当前位置:文档之家› 生化复习重点+题目

生化复习重点+题目

生化复习重点+题目
生化复习重点+题目

第一章蛋白质化学

一.名词解释:

1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。、

2.蛋白质的一级结构:是指多肽链中氨基酸(残基)的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。维持其稳定的化学键是:肽键。

蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-片层、β-转角和无规则卷曲等。

蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。

蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。

3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。蛋白质变性的实质是空间结构的破坏。

4.蛋白质沉淀:蛋白质从溶液中聚集而析出的现象。

二.填空题

1.不同蛋白质种含氮量颇为接近,平均为16% .

2.组成蛋白质的基本单位是氨基酸。

3.蛋白质能稳定地分散在水中,主要靠两个因素:水化膜和电荷层 .

4.碱性氨基酸有三种,包括精氨酸、组氨酸和赖氨酸。

5.维系蛋白质一级结构的化学键是肽键,蛋白质变性时一级结构不被破坏。

6.蛋白质最高吸收峰波长是 280nm .

7.维系蛋白质分子中α-螺旋的化学键是氢键。

8.蛋白质的二级结构形式有α-螺旋、β-片层、β-转角和无规则卷曲等

9. 在280nm波长处有吸收峰的氨基酸为酪氨酸、色氨酸

第二章核酸化学

一、填空题

1.DNA分子中的碱基配对主要依赖氢键。

2.核酸的基本组成单位是核苷酸,它们之间的连接方式是磷酸二酯键。

3.碱基尿嘧啶U只存在于RNA中,碱基胸腺嘧啶T只存在于DNA中。

4.tRNA的二级结构是三叶草型,三级结构是倒L型。

5.某DNA分子中腺嘌呤的含量为15%,则胞嘧啶的含量应为35%。

6. 核酸的紫外特征性吸收峰波长在260nm

7. 在核酸中占9%-10%并可用于计算核酸含量的元素为磷元素

二、简答题

1.组成DNA、RNA的核苷酸有哪些?

答:组成DNA的四种核苷酸是dAMP、dGMP、dCMP和dTMP;

组成RNA的四种核苷酸是AMP、GMP、CMP和UMP。

2.DNA的双螺旋结构特点是什么?

答DNA的双螺旋结构特点是:

①DNA分子由两条相互平行但走向相反的脱氧多核苷酸链组成,以右手螺旋方式绕同一公共轴盘。

②.两链以-脱氧核糖-磷酸-为骨架,在外侧;碱基垂直螺旋轴,居双螺旋内側,与对側碱基形成氢键配对(互补配对形式:A=T; GºC)。

③.螺旋直径为2nm;相邻碱基平面距离0.34nm,螺旋一圈螺距3.4nm,一圈10对碱基。

④DNA双螺旋结构稳定的因素:a.氢键维持双链横向稳定性;b.碱基堆积力维持双链纵向稳定性。

3.mRNA、tRNA、rRNA各自的功能是什么?

答:mRNA的功能:蛋白质合成的直接模板。

tRNA的功能:活化、搬运氨基酸到核糖体,参与蛋白质的翻译。

rRNA的功能:参与组成核蛋白体,作为蛋白质生物合成的场所。

4.名词解释:核酸的变性、复性

答:DNA的变性是指在某些理化因素作用下,DNA双链解开成两条单链的过程。DNA复性是指:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象,这一现象称为复性。

