是V 上的一个线性变换,对V ∈?α,则有 n n k k k εεεα+++= 2211 )()()(11n n A k A k A εεα++=∴ 又),1()(n i V A i =∈ε 则有:)()()()(22112222112212211111*??? ?? ? ?+++=+++=+++=n nn n n n n n n n a a a A a a a A a a a A ε εεεεεεεεεεε 用矩阵形式表述(*)有 ? ??? ??? ??=nn n n n n n n a a a a a a a a a A A A 2 1222 21112112121),,())(),(),((εεεεεε 习惯上记上式左边为:),(21n A εεε,, 则有: A A n n ),(),(2121εεεεεε,,,, =;这就有了下面的定义: 1.Df 1.若A A n n ),(),(2121εεεεεε,,,, =则称A 为线性变换A 在基n εεε,,,21 下的矩阵,且可逆 若V ∈α在n εεε,,,21 下的坐标为??? ? ? ??n k k 1,那么)(αA 在基n εεε,,,21 下的坐标又如 何呢?

矩阵理论第3章习题解答

第三章 习题解答 1.求矩阵 1141?? =???? A 的谱分解. 解:(1) 求特征值 ()()12310E A λλλ-=-+=,所以特征值为123,1λλ==-. (2) 求特征向量:13λ=对应的特征向量为()11,2;T p = 21λ=-对应的特征向量为()21,2T p =-. (3)谱分解:令1211(,)22P p p ??==?? -??,则1 121124.1 124T T P ωω-?? ????==????????-???? 令1111 124,112T A p ω????==? ?????? ?2221 124,112T A p ω??-??==???? -???? 故谱分解式为123A A A =- 2 求单纯矩阵 296182051240825A -?? ?=- ? ?-?? 的谱分解式. 3.设()1,2,i i n λ= 是正规矩阵n A ∈C 的特征值,证明:()2 1,2,i i n λ= 是H A A 与H AA 的特征值. 证:根据题设矩阵A ,则A 酉相似与对角矩阵,即 ()12diag ,,,H n A U U λλλ= 其中U 为酉矩阵,则 ()() ()() 121 2 diag ,,diag ,,H H H H n n A A U U U U λλλλλλ= ( )222 12diag ,,,H n U U λλλ= 即H A A 的特征值为()2 1,2,i i n λ= ,同理可证()2 1,2,i i n λ= 也是H AA 的特征值。

4 设A 是n n ?阶的实对称矩阵,并且20,A =你能用几种方法证明0.A = 证:(1)设λ是矩阵A 的一个特征值,x 是对应于λ的一个非零特征向量,即 ,Ax x λ=220,A x x λ==所以20,λ=即0,λ=所以矩阵A 的特征值全为零,又A 酉相似与 对角矩阵()12diag ,,,n λλλ 所以0.A = (2)设0,A ≠则20,H A A A =≠与题设矛盾,所以结论成立。 5 试证:对于每一个实对称矩阵A ,都存在一个n 阶方阵S ,使3 A S =。 证:矩阵A 是一个对称矩阵,则A 酉相似于一个对角矩阵,即 ()H 12diag ,,,,n λλλ= A U U 令12111 333diag ,,n λλλ??= ??? D ,则()3 12diag ,,.n λλλ= D 又由()()()3H H H H .==A UD U UDU UDU UDU 令H ,=S UDU 则3=A S 。 7 证明:一个正规矩阵若是三角矩阵,则它一定是对角矩阵. 证明参考课本101页引理3必要性的证明. 8 证明:正规矩阵是幂零阵() 2 0=A 的充要条件是0.=A 证:充分性:0.=A 则结论显然。 必要性:若() 2 0=A ,由题设矩阵A 是正规矩阵,则A 酉相似于一个对角矩阵,即 ()12diag ,,,H n λλλ= A U U () 222221diag ,,0,n H λλλ== A U U 即 () 22221diag ,,0n λλλ= 所以,可得 120,n λλλ==== 即0.=A 结论成立。 9 求矩阵324262423--????=--????--?? A 的谱分解式,并给出n A 的表达式。 解:矩阵A 的特征值:()()()2 det 27,λλλ-=+-E A 所以矩阵A 的特征值为 12,32,7λλ=-=。

