当前位置:文档之家› 模拟信号数字传输系统课程设计(唐山学院)

模拟信号数字传输系统课程设计(唐山学院)

模拟信号数字传输系统课程设计(唐山学院)
模拟信号数字传输系统课程设计(唐山学院)

前言

1837年,莫尔斯完成了电报系统,此系统于1844年在华盛顿和巴尔迪摩尔之间试运营,这可认为是电信或者远程通信,也就是数字通信的开始。

数字化可从脉冲编码调制开始说起。1937年里夫提出用脉冲编码调制对语声信号编码,这种方法优点很多。例如易于加密,不像模拟传输那样有噪声积累等。但在当代代价太大,无法实用化;在第二次世界大战期间,美军曾开发并使用24路PCM系统,取得优良的保密效果。但在商业上应用还要等到20世纪70年代。才能取代当时普遍采用的载波系统。我国70代初期决定采用30路的一次群标准,80年代初步引入商用,并开始了通信数字化的方向。数字化的另一个动向是计算机通信的发展。随着计算机能力的强大,并日益被利用,计算机之间的信息共享成为进一步扩大其效能的必需。60年代对此进行了很多研究,其结果表现在1972年投入使用的阿巴网。

由此可见,通信系统中的信息传输已经基本数字化。在广播系统中,当前还是以模拟方式为主,但数字化的趋向也已经明显,为了改进质量,数字声频广播和数字电视广播已经提前到日程上来,21世纪已经逐步取代模拟系统。尤为甚者,设备的数字化,更是日新月异。近年来提出的软件无线电技术,试图在射频进行模数,把调制解调和锁相等模拟运算全部数字化,这使设备超小型化并具有多种功能,所以数字化进程还在发展。

Simulink工具是MATLAB软件提供的可以实现动态系统建模和仿真的软件包,它让用户把精力从语言编程转向仿真模型的构造,为用户省去了很多重复的代码编写工作。Simulink中的每个模块对我们来说都是透明的,我们只须知道模块的输入、输出和每个模块的功能,而不需要关心模块内部是如何实现的,留给我们的事情就是如何利用这些模块来建立仿真模型以完成自己的任务。至于Simulink中的各个模块在运行时是如何执行,时间是如何采样的,事件是如何驱动的等问题,我们可以不去关心。正是由于Simulink具有这些特点,所以它被广泛应用在通信仿真中。

1 模拟信号数字化传输原理

1.1 模拟信号的数字化传输

模拟信号的数字传输是指把模拟信号先变换为数字信号后,再进行传输。由于与模拟传输相比,数字传输有着抗干扰能力强、差错可控等众多优点,因而此技术越来越受到重视。模/数变换是把模拟基带信号变换为数字基带信号,尽管后者的带宽会比前者大得很多,但本质上仍属于基带信号。这种传输可直接采用基带传输,或经过数字调制后再做频带传输。

图1-1 模拟信号数字化流程图

数字化包括抽样、量化、编码三个步骤,如图1-1所示:抽样完成时间离散量化过程,所得抽样值m(kT)为PAM信号;量化完成复制离散化过程,所得量化信号值m q(kT)为多电平PAM信号;编码完成多进制到二进制的变化过程,所得s(t)是二进制编码信号。

2仿真工具Simulink

美国Mathworks公司于1967年推出了矩阵实验室―Matrix Laboratory‖(缩写为Matlab)这就是Matlab最早的雏形。开发的最早的目的是帮助学校的老师和学生更好的授课和学习。从Matlab诞生开始,由于其高度的集成性及应用的方便性,在高校中受到了极大的欢迎。由于它使用方便,能非常快的实现科研人员的设想,极大的节约了科研人员的时间,受到了大多数科研人员的支持,经过一代代人的努力,目前已发展到了7.X版本。Matlab是一种解释性执行语言,具有强大的计算、仿真、绘图等功能。由于它使用简单,扩充方便,尤其是世界上有成千上万的不同领域的科研工作者不停的在自己的科研过程中扩充Matlab的功能,使其成为了巨大的知识宝库。目前的Matlab版本已经可以方便的设计漂亮的界面,它可以像VB等语言一样设计漂亮的用户接口,同时因为有最丰富的函数库(工具箱),所以计算的功能实现也很简单,进一步受到了科研工作者的欢迎。另外,Matlab和其它高级语言也具有良好的接口,可以方便的实现与其它语言的混合编程,进一步拓宽了Matlab的应用潜力。可以说,Matlab已经也很有必要成为大学生的必修课之一,掌握这门工具对学习各门学科有非常重要的推进作用。

Simulink是Matlab中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。确切的说,Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,连续、离散时间模型,或者是两者的混合。系统还可以使多种采样频率的系统,而且系统可以是多进程的。Simulink工作环境经过几年的发展,已经成为学术和工业界用来建模和仿真的主流工具包。在Simulink环境中,它为用户提供了方框图进行建模的图形接口,采用这种结构画模型图就如同用手在纸上画模型一样自如、方便,故用户只需进行简单的点击和拖动就能完成建模,并可直接进行系统的仿真,快速的得到仿真结果。它的主要特点在于建模方便、快捷,易于进行模型分析,优越的仿真性能。它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。Simulink模块库(或函数库)包含有Sinks(输出方式)、Sources (输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和Extra(其它环节)等具有不同功能或函数运算的Simulink库模块(或库函数),而且每个子模型库中包含有相应的功能模块,用户还可以根据需要定制和创建自己的模块。用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的结构和各模块之间的相互关系。在

定义完一个模型后,用户可以通过Simulink的菜单或Matlab的命令窗口键入命令来对它进行仿真。菜单方式对于交互工作非常方便,而命令行方式对于运行仿真的批处理非常有用。采用Scope模块和其它的显示模块,可以在仿真进行的同时就可立即观看到仿真结果,若改变模块的参数并再次运行即可观察到相应的结果,这适用于因果关系的问题研究。仿真的结果还可以存放到Matlab的工作空间里做事后处理。模型分析工具包括线性化和整理工具,Matlab的所有工具及Simulink本身的应用工具箱都包含这些工具。由于Matlab和Simulink的集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改模型。但是Simulink不能脱离Matlab而独立工作。

电子设计选择用Simulink而不是直接用Matlab编程,一定程度上减小了设计难度,而且设计效果更加直观。在库函数中可以找到相应的滤波器,乘法器等等,而且可以通过参数设置,近似的实现实际中的效果,因此能够更好地反映实际通信系统的情况。