第三章维生素

1.维生素的概念:是维持生物正常生命过程所必需,但机体不能合成,或合成量很少,必须食物供给一类小分子有机物。

2.B族维生素与辅助因子的关系

辅助因子通常是一些小分子有机物,常由维生素衍生而来,尤其是B族维生素

辅助因子的名称所含维生素转运功能

3.将维生素D3羟化成25-羟维生素D3的器官是肝脏。

第四章酶

一、名词解释

1.酶:是由活细胞产生的,对其特异的底物具有催化作用的蛋白质。

2.酶的活性中心:在酶分子表面有必需基团组成的能和底物结合并催化底物发生反应,生成相应产物的部分区域。

3.酶原的激活:酶原是不具催化活性的酶的前体。某种物质作用于酶原使之转变成有活性的酶的过程称为酶原的激活。酶原激活的本质是:酶活性中心的形成或暴露的过程。

4.同工酶:能催化相同的化学反应,但酶蛋白的分子结构、理化性质和免疫学特性不同的一组酶。

二、填空题

1.酶的催化作用不同于一般催化剂,主要是其具有高效性和特异性的特点。

2.根据酶对底物选择的严格程度不同,又将酶的特异性分为绝对特异性、相对特异性、立体异构特异性。

3.影响酶促反应速度的主要因素有底物浓度、酶浓度、温度、pH值、激活剂、抑制剂。

4.磺胺药物的结构和对氨基苯甲酸结构相似,它可以竞争性抑制细菌体内的二氢叶酸合成酶的活性(或二氢叶酸的合成)。

5.所有的酶都必须有催化活性中心。

6.酶原的激活实质上是酶活性中心的形成或暴露的过程。

6. 化学路易士气(有机砷化合物)是巯基酶的抑制剂。有机磷农药是生物体内羟基酶(胆碱酯酶)的抑制剂。

7. 含LDH1丰富的组织是心肌,含LDH5丰富的组织是肝脏。

8.酶蛋白决定酶的特异性,辅助因子决定反应的类型、可起传递电子或原子的作用。

三、简答题.

1. 什么是竞争性抑制?竞争性抑制作用的特点,试1-2举例说明。

答:抑制剂与酶作用的底物结构相似,可与底物竞争性结合酶的活性中心,阻碍底物结合而使酶的活性降低,这种抑制作用称为竞争性抑制。

竞争性抑制作用的特点:(1)抑制剂和底物结构相似;(2)抑制作用的部位在活性中心;(3)抑制作用的强弱取决于抑制剂浓度与底物的比值,以及抑制剂与酶的亲和力。

酶的竞争性抑制有重要的实际应用,很多药物是酶的竞争性抑制剂。如磺胺类药物的抑制作用就基于这一原理。

2.磺胺类药物作用的机理。

答:细菌利用对氨基苯甲酸、二氢蝶呤及谷氨酸作原料,在二氢叶酸合成酶的催化下合成二氢叶酸,后者还可转变为四氢叶酸,是细菌合成核酸所不可缺的辅酶。磺胺药的化学结构与对氨基苯甲酸十分相似,故能与对氨基苯甲酸竞争二氢叶酸合成酶的活性中心,造成该酶活性抑制,进而减少四氢叶酸和核酸的合成,最终导致细菌繁殖生长停止。3.Km的重要意义

答①Km等于酶促反应速度为最大反应速度一半时的底物浓度,单位是mol/L 。

②Km是酶的特征性常数之一。

③ Km可近似表示酶对底物的亲和力。

④同一酶对于不同底物有不同的Km值。

试题一

一、选择(20×2=40分)

1.正常成人每天的尿量为(C )

A 500ml

B 1000 ml

C 1500 ml D2000 ml

2:下列哪种氨基酸属于亚氨基酸(B )

A 丝氨酸B脯氨酸C 亮氨酸D 组氨酸

3:维持蛋白质二级结构稳定的主要作用力是(C )

A 盐键B疏水键C 氢键D 二硫键

4处于等电点状态的蛋白质(C )

A分子不带电荷B 分子最不稳定,易变C 总电荷为零D 溶解度最大

5.试选出血浆脂蛋白密度由低到高的正确顺序(B )

A.LDL 、VLDA、CM

B.CM、VLDL、LDL、HDL

C. CM、VLDL、LDL、IDL

D. VLDL、LDL、CM、HDL

6.一碳单位不包括(C )

A.—CH3 B. —CH2— C. CO2 D.—CH=NH

7.不出现蛋白质中的氨基酸是(B )

A. 半胱氨基酸

B. 瓜氨酸

C. 精氨酸

D. 赖氨酸

8.维系蛋白质一级结构的最主要的化学键是(C )

A.离子键

B.二硫键

C.肽键

D.氢键

9、关于α—螺旋的概念下列哪项是错误的(D )