上海交大研究生矩阵理论答案

n k r n n 1 2 习题 一 1.( 1)因 cosnx sin nx sin nx cosnx cosx sin x sin x = cosx cos(n sin(n 1)x 1)x sin( n cos(n 1)x 1)x ,故由归纳法知 cosnx sin nx A 。 sin nx cosnx ( 2)直接计算得 A 4 E ,故设 n 4 k r (r 0,1,2,3) ,则 A n A 4 k A r ( 1) A , 即 只需算出 A 2, A 3 即可。 0 1 0 1 ( 3 )记 J= ,则 , 1 0 n 1 n 1 2 n 2 n a C n a C n a C n a n C 1 a n 1 C n 1a A n (aE J ) n n C i a i J n i i 0 n n a n 。 C 1a n 1 a n 2. 设 A P 1 a 2 P 1(a 1,0),则由A 2 E 得 a 1时, 1 1 1 1 0 1 2 1 2 1 0 2 不可能。 1 而由 a 1 0时, 2 1 知 1 所以所求矩阵为 PB P 1 , 其中 P 为任意满秩矩阵,而 i i 2 2 2 1 0 1 0 1 0 B 1 , B 2 , B 3 。 0 1 0 1 1 注: A 2 E 无实解, A n E 的讨论雷同。 3. 设 A 为已给矩阵,由条件对任意 n 阶方阵 X 有 AX=XA ,即把 X 看作 n 2 个未知数时线 性方程 AX XA=0 有 n 2 个线性无关的解, 由线性方程组的理论知其系数矩阵为零矩阵, 1

矩阵论在电路中的应用

矩阵论在电路分析中的应用 随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法业已成为现代科技领域必不可少的工具。诸如数值分析、优化理论、微分方程、概率统计、控制论、力学、电子学、网络等学科领域都与矩阵理论有着密切的联系,甚至在经济管理、金融、保险、社会科学等领域,矩阵理论和方法也有着十分重要的应用。当今电子计算机及计算技术的迅速发展为矩阵理论的应用开辟了更广阔的前景。因此,学习和掌握矩阵的基本理论和方法,对于工科研究生来说是必不可少的。全国的工科院校已普遍把“矩阵论”作为研究生的必修课。 对于电路与系统专业的研究生,矩阵论也显得尤为重要。本文以电路与系统专业研究生的必修课《电网络分析与综合》为例,讲解矩阵论的重要作用。 在电路分析中,对于一个有n个节点,b条支路的电路图, 每条支路的电压和电流均为未知,共有2b个未知量。根据KCL 我们可以列出(b-1)个独立的方程,根据KVL我们也可以列出 (b-n+1)个独立的方程,根据每条支路所满足的欧姆定律,我 们还可以可以列出b个方程;总共2b个方程要解出b个支路电 流变量和b个支路电压变量。当b的数值比较大时,传统的解数学方程组的方法已经不再适用了,因此我们需要引入矩阵来帮助我们求解电路。 一. 电网络中最基本的三个矩阵图 1 1.关联矩阵

在电路图中,节点和支路的关联性质可以用关联矩阵][ij a A =来表示。 选取一个节点为参考节点后,矩阵A 的元素为: ?????-+=个节点无关联条支路与第第方向指向节点个节点相关联,且支路条支路与第第方向离开节点个节点相关联,且支路条支路与第第i j i i j i i j a ij 0 1 1 图1中电路图的关联矩阵为 ????????????= 0 1- 0 1- 1- 0 0 1- 0 0 0 1 1 0 0 0 0 0 0 1- 1-0 0 1- 1 0 0 1 A 2. 基本回路矩阵 在电路图中,基本回路和支路的关联性质可以用基本回路矩阵][ij f b B =来表示。当选定电路图中的一个树,额外再增加一个连枝的时候,就会形成一个基本回路。选取基本回路的方向与它所关联的连枝方向一致,矩阵f B 的元素为: ?? ???-+=个回路无关联条支路与第第反方向和基本回路方向相个回路相关联,且支路条支路与第第同方向和基本回路方向相个回路相关联,且支路条支路与第第i j i j i j b ij 0 1 1 图1中电路图的基本回路矩阵为 ???? ??????=1 0 0 1- 1 0 0 0 1 0 1- 1 1- 1 0 0 1 0 1- 1 1-f B 3. 基本割集矩阵 在电路图中,基本割集和支路的关联性质可以用基本割集矩阵][ij f q Q =来表示。当选