3模拟信号数字化传输系统设计与仿真

3.1 模拟信号的抽样

模拟信号通常是时间上连续的信号。在一系列离散点上,对这种信号抽取样值称为抽样,如图1-1所示。图中m (t )是一个模拟信号,在等时间间隔T 上,对它抽取样值。在理论上,抽样过程可以看作使用周期性单位冲激脉冲(impulse )和此模拟信号相乘。抽样结果得到的是一系列周期性的冲激脉冲,其面积和模拟信号的取值成正比。该模拟信号经过抽样后还应当包含原信号中所有的信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定的。冲激脉冲在图3-1中用一些箭头表示,实际上,是用周期性窄脉冲代替冲激脉冲与模拟信号相乘。

抽样定理指出:设一个连续模拟信号m (t )中的最高频率

()()()t t m t m T s δ= (3-1)

模拟信号、冲激脉冲和抽样信号的频谱如图3-1(b),(d),(f)所示。由图3-2可知:抽样信号m s (t )的频谱就是将原始信号m (t )的频谱M (ω)在频率轴上以采样角频率ωs =2f s 为周期进行周期延拓后的结果。

由抽样信号m s (t )的频谱M s (ω)可以看出,如果ωs >2ωH (即f s >2f H ),那么各相邻频移后的频谱不会发生重叠。为此,在抽样之前,先设置一个前置低通滤波器,将模拟信号的带宽限制在fh 以下,如果前置低通滤波器特性不良或者抽样频率过低都会产生折叠噪声。抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。

另外要注意的是,采样间隔的 周期要足够的小,采样率要做够的大,要不然会出现如下图所示的混叠现象,一般情况下TsWs=2π,Wn>2Wm 。

图3-1 模拟信号的抽样过程

这里就能设法(如利用低通滤波器)从抽样信号的频谱M s(ω)中得到原信号的频谱,即从取样信号m s(t)中恢复原信号m(t),如图3-2所示。如果ωs<2ωH,那么频移后的各相邻频谱将相互重叠,这样就无法将它们分开,因而也不能再恢复原信号。频谱重叠的这种现象常称为混叠现象。可见,为了不发生混叠现象,必须满足ωs≥2ωH。

图3-2 模拟信号的恢复

3.1.2模拟信号抽样的设计

图3-3 模拟信号抽样设计图

根据抽样定理的内容,对抽样过程进行设计。输入信号为一频率为10Hz的正弦波,观察对于同一输入信号有不同的抽样频率时,恢复信号的不同形态。

双击示波器设置示波器的参数,单击示波器Scope界面左上角第二个Parameters键,在弹出的对话框中设置参数:在General页面的Numbers of Axes 项中设置需要观察的波形路数。

基带信号的采样定理是指,对于一个频谱宽度限制于B Hz的基带连续时间信号,可惟一地被均匀间隔不大于12B秒的样值序列所确定。采样定理表明,如果以不小于2B次/秒的速率对基带仿真信号均匀采样,那么所得到的样值序列就包含了基带信号的全部信息,换句话说,就是通过该序列可以无失真地重建对应的基带仿真信号。如果采样率低于基带信号最高频率的2倍,那么采样输出序列的频谱就会发生交迭,从而无法恢复原基带仿真信号。

此时令输入信号为一频率为10Hz的正弦波,使抽样频率分别为1/30、0.05、0.2时,使恢复信号出现在示波器上,在示波器上观察恢复信号的不同形态,得到的结果如下:

通信原理课程设计

(1)当抽样频率大于信号频率的两倍

(2)当抽样频率等于信号频率的两倍

(3)当抽样频率小于信号频率两倍

3.2 抽样信号的量化

3.2.1 抽样信号量化原理

量化就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。

从数学上来看,量化就是把一个连续幅度值的无限数集合映像成一个离散幅度值的有限数集合。一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。

如公式3-2所示,量化器输出L 个量化值y k ,k =1,2,3,…,L 。y k 常称为重建电平或量化电平。当量化器输入信号幅度x 落在x k 与x k+1之间时,量化器输出电平为y k 。这个量化过程可以表达为:

{}1(),1,2,3,,k k k y Q x Q x x x y k L +==<≤== (3-2)

图3-4 量化器 这里x k 称为分层电平或判决阈值。通常Δk =x k+1-x k 称为量化间隔。

模拟信号的量化分为均匀量化和非均匀量化。

均匀量化:采用相等的量化间隔对采样得到的信号作量化,那么这种量化称为均匀量化。均匀量化就是采用相同的―等分尺‖来度量采样得到的幅度,也称为线性量化。量化后的样本值Y 和原始值X 的差E =Y -X 称为量化误差或量化噪声。均匀量化示意图,如图3-5所示:

图3-5 均匀量化示意图

用这种方法量化输入信号时,无论对大的输入信号还是小的输入信号一律都采用相同的量化间隔。为了适应幅度大的输入信号,同时又要满足精度要求,就需要增加样本的位数。但是,对话音信号来说,大信号出现的机会并不多,增加的样本位数就没有充分利用。为了克服这个不足,就出现了非均匀量化的方法。

非均匀量化:非均匀量化是根据信号的不同区间来确定量化间隔的。对于信号取值小的区间,其量化间隔Δv 也小;反之,量化间隔就大。它与均匀量化相比,有两个突出的优点。首先,当输入量化器的信号具有非均匀分布的概率密度(实际中常常是这样)时,非均匀量化器的输出端可以得到较高的平均信号量化噪声功率比;其次,非均匀量化时,量化噪声功率的均方根值基本上与信号抽样值成比例。因此量化噪声对大、小信号的影响大致相同,即改善了小信号时的量化信噪比。

实际中,非均匀量化的实际方法通常是将抽样值通过压缩再进行均匀量化。通常使用的压缩器中,大多采用对数式压缩。广泛采用的两种对数压缩律是μ压缩律和A 压缩律。美国采用μ压缩律,我国和欧洲各国均采用A 压缩律,所谓A 压缩律也就是压缩器具有如下特性的压缩律:

1110ln 1ln 1ln 1≤≤≤

A x A Ax A Ax y (1-2) 由于A 律压缩实现复杂,常使用13折线法编码,压扩特性图如下图所示:

图3-6 A 律函数13折线压扩特性图

这样,它基本上保持了连续压扩特性曲线的优点,又便于用数字电路实现,

表3-1 13折线时的x 值与计算x 值的比较

y

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1 A 律的x 值

0 1/128 1/60.6 1/30.6 1/15.4 1/7.79 1/3.93 1/1.98 1 13折线法的

x

0 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 折线段号

1 2 3 4 5 6 7 8 折线斜率

16 16 8 4 2 1 1/2 1/4 表1-1中第二行的x 值是根据A =87.6时计算得到的,第三行的x 值是13折线分段时的值。可见,13折线各段落的分界点与A 律曲线十分逼近,同时A 律按2的幂次分割有利于数字化。

所谓编码就是把量化后的信号变换成代码,其相反的过程称为译码。当然,这里的编码和译码与差错控制编码和译码是完全不同的,前者是属于信源编码的范畴。把量化的电平值表示成二进制码组的过程称为编码。将模拟信号的经过在现有的编码方法中,若按编码的速度来分,大致可分为两大类:低速编码和高速编码。通信中一般都采用第二类。编码器的种类大体上可以归结为三类:逐次比较型、折叠级联型、混合型。在逐次比较型编码方式中,无论采用几位码,一般均按极性码、段落码、段内码的顺序排列。下面结合13折线的量化来加以说明。

表3-2 段落码

段落序号段落码段落序号段落码

8 111 4 011

7 110 3 010

6 101 2 001

5 100 1 000

在13折线法中,无论输入信号是正是负,均按8段折线(8个段落)进行编码。若用8位折叠二进制码来表示输入信号的抽样量化值,其中用第一位表示量化值的极性,其余七位(第二位至第八位)则表示抽样量化值的绝对大小。

具体的做法是:用第二至第四位表示段落码,它的8种可能状态来分别代表8个段落的起点电平,如表1-2所示。其它四位表示段内码,它的16种可能状态来分别代表每一段落的16个均匀划分的量化级,如表1-3所示。这样处理的结果,8个段落被划分成27=128个量化级。

表1-3 段内码

量化级段内码量化级段内码

15 117 01

14 11 6 01

13 11 5 01

12 11 4 01

11 10 3 00

10 10 2 00

9 10 1 00

8 100 00

3.2.2模拟信号量化的设计图

A 律PCM 数字电话系统国际标准中,参数A =87.6。Simulink 通信模块库中提供了A-Law Compressor 、A-Law Expander 来实现A 律压缩扩张计算。

仿真模型如图2-2所示,其中量化器的量化级为8,级数值设为1/8。

A-Law

Compressor模块和A-Law Expander模块的A律压缩系数为87.6。输入信号为0.5Hz的锯齿波,幅度为1。增益Gain为-1。

压缩系数为87.6的A律压缩扩张曲线可以用折线来近似。其中靠近原点的4段折线的斜率相等,可视为一段,因此总折线数为13段,故称13段折线近似。用Simulink中的Lookup Table查表模块可以实现对13段折线近似的压缩扩张计算的建模,其中,压缩模块的输入值向量设置为[-1,-1/2,-1/4,-1/8,-1/16,-1/32,-1/64,-1/128,0,1/128,1/64,1/32,1/16,1/8,1/4,1/2,1],输出值向量设置为[-1,-7/8,-6/8,-5/8,-4/8,-3/8,-2/8,-1/8,0,1/8,2/8,3/8,4/8,5/8,6/8,7/8,1],扩张模块的设置与压缩模块的设置相反。

通信原理课程设计

观察上面两图波形,可以得到如下结论:A 律与13折线仿真结果相似。

3.3 PCM

3.3.1 PCM 原理 脉冲编码调制(PCM

)简称脉码调制,它是一种用二进制数字代码来代替连续信号的抽样值,从而实现通信的方式。由于这种通信方式抗干扰能力强,因此在光钎通信、数字微波通信、卫星通信中均获得了极为广泛的运用。脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。它的抽样速率的下限是由抽样定理确定

的。抽样速率采用8Kbit/s。量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。编码,就是用一组二进制码组来表示每一个有固定电平的量化值。然而,实际上量化是在编码过程中同时完成的,故编码过程也称为模/数变换,可记作A/D。PCM信号的形成是模拟信号经过―抽样、量化、编码‖三个步骤实现的。分别完成时间上离散、幅度上离散、及量化信号的二进制表示。根据CCITT的建议,为改善小信号量化性能,采用压扩非均匀量化,有两种建议方式,分别为A律和μ律方式,我国采用了A律方式,由于A律压缩实现复杂,常使用13 折线法编码。由前面的原理介绍我们可以知道PCM系统包括模拟信号转换为数字信号模块、信道传输模块、数字信号还原模拟信号模块等三个模块。其中模拟信号转换为数字信号模块把连续的模拟信号转换为用二进制代表的数字信号,它由抽样、量化、编码三个步骤组成;信道是信号传输的通道,在传输过程中可能会引入噪声而影响信号的质量;数字信号还原模拟信号解码、低通、放大等过程组成,它把数字信号恢复称连续的模拟信号。其原理方框图如图3-7所示:

3.3.2 PCM编译码系统的设计

图3-8 PCM解码器、解码器设计图

限制信号变化范围,设置Saturation的参数-1到1。设置继电器,在两个常数中选出一个作为输出,Output when on设为1,Output when on设为0,Sample time值设为0.001,以后此值也如此设置。输入输出绝对值,Sample time值设为0.001。增益设置,即将模块的输入乘以一个数值,为127。比特输出设置输出为7bit,混合器mux设为7。

其中以Saturation作为限幅器,讲输入信号幅值限定在PCM定义的范围内,Relay模块的门限设置为0,其输出可作为PCM编码输出的最高位——极性码。样值取绝对值后,以上图所示的查表模块进行13折线压缩,并用增益模块将样值范围放大到0到127内,然后用间距为1的量化器进行四舍五入取整,最后将整数编码为7bit二进制序列,作为PCM编码的低7位。可以将该模型中虚线所围部分封装为一个PCM编码子系统备用。

PCM译码器中首先分离并行数据中的最高位(极性码)和7位数据,然后将7bit数据转换为整数值,再进行归一化、扩张后与双极性的极性码相乘得出解码值。可以将该模型中虚线所围部分封装为一个PCM译码子系统备用。

3.3.3 PCM编码模块设计

将编码模块封装成子系统后如图3-9所示:

图3-9 封装之后的PCM编码子系统:

图3-10 封装之后的PCM编码子系统图标3.3.4 PCM解码模块设计

将此解码系统封装成子系统后如图3-11所示:

图3-11 封装之后的PCM解码子系统

图3-12 封装之后的PCM解码子系统图标

3.3.5 PCM系统总体模块

图3-13 PCM系统总体模块

PCM编码波形

数字信号处理考试试题及答案

数字信号处理试题及答案 一、 填空题(30分,每空1分) 1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散时间 信号, 再进行幅度量化后就是 数字 信号。 2、已知线性时不变系统的单位脉冲响应为)(n h ,则系统具有因果性要求 )0(0)(<=n n h ,系统稳定要求∞<∑∞ -∞=n n h )(。 3、若有限长序列x(n)的长度为N ,h(n)的长度为M ,则其卷积和的长度L 为 N+M-1。 4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率—傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、 离散频率—离散傅里叶变换 5、 序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆上 的N 点等间隔采样。 6、若序列的Fourier 变换存在且连续,且是其z 变换在单位圆上的值,则序列 x(n)一定绝对可和。 7、 用来计算N =16点DFT ,直接计算需要__256___次复乘法,采用基2FFT 算 法,需要__32__ 次复乘法 。 8、线性相位FIR 数字滤波器的单位脉冲响应()h n 应满足条件 ()()1--±=n N h n h 。 9. IIR 数字滤波器的基本结构中, 直接 型运算累积误差较大; 级联型 运 算累积误差较小; 并联型 运算误差最小且运算速度最高。 10. 数字滤波器按功能分包括 低通 、 高通 、 带通 、 带阻 滤 波器。 11. 若滤波器通带内 群延迟响应 = 常数,则为线性相位滤波器。 12. ()?? ? ??=n A n x 73cos π错误!未找到引用源。的周期为 14 13. 求z 反变换通常有 围线积分法(留数法)、部分分式法、长除法等。 14. 用模拟滤波器设计IIR 数字滤波器的方法包括:冲激响应不变法、阶跃响 应不变法、双线性变换法。

数字信号处理试题

一、 单 项选择题 1. 序列x(n)=Re(e jn π/12 )+I m (e jn π/18 ),周期为( )。 A. 18π B. 72 C. 18π D. 36 2. 设C 为Z 变换X(z)收敛域内的一条包围原点的闭曲线,F(z)=X(z)z n-1 ,用留数法求X(z)的反变换时( )。 A. 只能用F(z)在C 内的全部极点 B. 只能用F(z)在C 外的全部极点 C. 必须用收敛域内的全部极点 D. 用F(z)在C 内的全部极点或C 外的全部极点 3. 有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是( )。 A. h(n)=h(N-n) B. h(n)=h(N-n-1) C. h(n)=h(-n) D. h(n)=h(N+n-1) 4. 对于x(n)= n )21(u(n)的Z 变换,( )。 A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21 C. 零点为z=21,极点为z=1 D. 零点为z=2 1 ,极点为z=2 5、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.160,Z 变换的收敛域为( )。 A. 0<|z|<∞ B. |z|>0 C. |z|<∞ D. |z|≤∞ 9.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs 与信号最高截止频率Ωc 应满足关系( ) A. Ωs>2Ωc B. Ωs>Ωc C. Ωs<Ωc D. |Ωs<2Ωc 10.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1)

数字信号处理课程设计报告

《数字信号处理》课程设计报告 设计题目: IIR滤波器的设计 专业: 班级: 姓名: 学号: 指导教师: 2010年月日

1、设计目的 1、掌握IIR 滤波器的参数选择及设计方法; 2、掌握IIR 滤波器的应用方法及应用效果; 3、提高Matlab 下的程序设计能力及综合应用能力。 4、了解语音信号的特点。 2、设计任务 1、学习并掌握课程设计实验平台的使用,了解实验平台的程序设计方法; 2、录制并观察一段语音信号的波形及频谱,确定滤波器的技术指标; 3、根据指标设计一个IIR 滤波器,得到该滤波器的系统响应和差分方程,并根据差分方程将所设计的滤波器应用于实验平台,编写相关的Matlab 程序; 4、使用实验平台处理语音信号,记录结果并进行分析。 3、设计内容 3.1设计步骤 1、学习使用实验平台,参见附录1。 2、使用录音机录制一段语音,保存为wav 格式,录音参数为:采样频率8000Hz、16bit、单声道、PCM 编码,如图1 所示。 图1 录音格式设置 在实验平台上打开此录音文件,观察并记录其波形及频谱(可以选择一段较为稳定的语音波形进行记录)。 3、根据信号的频谱确定滤波器的参数:通带截止频率Fp、通带衰减Rp、阻带截止频率Fs、阻带衰减Rs。 4、根据技术指标使用matlab 设计IIR 滤波器,得到系统函数及差分方程,并记录得到系统函数及差分方程,并记录其幅频响应图形和相频响应图形。要求设计 第 1页出的滤波器的阶数小于7,如果不能达到要求,需要调整技术指标。 5、记录滤波器的幅频响应和系统函数。在matlab 中,系统函数的表示公式为:

因此,必须记录系数向量a 和b。系数向量a 和b 的可以在Matlab 的工作空间(WorkSpace)中查看。 6、根据滤波器的系统函数推导出滤波器的差分方程。 7、将设计的滤波器应用到实验平台上。根据设计的滤波器的差分方程在实验平台下编写信号处理程序。根据运行结果记录处理前后的幅频响应的变化情况,并试听处理前后声音的变化,将结果记录,写入设计报告。 3.2实验程序 (1)Rs=40; Fs=1400; Rp=0.7; Fp=450; fs=8000; Wp=2*pi*Fp;Ws=2*pi*Fs; [N,Wn]=buttord(Wp,Ws,Rp,Rs,'s'); [b1,a1]=butter(N,Wn,'s'); [b,a]=bilinear(b1,a1,fs); [H,W]=freqz(b,a); figure; subplot(2,1,1);plot(W*fs/(2*pi),abs(H));grid on;title('频率响应'); xlabel('频率');ylabel('幅值');、 subplot(2,1,2); plot(W,angle(H));grid on;title('频率响应'); xlabel('相位(rad)');ylabel('相频特性'); 3.3实验结果(如图): N =5 Wn=6.2987e+003 第 2页