A. 一般为右手螺旋

B. 3.6个氨基酸为一螺旋

C.主要以氢键维系

D.主要二硫键维系

10.结合酶在下列哪种情况下才有活性( D )

A.酶蛋白单独存在

B.辅酶单独存在

C.酶基单独存在

D.全酶形式存在

E.有激动剂存在

11.关于Km值的意义,不正确的是( C )

A.Km是酶的特性常数

B.Km值与酶的结构有关

C.Km等于反应为最大速度一半时的酶的浓度

D.Km值等于反应速度为最大度一半时的底物浓度

12.维生素B2是下列哪种辅基或辅酶的组成成分(D )

A .NAD???+ B.NADPH C.磷酸吡哆醛 D. FAD

13、1 mol乙酰CoA彻底氧化生成多少mol ATP(B )

A. 11

B.1 2

C.13

D.14

14、合成DNA的原料是( A )

A、dA TP、dGTP、dCTP、dTTP

B、A TP、dGTP、CTP、TTP

C、ATP、UTP、CTP、TTP

D、dATP、dUTP、dCTP、dTTP

15、合成RNA的原料是( A )

A、ATP、GTP、UTP、CTP

B、dATP、dGTP、dUTP、dCTP

C、ATP、GTP、UTP、TTP

D、dATP、dGTP、dUTP、dTTP

16、嘌呤核苷酸分解的最终产物是( C )

A、尿素

B、酮体

C、尿酸

D、乳酸

17、糖的有氧氧化终产物是( C )

A、乳酸

B、尿素

C、二氧化碳和水 2O

D、酮体

18、酶原指的是( A )

A、没有活性的酶的前身

B、具有催化作用的酶

C、温度高时有活性的酶

C、PH高时有活性的酶

19、肝脏患者出现蜘蛛痣或肝掌是因为( B )

A.胰岛素灭活减弱

B.雌性激素灭活减弱

C.雄性激素灭活减弱

D.雌性激素灭活增强

20、胆红素主要来源于( A )

A.血红蛋白的分解

B.肌红蛋白的分解

C.球蛋白的分解

D.肌蛋白的分解

二.多项选择题(2×5=10分)

1. 下列哪些是必需脂肪酸(ABC )。

A.亚油酸 B.亚麻油酸 C.花生四烯酸 D.硬脂酸 E.软脂酸

2. 下列哪些核苷酸是合成RNA的原料(ABCE )。

A. A TP

B. GTP

C. CTP

D. TTP

E. UTP

3.下列有关糖的无氧氧化的叙述,哪些是正确的(BD )

A.从葡萄糖或糖原开始 B.一分子葡萄糖经过无氧氧化可净得2分子ATP C.一分子糖原经过无氧氧化可净得3分子A TP

D.最终产物是乳酸

E.二氧化碳和水

4.有关核苷酸叙述哪些是正确的(ABCD )

A.是DNA、RNA组成的基本单位 B. ATP是能量直接供给者

C.UTP参加糖原的合成代谢 D. CTP参加磷脂的合成代谢

5.酶蛋白和辅酶之间有下列关系( ABD )

A.不同的酶蛋白可使用相同辅酶,催化不同的反应

B.只有全酶才有催化活性,二者缺一不可

C.在酶促反应中两者具有相同的任务

D.一种酶蛋白通常只需一种辅酶

三.名词解释(4*5 =20分)

1、蛋白质的盐析:在含有蛋白质的水溶液中,加入高浓度中性盐,使蛋白质析出的过程。

2、脂肪动员:贮存的脂肪被组织细胞内的脂肪酶逐步水解,释放出脂肪酸和甘油,供给其他组织氧化利用的过程。

3、糖异生:由非糖物质转变成葡萄糖的过程。

4、血糖:血液中的葡萄糖

四.问答(30分)

1、请你写出RNA的种类及其功能?(6分)

第24页

2、长期饥饿时为什么会发生酮症酸中毒?(5分)

第89页

3、按照超速离心法分离血浆脂蛋白的基本原理、分类及其功能?(10分

第82页

4、血糖的正常值及血糖的来源与去路。(9分)

第72,73页

试题二

一、选择(20×2=40分)