矩阵理论作业

矩阵理论在钻柱力学分析方面的应用 摘要:钻柱力学是井眼轨道设计和控制、钻柱设计及钻井参数优选的基础。本文主要从钻柱力学与井眼轨迹控制出发,以弹塑性力学为基础,对多稳定器旋转钻下部钻具、带弯外壳下部钻具以及导向钻具力学性能进行了力学分析,并结合矩阵理论的方法将问题简化,最后对方程求解,并对计算结果进行了分析。 引言:钻柱力学是指应用数学、力学等基础理论和方法,结合实验以及井场资料等数据综合研究受井眼约束的钻柱的力学行为的工程科学。开展钻柱力学研究,对钻柱进行系统、全面、准确的力学分析,在井眼轨道设计与控制、钻柱强度校核、钻柱结构和钻井参数优化等方面都具有重要意义。 1下部钻具力学分析方法 钻柱力学研究从最初的解决防斜打直问题,发展到解决定向井轨迹控制问题,从一维、二维发展到三维,从静态发展到动态。最终形成了集中比较典型的研究方法,即:微分方程法、能量法、有限差分法、纵横弯曲连续梁法和有限元法。 1.1微分方程法 经典微分方程法是钻柱力学中应用最早的研究方法。该方法要求在满足经典材料力学的基本假设的前提下,建立钻柱线弹性的经典微分方程并求解。这种方法在考虑因素较多时,建立的微分方程很复杂,用经典微分方程法求解比较困难。 1.2能量法 能量法是一种求解简单的弹性力学问题的方法。它要求势能函数不仅要满足弹性力学的控制方程,而且要满足边界条件,通过解的形式的假设及有关参数的确定,可得到问题的解答。由于满足以上2个条件是一件非常困难的事情。因此,这一方法的应用受到了限制。

1.3有限差分法 有限差分法是一种近似方法。是通过对钻柱进行力学分析得到钻柱微分方程式,再通过适当的差分转换将位移控制方程转化为差分的形式求解。由于差分方程的系数是可变的,因此可以很容易考虑非线性的影响;同时,由于差分区间可以减小,可以比较容易考虑井眼的约束。但是要得到精确的解,答,差分区间必须取得很小,这样就使矩阵的维数增加,降低了计算速度。对于钻柱力学来说,有限差分法是一种有效的近似计算方法。 1.4纵横弯曲连续梁法 纵横弯曲连续梁法是一种精确解法,这种方法是将钻柱视为相互联系的纵横弯曲的连续梁,应用材料力学中的三弯矩方程建立一组非线性代数方程,该方程物理概念清楚,计算简单,且速度较快。由于这种方法是将三维空间问题分解成2个独立的二维问题求解,力学模型简化得太多,忽略了扭矩及可能的力和变形的耦合问题。这种方法在国内得到了推广和应用。 1.5有限元法 有限元法是一种近似数值计算方法,这种方法是通过将钻柱分解为有限的离散梁单元,再通过适当的合成方法将这些单元组合成一个整体,用以代表原来的钻柱状态,并最终得到一组以节点位移为未知量的代数方程组。有限元法的物理概念清楚、简单,实用性强。不限制钻柱的材料和几何形状,且对单元尺寸也无严格的要求;又可以较容易地考虑非线性的影响。目前发展的接触有限元法,考虑了钻柱、稳定器与井壁之间的初始接触摩擦力,力学模型比较准确,考虑因素较多,解题的速度虽然是这几种方法中最慢的,但也可满足需要。

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空 间和列空间. 2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。 3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。 4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。 5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ???? ? ??101010001 6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。 7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ???? ?????? ?????? ?????? ??1000010000100001 8、 通过施密特正交化可以获得矩阵的QR 分解。 9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。 10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。 二、判断题 1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。(R ) 2、两个子空间的并集是一个子空间。(F ) 3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。(F ) 4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。(R ) 5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。(F ) 6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。(F ) 7、任何N ×N 的实矩阵都可以对角化。(F ) 8、矩阵的左逆就是矩阵的最小范数广义逆。(F ) 9、任何M ×N 实矩阵都有奇异值分解。(R ) 10、正交投影矩阵都是幂等矩阵。(R ) 三、(矩阵的四个基本子空间和投影矩阵) 设矩阵A 为 A=??? ? ??4242 1、求矩阵A 的四个基本子空间的基和维数 初等变换 ??? ? ??0042 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ???? ??22 R(T A )的基 ???? ??42 N(A)的基???? ??-12 N(T A )的基 ??? ? ??-11 2、画出矩阵A 的四个基本子空间的示意图。 自己画很好弄 3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