数字信号处理课程设计报告

抽样定理的应用 摘要 抽样定理表示为若频带宽度有限的,要从抽样信号中无失真地恢复原信号,抽样频率应大于2倍信号最高频率。抽样频率小于2倍频谱最高频率时,信号的频谱有混叠。抽样频率大于2倍频谱最高频率时,信号的频谱无混叠。 语音信号处理是研究用数字信号处理技术和语音学知识对语音 信号进行处理的新兴学科,是目前发展最为迅速的学科之一,通过语音传递信息是人类最重要,最有效,最常用和最方便的交换信息手段,所以对其的研究更显得尤为重要。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用 软件,它可以将声音文件变换成离散的数据文件,然后用起强大的矩阵运算能力处理数据。这为我们的本次设计提供了强大并良好的环境! 本设计要求通过利用matlab对模拟信号和语音信号进行抽样,通过傅里叶变换转换到频域,观察波形并进行分析。 关键词:抽样Matlab

目录 一、设计目的: (2) 二、设计原理: (2) 1、抽样定理 (2) 2、MATLAB简介 (2) 3、语音信号 (3) 4、Stem函数绘图 (3) 三、设计内容: (4) 1、已知g1(t)=cos(6πt),g2(t)=cos(14πt),g3(t)=cos(26πt),以抽样频率 fsam=10Hz对上述三个信号进行抽样。在同一张图上画出g1(t),g2(t),g3(t)及其抽样点,对所得结果进行讨论。 (4) 2、选取三段不同的语音信号,并选取适合的同一抽样频率对其进 行抽样,画出抽样前后的图形,并进行比较,播放抽样前后的语音。 (6) 3、选取合适的点数,对抽样后的三段语音信号分别做DFT,画图 并比较。 (10) 四、总结 (12) 五、参考文献 (13)

数字信号处理期末考试试题以及参考答案.doc

2020/3/27 2009-2010 学年第二学期 通信工程专业《数字信号处理》(课程)参考答案及评分标准 一、 选择题 (每空 1 分,共 20 分) 1.序列 x( n) cos n sin n 的周期为( A )。 4 6 A . 24 B . 2 C . 8 D .不是周期的 2.有一连续信号 x a (t) cos(40 t) ,用采样间隔 T 0.02s 对 x a (t) 进行采样,则采样所得的时域离散信 号 x(n) 的周期为( C ) A . 20 B . 2 C . 5 D .不是周期的 3.某线性移不变离散系统的单位抽样响应为h(n) 3n u( n) ,该系统是( B )系统。 A .因果稳定 B .因果不稳定 C .非因果稳定 D .非因果不稳定 4.已知采样信号的采样频率为 f s ,采样周期为 T s ,采样信号的频谱是原模拟信号频谱的周期函数,周 期为( A ),折叠频率为( C )。 A . f s B . T s C . f s / 2 D . f s / 4 5.以下关于序列的傅里叶变换 X ( e j ) 说法中,正确的是( B )。 A . X ( e B . X ( e C . X (e D . X (e j j j j ) 关于 是周期的,周期为 ) 关于 是周期的,周期为 2 ) 关于 是非周期的 ) 关于 可能是周期的也可能是非周期的 6.已知序列 x(n) 2 (n 1) (n)(n 1) ,则 j X (e ) 的值为( )。 C

2020/3/27 A . 0 B . 1 C . 2 D . 3 N 1 7.某序列的 DFT 表达式为 X (k ) x(n)W M nk ,由此可看出,该序列的时域长度是( A ),变换后数字域 n 0 上相邻两个频率样点之间的间隔( C )。 A . N B . M C .2 /M D . 2 / N 8.设实连续信号 x(t) 中含有频率 40 Hz 的余弦信号,现用 f s 120 Hz 的采样频率对其进行采样,并利 用 N 1024 点 DFT 分析信号的频谱,得到频谱的谱峰出现在第( B )条谱线附近。 A . 40 B . 341 C . 682 D .1024 9.已知 x( n) 1,2,3,4 ,则 x ( ) R 6 ( ) ( ), x ( n 1) R 6 (n) ( ) n 6 n 6 A C A . 1,0,0,4,3,2 B . 2,1,0,0,4,3 C . 2,3,4,0,0,1 D . 0,1,2,3,4,0 10.下列表示错误的是( B )。 A . W N nk W N ( N k) n B . (W N nk ) * W N nk C . W N nk W N (N n) k D . W N N /2 1 11.对于 N 2L 点的按频率抽取基 2FFT 算法,共需要( A )级蝶形运算,每级需要( C )个蝶形运算。 A . L B . L N 2 C . N D . N L 2 12.在 IIR 滤波器中,( C )型结构可以灵活控制零极点特性。 A .直接Ⅰ B .直接Ⅱ C .级联 D .并联 13.考虑到频率混叠现象,用冲激响应不变法设计 IIR 数字滤波器不适合于( B )。 A .低通滤波器 B .高通、带阻滤波器 C .带通滤波器 D .任何滤波器

数字信号处理期末试卷!

数字信号处理模拟试题一 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs与信号最高截止频率Ωc应满足关系(A ) A.Ωs>2Ωc B.Ωs>Ωc C.Ωs<Ωc D.Ωs<2Ωc 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?(D) A.y(n)=y(n-1)x(n) B.y(n)=x(n)/x(n+1) C.y(n)=x(n)+1 D.y(n)=x(n)-x(n-1) 3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为(D ) A.有限长序列 B.右边序列 C.左边序列 D.双边序列 4.实偶序列傅里叶变换是(A ) A.实偶序列 B.实奇序列 C.虚偶序列 D.虚奇序列 5.已知x(n)=δ(n),其N点的DFT[x(n)]=X(k),则X(N-1)=(B) A.N-1 B.1 C.0 D.-N+1 6.设两有限长序列的长度分别是M与N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B ) A.M+N B.M+N-1 C.M+N+1 D.2(M+N) 7.下面说法中正确的是(C) A.连续非周期信号的频谱为周期连续函数 B.连续周期信号的频谱为周期连续函数 C.离散非周期信号的频谱为周期连续函数 D.离散周期信号的频谱为周期连续函数 8.下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?(C ) A.直接型 B.级联型 C.频率抽样型 D.并联型 9.下列关于FIR滤波器的说法中正确的是(C) A.FIR滤波器容易设计成线性相位特性