1、我国在_______年,首先用人工的方法合成了具有生物活性的胰岛素(A )

A.1965

B.1951

C.1953

D.1958

2.蛋白质变性的化学本质是( D )

A.不易被胃蛋白酶水解

B.溶解度增加

C.粘度下降

D.原有生物活性的丧失

3. 患者血清ALT活性明显升高,可协助诊断(A)

A.肝性脑病 B.心肌梗塞C.急性胰腺炎 D.痛风症

4.磷酸与核苷中戊糖是以哪种键连接的( A )

A.糖苷键

B.磷酸酯键

C.酸酐键

D.3?,5?—磷酸二酯键

17、糖的有氧氧化终产物是( C )

A、乳酸

B、尿素

C、二氧化碳和水 2O

D、酮体

二.填空题(每空0.5分,共10分)

21.组成蛋白质的基本单位是(_氨基酸。)

22.组成人体蛋白质的氨基酸共有_(_20种.)

23.蛋白质的平均氮含量是(16%),其最大紫外线吸收峰在(280)nm。

24.蛋白质的特征性元素是(N)。

25.属于芳香族氨基酸的是(_苯丙氨酸),(色氨酸),(酪氨酸)_。

26.根据酶的专一性程度不同,酶的专一(特异性)性可以分为(绝对特异性)、(相对特异性)和(立体异构特异性)。

27.葡萄糖在体内主要分解代谢途径有(糖酵解)、(糖的有氧氧化)、(磷酸戊糖途径)

28.脂肪酸的β-氧化在细胞的(线粒体)内进行,它包括_脂肪酸的活化、脂肪酰CoA进入线粒体、β-氧化过程、酮体的生成和利用四个连续反应步骤。

29.大肠杆菌RNA聚合酶中辨认起始点的亚基是(德尔特亚基)

三.名词解释(5题,共20分)

34、复制:亲代DNA或RNA在一系列酶的作用下合成与亲代相同的DNA或RNA的过程。

试题三

一、单选题(共35题,每题1分,共35分)

1.下列对蛋白质的含氮量的叙述正确的是( D )。

A. 18%

B. 20%

C. 22%

D. 16%

2.蛋白质在下列哪一波长中有特征性吸收(B C )。

A. 200nm

B. 260nm

C. 280nm

D. 300nm

3.下列对维生素的叙述哪项是正确的( B )。

A.维持生命所必需的,体内能合成的。

B.维持生命所必需的,体内不能合成的,必需由食物提供。

C.维持生命所必需的,不需要食物提供的。

D. 维持生命不需要的,需要食物提供。

4.下列对酶原的叙述哪项是正确的(B )

A. 酶原是具有催化活性的

B.酶原可转变成无活性的酶

C. 酶原是在一定条件下可转变成有活性的酶的前体

D.温度越高,酶原活性越高

5. 下列那种维生素是FAD的组成成分?(E )

A. VitB6

B. VitD

C. VitK

D.泛酸

E. VitB2

6.下列哪项是血糖的主要去路(D )

A.合成肝糖原储存

B.合成肌糖原储存

C.转变成脂肪储存

D.进行氧化供能

7.有关血脂含量叙述哪项是正确的(B )

A.不受饮食的影响

B.随着年龄的增加而增加

C.男女都一样

D.不受糖尿病、肝病等疾病的影响

8.下列对氮平衡的叙述哪项是正确的(A )

A.成年健康的人应是总平衡

B. 儿童应是总平衡

C. 儿童应是负平衡

D. 成年健康的人应是正平衡

9.蛋白质变性的化学本质是( D )

A.不易被胃蛋白酶水解

B.溶解度增加

C.粘度下降

D.原有生物活性的丧失

11.胆固醇合成的最基本的原料是(B )

A.葡萄糖

B.乙酰CoA

C.脂肪酸 D .蛋白质

12.尿嘧啶用下列哪个英文字母表示( B )

A.G

B.U

C.T

D.C

13.蛋白质中多肽链形成?-螺旋时,主要靠哪种次级键维持(C )

A、疏水键

B、肽键

C、氢键

D、二硫键

14.关于米氏常数Km的说法,哪个是正确的?( D )