【免费下载】控制中的矩阵理论习题

练习一: 1.设A 、是Hermite 矩阵,证明:AB 是Hermite 矩阵的充分必要条件是n n C B ?∈AB=BA 。2.设,若,则A 为反Hermite 矩阵。试证明:任意一个都n n C A ?∈A A H -=n n C B ?∈可以唯一地表示为一个Hermitet 矩阵与一个反Hermite 矩阵的和。3.证明反Hermite 矩阵的主对角线上的元素或为零,或为纯虚数。4.设是Hermite 矩阵,rank(A)=1,证明:矩阵A 的主对角线上凡不是零的元素n n C A ?∈都是具有同符号的实数;又设是反Hermite 矩阵,rank(B)=1,证明:矩阵B n n C B ?∈的主对角线上凡不是零的元素都是具有同符号的虚部之纯虚数。5.试求一酉矩阵P ,使为对角矩阵,这里AP P AP P H =-1(1)A=; (2)A=。??????????----10001i i i i ??????????-0010010i i 6. 设是Hermite 矩阵。证明A 是Hernite 正定矩阵的充分必要条件是,存在n n C A ?∈Hermite 正定矩阵B ,使得。2 B A =7.设是Hermite 矩阵,则下列条件等价:n n C A ?∈ (1)A 是Hernite 半正定矩阵; (2)A 的特征值全为非负实数; (3)存在矩阵,使得。n n C P ?∈P P A H =练习二:1.用初等变换化下列多项式矩阵为Smith 标准形:(1) ; (2);()???? ??+-=λλλλλλλ352223A ()??????????-+--=222211λλλλλλλλλλB (3) ;(4)()()220000 001C λλλλλ??+??=????+????。()()??????????????---=00000100000002222λλλλλλλD 2.求下多项式矩阵的不变因子:

矩阵理论习题解答等材料

西南科技大学研究生试题单(B 卷) (2014级高等工程数学A) 第一部分 矩阵理论(共32分) 1、(8分)填空题 (1)每个n 阶矩阵都相似于一个 矩阵。 (2)n n A C ?∈,A 为正规矩阵的充要条件是A 对角形矩阵。 (3)正交变换在规范正交基下的矩阵是 矩阵。 (4)A 的最小多项式 A 的零化多项式。 2、(6分) 求4R 的子空间 1234123412341234{(,,,)|0},{(,,,)|0} V a a a a a a a a W a a a a a a a a =-+-==+++= 的交V W I 的一组基。 3、(8分) 已知11111 1,012A -?? ? = ? ?-??计算5432()2822g A A A A A E =-++-。 4、(10分)求矩阵213121242A -?? ? = ? ??? 的Doolittle 分解和LDU 分解。 第二部分 数值分析(共36分) 5、 (4分)解答下列各题 设函数2015201420131 ()5.2015! f x x x x = ++,求差商0120142015[2,2,2,2]?f =L 6、(8分)设函数4 ()f x x =,不直接用拉格朗日插值公式,而用拉格朗日余项公式求出以1,0,1,2x =-为插值节点的三次插值多项式3().L x 7、(8分)设有求积公式 2 120 ()(0)(1)(2)f x dx a f a f a f ≈++? 试确定系数012,,a a a 使上述公式的代数精度尽量高,且指出其代数精度。 8、(8分)已知方程组

1231231 23102212100.51.931 x x x x x x x x x --=?? -+-=??--+=? (1) 构造Jacobi 迭代法的迭代格式,迭代格式是否收敛?说明理由; (2) 取(0) (0,0,0)T x =,用上述迭代法来计算一步迭代值(保留小数点后4位)。 9、(8分)若求解初值问题为 2 4,015(0)1x y y x y y ?' =-≤≤?? ?=? , 试写出Euler 方法求解的迭代格式(0.2)h =,并计算(0.2),(0.4)y y 的值(保留小数点后至少8位)。 第三部分 数理统计(共32分) 10、(6分)总体X 的一组容量为5的样本观测值为8,2,5,3,7. 求样本方差2 S 及经验分布函数5()F x 。 11、(6分)设12,,n X X X L 是取自总体X 的样本, 若总体X 密度函数为 (1),01 ()(1)0, x x f x ,其它θθθ?+<-???,求θ的极大似然估计量。 12、(10分)设两种番茄汁的维生素C 含量分别服从正态分布,且方差相等,现各取10瓶测量维生素C 含量,算得: 22 30.97,21.79,=267=211x y x y s .,s .**== 试问两种番茄汁的维生素C 含量有无显著差异%(=1)α? 13、(10分)某机器的使用时间与维修费用的统计数据如下表: 试求对的经验回归直线方程。 附查表值: 0990995(18) 2.5524,(18) 2.8784t t ??==。

相关主题
文本预览
相关文档 最新文档