数字信号处理课设+语音信号的数字滤波

语音信号的数字滤波 ——利用双线性变换法实现IIR数字滤波器的设计一.课程设计的目的 通过对常用数字滤波器的设计和实现,掌握数字信号处理的工作原理及设计方法;熟悉用双线性变换法设计 IIR 数字滤波器的原理与方法,掌握利用数字滤波器对信号进行滤波的方法,掌握数字滤波器的计算机仿真方法,并能够对设计结果加以分析。 二.设计方案论证 1.IIR数字滤波器设计方法 IIR数字滤波器是一种离散时间系统,其系统函数为 假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数和,它 是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。 2.用双线性变换法设计IIR数字滤波器 脉冲响应不变法的主要缺点是产生频率响应的混叠失真。这是因为从S平面到Z平面是多值的映射关系所造成的。为了克服这一缺点,可以采用非线性频率压缩方法,将整个频率轴上的频率范围压缩到-π/T~π/T之间,再用z=e sT转换 平面的-π/T~π到Z平面上。也就是说,第一步先将整个S平面压缩映射到S 1 /T一条横带里;第二步再通过标准变换关系z=e s1T将此横带变换到整个Z平面上去。这样就使S平面与Z平面建立了一一对应的单值关系,消除了多值变换性,也就消除了频谱混叠现象,映射关系如图1所示。 图1双线性变换的映射关系 为了将S平面的整个虚轴jΩ压缩到S1平面jΩ1轴上的-π/T到π/T段上,可以通过以下的正切变换实现

数字信号处理试题及答案

数字信号处理试题及答案 一、填空题:(每空1分,共18分) 1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 2、 双边序列z 变换的收敛域形状为 圆环或空集 。 3、 某序列的 DFT 表达式为∑-==1 0)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 4、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(2 2++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值 4)0(=h ;终值)(∞h 不存在 。 5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点 的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的 映射变换关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω 与数字频率ω之间的映射变换关系为)2 tan(2ω T =Ω或)2arctan(2T Ω=ω。 7、当线性相位 FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为 )1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ω ωj j e H e H =,则其对应的相位函数 为ωω?2 1 )(-- =N 。 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。 二、判断题(每题2分,共10分) 1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可 以了。 (╳) 2、 已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时不变系统。(╳)

数字信号处理课设共18页文档

数字信号处理课程设计 姓名:刘倩 学号:201014407 专业:信息与计算科学 实验一:常见离散信号产生和实现 一、实验目的: 1、加深对常用离散信号的理解; 2、掌握matlab 中一些基本函数的建立方法。 二、实验原理: 1.单位抽样序列 在MATLAB 中可以利用zeros()函数实现。 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: 2.单位阶越序列 在MATLAB 中可以利用ones()函数实现。 3.正弦序列 在MATLAB 中 4.复指数序列 在MATLAB 中 5.指数序列 在MATLAB 中

实验内容:由周期为10的正弦函数生成周期为20的余弦函数。 实验代码: n=0:30; y=sin(0.2*pi*n+pi/2); y1=sin(0.1*pi*n+pi/2); subplot(121) stem(n,y); xlabel ('时间序列n');ylabel('振幅');title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); subplot(122) stem(n,y1); xlabel ('时间序列n');ylabel('振幅'); title('正弦函数序列y=sin(0.2*pi*n+pi/2)'); 实验结果: 实验二:离散系统的时域分析 实验目的:加深对离散系统的差分方程、冲激响应和卷积分析方法的理解。实验原理:离散系统 其输入、输出关系可用以下差分方程描述: 输入信号分解为冲激信号, 记系统单位冲激响应 则系统响应为如下的卷积计算式:

当N k d k ,...2,1,0==时,h[n]是有限长度的(n :[0,M]),称系统为FIR 系统;反之,称系统为IIR 系统。 在MATLAB 中,可以用函数y=filter(p,d,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积,用y=impz(p,d,N)求系统的冲激响应。 实验内容:用MATLAB 计算全解 当n>=0时,求用系数差分方程y[n]+y[n-1]-6y[n-2]=x[n]描述的一个离散时间系统对阶跃输入x[n]=8μ[n]的全解。 实验代码: n=0:7; >> [y,sf]=filter(1,[1 1 -6],8*ones(1,8),[-7 6]); >> y1(n+1)=-1.8*(-3).^n+4.8*(2).^n-2; >> subplot(121) >> stem(n,y); >> title('由fliter 函数计算结果'); >> subplot(122) >> stem(n,y1); >> title('准确结果'); 实验结果: 结果分析:有图可得由fliter 函数得出的结果与计算出的准确结果完全一致。 实验三FFT 算法的应用

数字信号处理试卷及答案

A 一、 选择题(每题3分,共5题) 1、)6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期6 π = N C.周期π6=N D. 周期π2=N 2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、对)70()(≤≤n n x 和)190()(≤≤n n y 分别作 20 点 DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 围时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

数字信号处理期末试题及答案汇总

数字信号处理期末试题及答案汇总

数字信号处理卷一 一、填空题(每空1分, 共10分) 1.序列()sin(3/5)x n n π=的周期为 。 2.线性时不变系统的性质有 律、 律、 律。 3.对4 ()()x n R n =的Z 变换为 ,其收敛域为 。 4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。 5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。 6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。 7.因果序列x(n),在Z →∞时,X(Z)= 。 二、单项选择题(每题2分, 共20分) 1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( ) A. 3 B. 4 C. 6 D. 7 3.LTI 系统,输入x (n )时,输出y (n );输入 为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号 B.时域为离散周期序列,频域也为离散周期序列

C.时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列 5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过即可完全不失真恢复原信号()A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统()A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括()A. 实轴 B.原点C.单位圆 D.虚轴 8.已知序列Z变换的收敛域为|z|>2,则该序列为()A.有限长序列 B.无限长序列C.反因果序列 D.因果序列 9.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是( ) A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( )