A、饱和底物浓度时的速度

B、在一定酶浓度下,最大速度的一半

C、饱和底物浓度的一半

D、速度达最大速度一半时的底物浓度

15.核酸分子的一级结构指的是其分子中(C)

A.核苷酸的结构 B.各种核苷酸之间的比例

C.核苷酸排列顺序 D.核苷酸的组成

16.人体内可以合成的氨基酸是(C)

A.赖氨酸B.苏氨酸

C.天冬氨酸D.蛋氨酸

17.人血中尿酸浓度过高时可导致(B)

A.夜盲症B.痛风症 C.糙皮病D.脚气病

18.一碳单位的载体是( B )

A、叶酸

B、四氢叶酸

C、生物素

D、焦磷酸硫胺素

19.在呼吸链中把电子直接传递给细胞色素b的是(D)

A.Cytaa3 B.Cytc C.FAD D.CoQ

20. 患者血清AST活性明显升高,可协助诊断(B)

A.肝性脑病 B.心肌梗塞C.急性胰腺炎 D.痛风症

21.NH3经鸟氨酸循环形成尿素的主要生理意义是( A )

A、可消除NH3毒性,产生尿素由尿排泄B.是NH3贮存的一种形式

C、是鸟氨酸合成的重要途径

D、是精氨酸合成的主要途径

23. 酶具有高效催化能力是由于下列何种效应:(C )

A、提高反应的温度

B、降低反应的自由能变化

C、降低反应的活化能

D、降低底物的能量水平

25.决定蛋白质营养价值高低的是( D )

A.氨基酸的种类

B.氨基酸的数量

C.必需氨基酸的数量

D.必需氨基酸的数量,种类及比例

26.识别转录起始点的是( D )

A. ρ因子

B.核心酶

C.RNA聚合酶的α亚基

D.σ因子

27.维持DNA双螺旋结构稳定的因素有( B )

A.分子中的3.5磷酸二酯键 B.碱基对之间的氢键

C.肽键 D.盐键

28.一分子葡萄糖糖酵解净得的A TP克分子数和有氧氧化所得A TP克分子数之比为( D ) A。l:9 B.1:16

C.1:10 D.1:19

29.能在线粒体中进行的代谢过程有( A )

A.糖酵解 B.类脂合成

C氧化磷酸化 D.脂肪酸合成

30.参加DNA复制的是( D )

A.RNA模板

B.四种核糖核苷酸

C.异构酶 D.DNA指导的DNA聚合酶

31.tRNA分子二级结构的特征是( C )

A 3端有多聚A B.5端有C-C-A

C有反密码子环 D.有氨基酸残基

32.基因表达产物是( D )

A.DNA B.RNA C.蛋白质D大部分是蛋白质和RNA

33. 内源性固醇主要由血浆中哪种脂蛋白运输( B )

A、HDL

B、LDL

C、VLDL

D、CM

34.关于胆色素的叙述,正确的是( A )

A是铁卟啉化合物的代谢产物

B.血红索还原成胆红素

C胆红素还原变成胆绿素

D胆素原是肝胆红素在肠道细菌作用下与乙酰CoA形成的

35. 下列关于蛋白质结构叙述不正确的是( B )

A、三级结构即具有空间构象

B、各种蛋白一定具有一、二、三、四级结构

C、一级结构决定高级结构

D、α螺旋结构属二级结构形式

三.填空题(每空0.5分,15分)

42蛋白质的二级结构形式有(α螺旋),(ρ折叠),(ρ转角)和(无规则卷曲)四种。

43核酸可分为DNA和RNA两大类。

44.脂溶性维生素包括A/D/E/K/四种。

45. 血氨主要去路是(在肝中合成尿素)。

46.在DNA复制时,连续合成的链称为()链,不连续合成的链称为()链。

47.RNA的转录过程分为(起始、延长和终止)三阶段。

48.酶的非竞争性抑制剂可使Km(不变),使Vmax(降低)。 ?

49.(肝脏)_是糖异生的最主要器官,(肾脏)也具有糖异生的能力。

50.糖原合成的限速酶是(糖原合成酶)_____;糖原分解的限速酶是__(糖原磷酸化酶)____

51.三羧酸循环过程中有__4___次脱氢;__2___次脱羧反应,产生__12___ATP。

52.脂肪酸氧化的β—氧化包括__脱氢____,__加水_____,__再脱氢____,__硫解____。

53.酮体合成的主要器官是__肝脏____。

四.名词解释(每题4分,共20分)

54.同工酶:能催化同一化学反应,但酶蛋白的分子组成、结构、理化性质都不同的一组酶。

56.酮体:脂肪酸在肝脏氧化分解的特有中间产物。

57.蛋白质的变性:在理化因素的作用下,蛋白质的一级结构不变,空间结构破坏,理化性质改变,生物活性丧失。五.问答题(4题,共20分)

61.什么是必需氨基酸,主要有哪几种?(4分)

试题四

一、单项选择题(每题1分,共20分)

l.盐析沉淀蛋白质的原理是( B )

A中和电荷,破坏水化膜

B与蛋白质结合成不溶性蛋白盐

c.降低蛋白质溶液的介电常数

D.调节蛋白质溶液的等电点

E.使蛋白质溶液的pH值等于蛋白质等电点

2.下列具有四级结构的蛋白质是( )

A.纤维蛋白 B.肌红蛋白

C.清蛋白

D.乳酸脱氢酶

E.胰岛素

3. 催化软脂酸碳链延长的酶存在于( A )

A、胞液

B、细胞质膜

C、线粒体

D、溶酶体

E、高尔基复合体

4.关于酶的竞争性抑制作用的说法正确的是( D )

A.使Km值不变

B.抑制剂结构一般与底物结构不相似

C. Vm增高

D.增加底物浓度可减弱抑制剂的影响

E.使Km值降低

6. 1、糖原分子中葡萄糖单位之间存在什么类型链?( C )

A、只有β-1、4糖苷键

B、有β-1、4糖苷键与β-1、6糖苷键

C、α-1、4糖苷键与α-1、6糖苷键

D、有β-1、6糖苷键

E、以上都不是

7.糖原分子中葡萄糖残基酵解时的限速酶有( B )

A糖原合成酶 B.磷酸化酶

C.3—磷酸甘油醛脱氢酶 a丙酮酸激酶

E葡萄糖磷酸激酶

9.一分子丙酮酸进入三羧酸循环彻底氧化( E )

A.生成4分子C02

B.生成6分子H20

C生成18个ATP

D有5次脱氢,均通过NADH开始的呼吸链生成H20

E.反应均在线粒体内进行

10.嘌呤核苷酸和嘧啶核苷酸合成时,共同需要的物质是 D

A、延胡索酸

B、甲酸

C、天冬酰胺

D、谷氨酰胺

E、核糖-1-磷酸

12.能在线粒体中进行的代谢过程有( C )

A.糖酵解 B.类脂合成

C氧化磷酸化 D.脂肪酸合成

巳胆固醇合成

E.结合蛋白酶

15.肽链合成后的可能的加工方式包括A

A切除肽链起始的氨基酸 B.部分肽段延长

C甲基化 D.磷酸化

E.乙酰化

17. 内源性胆固醇主要由血浆中哪种脂蛋白运输B

A、HDL

B、LDL

C、VLDL

D、CM

18.关于胆色素的叙述,正确的是( A )

A是铁卟啉化合物的代谢产物

B.血红索还原成胆红素

C胆红素还原变成胆绿素

D胆素原是肝胆红素在肠道细菌作用下与乙酰CoA形成的

E.胆红素与胆色素实际是同一物质,只是环境不同,而有不同命名

二、多项选择题(每题2分,共10分)

1.对酶的正确叙述是( BE )

A能催化热力学上不能进行的反应 B.是由活细胞产生的一种生物催化剂 C催化的反应只限于细胞内 D.其本质是含辅酶或辅基的蛋白质

E.能降低反应活化能

2.代谢过程的中间产物是HMGCoA的是( BC )