数字信号课程设计

《数字信号》课程设计报 告 学院:信息科学与工程 专业班级:通信1201

一、 目的与要求 是使学生通过上机使用Matlab 工具进行数字信号处理技术的仿真练习,加深对《信号分析与处理(自)》课程所学基本理论和概念的理解,培养学生应用Matlab 等工具进行数字信号处理的基本技能和实践能力,为工程应用打下良好基础。 二、 主要内容 1.了解Matlab 基本使用方法,掌握Matlab 数字信号处理的基本编程技术。掌握数字信号的基本概念。 2.用Matlab 生成几种典型数字信号(正弦信号、矩形信号、三角波信号等),并做幅频特性分析 2.Matlab 编程实现典型离散信号(正弦信号、矩形信号、三角信号)的离散傅立叶变换,显示时域信号和频谱图形(幅值谱和相位谱);以正弦周期信号为例,观察讨论基本概念(混叠、泄漏、整周期截取、频率分辨率等)。 3.设计任意数字滤波器,并对某类型信号进行滤波,并对结果进行显示和分析。 4.利用matlab 求解差分方程,并做时域和频域分析。用matlab 函数求解单位脉冲响应,并利用窗函数分离信号。 5.用matlab 产生窗函数,并做世玉和频域分析。 6.显示图像,理解图像的模型,将图像进行三原色分解和边缘分析。 三.课程设计题目 一、 1) 生成信号发生器:能产生频率(或基频)为10Hz 的周期性正弦波、三角波和方波信号。绘出它们的时域波形 2) 为避免频谱混叠,试确定各信号的采样频率。说明选择理由。 3)对周期信号进行离散傅立叶变换,为了克服频谱泄露现象,试确定截取数据的长度,即信号长度。分析说明选择理由。 4)绘出各信号频域的幅频特性和相频特性 5)以正弦周期信号为例,观察讨论基本概念(频谱混叠、频谱泄漏、整周期截取等)。 二、已知三个信号()i a p n ,经调制产生信号3 1 ()()cos(/4)i i s n a p n i n π==∑,其中i a 为常 数,()p n 为具有窄带特性的Hanning 信号。将此已调信号通过信道传输,描述该信道的差分方程为 得到接收信号()()*()y n s n h n = 1)分析Hanning 信号()p n 的时域与频域特性 2)分析已调信号()s n 的时域与频域特性 () 1.1172(1)0.9841(2)0.4022(3)0.2247(4) 0.2247()0.4022(1)0.9841(2) 1.1172(3)(4)y n y n y n y n y n x n x n x n x n x n --+---+-= --+---+-

数字信号处理课程规划报告

数字信号处理课程设计报告《应用Matlab对信号进行频谱分析及滤波》 专业: 班级: 姓名: 指导老师: 二0 0五年一月一日

目录 设计过程步骤() 2.1 语音信号的采集() 2.2 语音信号的频谱分析() 2.3 设计数字滤波器和画出其频谱响应() 2.4 用滤波器对信号进行滤波() 2.5滤波器分析后的语音信号的波形及频谱() ●心得和经验()

设计过程步骤 2.1 语音信号的采集 我们利用Windows下的录音机,录制了一段开枪发出的声音,时间在1 s内。接着在C盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。通过wavread函数和sound的使用,我们完成了本次课程设计的第一步。其程序如下: [x,fs,bite]=wavread('c:\alsndmgr.wav',[1000 20000]); sound(x,fs,bite); 2.2 语音信号的频谱分析 首先我们画出语音信号的时域波形;然后对语音信号进行频谱分析,在Matlab中,我们利用函数fft对信号进行快速傅里叶变换,得到信号的频谱特性性。到此,我们完成了课程实际的第二部。 其程序如下: n=1024; subplot(2,1,1); y=plot(x(50:n/4)); grid on ; title('时域信号') X=fft(x,256); subplot(2,1,2); plot(abs(fft(X))); grid on ; title('频域信号'); 运行程序得到的图形:

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案) 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5 .1)5()0(======h h h h h h ,其幅 度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 一、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A.a Z < B.a Z ≤ C.a Z > D.a Z ≥ 3、 3、 对)70() (≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()( =?=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

2017数字信号处理模拟题a答案

1. 两个有限长序列x1(n),0≤n ≤33和x2(n),0≤n ≤36,做线性卷积后结果的长度是 70 , 若对这两个序列做64点循环卷积,则圆周卷积结果中n= 6 至 64 为线性卷积结果。 2. 一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 ; 输入为x (n-3)时,输出为 3. 若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 4. 如果一台计算机的速度为平均每次复乘5μS ,每次复加0.5μS ,用它来计算512 点的DFT[x(n)],问直接计算需要多少时间,用FFT 运算需要多少时间。 1、 直接计算 复乘所需时间 62621510510512 1.31072T N s --=??=??= 复加所需时间()6610.51010.5105125110.130816T N N s --=???-=???= 所以12 1.441536T T T s =+= 2、用FFT 计算 复乘所需时间 66122512510log 510log 5120.0115222 N T N s --=?? =??= 复加所需时间662220.510log 0.510512log 5120.002304T N N s --=??=??= 所以120.013824T T T s =+=

6.设系统差分方程 y(n)=ay(n-1)+x(n) 其中x(n)为输入,y(n)为输出。当边界条件选为y(-1)=0时,是判断系统是否线性的、移不变的

7.用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出其中一种的信号流图。 ()() ()() 22 41 1.41()0.50.90.8Z Z Z H z Z Z Z +-+= -++

数字信号处理课程设计指导书1

数字信号处理上机指导 设计一 正余弦信号的谱分析 【一】 设计目的 1. 用DFT 实现对正余弦信号的谱分析; 2. 观察DFT 长度和窗函数长度对频谱的影响; 3. 对DFT 进行谱分析中的误差现象获得感性认识。 【二】 设计原理 一、谱分析原理 数字信号处理方法的一个重要用途是在离散时间域中确定一个连续时间信号的频谱,通常称为频谱分析,更具体地说,它也包括确定能量谱和功率谱。数字频谱分析可以应用在很广阔领域,频谱分析方法是基于以下的观测:如果连续时间信号)(t g a 是带限的,那么它的离散时间等效信号)(n g 的DFT 进行谱分析。然而,在大多数情况下,)(t g a 是在∞<<∞-t 范围内定义的,因此)(n g 也就定义在∞<<∞-n 的无线范围内,要估计一个无限长信号的频谱是不可能的。实用的方法是:先让模拟连续信号)(t g a 通过一个抗混叠的模拟滤波器,然后把它采样成一个离散序列)(n g 。假定反混叠滤波器的设计是正确的,则混叠效应可以忽略,又假设A/D 变换器的字长足够长,则A/D 变换中的量化噪声也可忽略。 假定表征正余弦信号的基本参数,如振幅、频率和相位不随时间改变,则此信号的傅立叶变换)(ω j e G 可以用计算它的DTFT 得到 ∑ ∞ -∞ =-= n n j j e n g e G ωω )()( (1.1) 实际上无限长序列)(n g 首先乘以一个长度为M 的窗函数)(n w ,使它变成一个长为M 的有限长序列,)()()(1n w n g n g =,对)(1n g 求出的DTFT )(1ω j e G 应该可以作为原连续 模拟信号)(t g a 的频谱估计,然后求出)(1ω j e G 在πω20≤≤区间等分为N 点的离散傅立 叶变换DFT 。为保证足够的分辨率,DFT 的长度N 选的比窗长度M 大,其方法是在截断了的序列后面补上N -M 个零。计算采用FFT 算法。 二、MATLAB 函数介绍 1. 输入函数input( ) 格式:R=input(string) 功能:在屏幕上显示input 括号后的’string ’内容,提示用户从键盘输入某值,并将输入的值赋给R 。 例如,在命令窗口输入R=input(‘How many apples ’) 会显示How many apples

数字信号处理课程设计

数字信号处理 课 程 设 计 院系:电子信息与电气工程学院 专业:电子信息工程专业 班级:电信班 姓名: 学号: 组员:

摘要 滤波器设计在数字信号处理中占有极其重要的地位,FIR数字滤波器和IIR 滤波器是滤波器设计的重要组成部分。利用MATLAB信号处理工具箱可以快速有效地设计各种数字滤波器。课题基于MATLAB有噪音语音信号处理的设计与实现,综合运用数字信号处理的理论知识对加噪声语音信号进行时域、频域分析和滤波。通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现。在设计实现的过程中,使用窗函数法来设计FIR数字滤波器,用巴特沃斯、切比雪夫和双线性变法设计IIR数字滤波器,并利用MATLAB 作为辅助工具完成设计中的计算与图形的绘制。通过对对所设计滤波器的仿真和频率特性分析,可知利用MATLAB信号处理工具箱可以有效快捷地设计FIR和IIR数字滤波器,过程简单方便,结果的各项性能指标均达到指定要求。 关键词数字滤波器 MATLAB 窗函数法巴特沃斯

目录 摘要 (1) 1 引言 (1) 1.1课程设计目的 (1) 1.2 课程设计内容及要求 (1) 1.3课程设计设备及平台 (1) 1.3.1 数字滤波器的简介及发展 (1) 1.3.2 MATLAB软件简介 (2) 2 课程设计原理及流程 (4) 3.课程设计原理过程 (4) 3.1 语音信号的采集 (4) 3.2 语音信号的时频分析 (5) 3.3合成后语音加噪声处理 (7) 3.3.1 噪声信号的时频分析 (7) 3.3.2 混合信号的时频分析 (8) 3.4滤波器设计及消噪处理 (10) 3.4.1 设计IIR和FIR数字滤波器 (10) 3.4.2 合成后语音信号的消噪处理 (13) 3.4.3 比较滤波前后语音信号的波形及频谱 (13) 3.4.4回放语音信号 (15) 3.5结果分析 (15) 4 结束语 (15) 5 参考文献 (16)

数字信号处理试卷及详细答案三套

数字信号处理试卷答案 完整版 一、填空题:(每空1分,共18分) 1、 数字频率ω是模拟频率Ω对采样频率s f 的归一化,其值是 连续 (连续还是离散?)。 2、 双边序列z 变换的收敛域形状为 圆环或空集 。 3、 某序列的 DFT 表达式为∑-==1 0)()(N n kn M W n x k X ,由此可以看出,该序列时域的长度为 N ,变换后数字频域上相邻两个频率样点之间的间隔是 M π 2 。 4、 线性时不变系统离散时间因果系统的系统函数为2 52) 1(8)(22++--=z z z z z H ,则系统的极点为 2,2 1 21-=-=z z ;系统的稳定性为 不稳定 。系统单位冲激响应)(n h 的初值 4)0(=h ;终值)(∞h 不存在 。 5、 如果序列)(n x 是一长度为64点的有限长序列)630(≤≤n ,序列)(n h 是一长度为128点 的有限长序列)1270(≤≤n ,记)()()(n h n x n y *=(线性卷积),则)(n y 为 64+128-1=191点 点的序列,如果采用基FFT 2算法以快速卷积的方式实现线性卷积,则FFT 的点数至少为 256 点。 6、 用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的 映射变换关系为T ω = Ω。用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω 与数字频率ω之间的映射变换关系为)2 tan(2ω T =Ω或)2arctan(2T Ω=ω。 7、当线性相位 FIR 数字滤波器满足偶对称条件时,其单位冲激响应)(n h 满足的条件为 )1()(n N h n h --= ,此时对应系统的频率响应)()()(ω?ω ωj j e H e H =,则其对应的相位函数 为ωω?2 1 )(-- =N 。 8、请写出三种常用低通原型模拟滤波器 巴特沃什滤波器 、 切比雪夫滤波器 、 椭圆滤波器 。 二、判断题(每题2分,共10分) 1、 模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可 以了。 (╳) 2、 已知某离散时间系统为)35()]([)(+==n x n x T n y ,则该系统为线性时不变系统。(╳)

数字信号处理课程设计参考题目分析

一、数字信号处理课程设计内容及考核要求 1、课程设计内容: (1)从以下四个题目中任选其中一个题目,根据题目要求完成程序的编制、调试和仿真; (2)按照题目要求撰写课程设计报告,回答题目设定的问题。 2、考核要求: (一)课程设计以(6——8人)小组完成,但不能出现设计报告雷同情况,一经发现,雷同报告均按不合格处理;最终以PPT小组答辩作为考核。

题目二:有限冲激响应滤波器(FIR)的设计1. 设计目的: 1、加深对数字滤波器的常用指标理解。

2、学习数字滤波器的设计方法。 3. 掌握FIR 滤波器的原理。 2. 设计内容: 利用MATLAB 编程,分别用窗函数法和等波纹滤波器法设计两种FIR 数字滤波器,指标要求如下: 通带边缘频率:ππ65.045.021=Ω=ΩP P ,,通带峰值起伏:][1dB P ≤α。 阻带边缘频率:ππ75.03.021=Ω=ΩS S ,,最小阻带衰减:][40dB S ≥α。 3. 设计原理: 图1 一个典型数字低通滤波器的结构 低通滤波器的常用指标: ? ? ?≤Ω≤Ω≤ΩΩ≤Ω+≤Ω≤-πδδδ|||)(|||1|)(|1S S P P P H H ,, (1)通带边缘频率P Ω; (2)阻带边缘频率S Ω; (3)通带起伏P δ; (4)通带峰值起伏])[1(log 2010dB P P δα--=; (5)阻带起伏S δ,最小阻带衰减])[(log 2010dB S S δα-=。 4. 设计步骤: 1.熟悉MATLAB 的开发环境和使用方法。 2.按照实验内容,编写一个.m 脚本文件,利用MA TLAB 函数fir1和窗函数法设计FIR 数字滤波器。具体参数为:b=fir1(N,Wn,’ftype ’,taper),N 代表滤波器阶数;Wn 代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn 为双元素相量;ftype 代表滤

相关主题
文本预览
相关文档 最新文档