A合成脂肪酸 B.合成酮体

C合成胆固醇 D.酮体氧化

E,胆固醇降解…

3.酶蛋白和辅酶之间有下列关系( BDE )

A.两者以共价键相结合

B.只有全酶才有催化活性,二者缺一不可

C.在酶促反应中两者具有相同的任务

D.一种酶蛋白通常只需一种辅酶

E.不同的酶蛋白可使用相同辅酶,催化不同的反应

4.胞嘧啶核苷酸从头合成的原料,包括( ABCE )

A. 5—磷酸核糖 B .谷氨酰胺

C. C02 D.一碳单位

E.天冬氨酸

5.关于RNA分子中“尾”的正确叙述是( C,D )

A是tRNA的加工过程 B.存在于tRNA的3末端

C是由多聚腺苷酸(polyA)组成 D.仅存在于真核细胞的mRNA上

E.是7甲基鸟嘌呤核苷三磷酸上

三、填空题[每空1分,共25分)

1.在DNA复制时,连续合成的链称为(全导链)链,不连续合成的链称为(半导链)。

3.蛋白质合成的原料是_(_氨基酸_)_,细胞中合成蛋白质的场所是(_核糖体_)__

6.结合蛋白酶类必需由_(_酶蛋白_)__和_(_辅助因子)_相结合才具有活性。

10.脂肪酸的合成在(肝脏)进行,合成原料中碳源是(),供氢体是(),它主要来自_(____)_。

11.氨在血液中主要是以(丙氨酸和谷氨酰胺)两种形式被运输。

四、名词解释(每题3分,共15分)

1.酶的活性中心:必须基团形成具有特定空间结构的区域,能与底物特异的结合,并将底物转化为产物,这一区域称…

4.呼吸链:代谢物脱下的成对的H,通过一些辅基或辅酶的催化作用,最终于O结合,生成水的过程,次过程与细胞呼吸有关,故称为……

5.从头合成途径:

五、问答题(共30分)

1.简述体内氨的来源、去路(8分)。

2.核小体由什么组成,如何形成?(4分)

3.简述蛋白质的四级结构及其维持各级结构的键或力是什么(12分)?

4.讨论三种RNA在蛋白质合成过程中的作用(6分)。

试题二

5.下列那种维生素是NAD+的组成成分?(D )

A. VitB1

B. VitB2

C. VitE

D. VitPP

E. VitA

12. 一分子乙酰CoA经三羧酸循环彻底氧化后产物是:C

A、草酰乙酸

B、草酰乙酸和CO2

C、CO2+H2O

D、CO2,NADH和FADH2

13.胆固醇合成的最基本的原料是(A )

A. 葡萄糖

B. 乙酰CoA

C. 脂肪酸

D. 蛋白质

14.尿嘧啶用下列哪个英文字母表示( B )

A.G

B.U

C.T

D.C

15.蛋白质中多肽链形成?-螺旋时,主要靠哪种次级键维持( C )

A、疏水键

B、肽键

C、氢键

D、二硫键

17.蛋白质经煮沸变性后其生物学活性(A)

A.丧失 B.升高C.不变D.降低

21. 蛋白质分子中氨基酸属于下列哪一项?(C)

A. L-β-氨基酸

B. D-β-氨基酸

C. L-α-氨基酸

D. D-α-氨基酸

E. L-D-α氨基酸

22.一碳单位的载体是(B )

A、叶酸

B、四氢叶酸

C、生物素

D、焦磷酸硫胺素

25.NH3经鸟氨酸循环形成尿素的主要生理意义是( A )

A、可消除NH3毒性,产生尿素由尿排泄

B、是NH3贮存的一种形式

C、是鸟氨酸合成的重要途径

D、是精氨酸合成的主要途径

二.多项选择题(每空2分,共10分,每项多答或少答,都不给分)

4.下列有关酮体的代谢哪些是正确的(CDE )

A.酮体是在肌肉中合成 B. 酮体是在肝脏中氧化

C.酮体是在肝中合成D.酮体合成的原料是乙酰CoA

E. 酮体过多可导致酸中毒

一. 填空题(每空0.5分,10分)

1. 在核酸分子中的嘌呤碱基主要有(嘌呤和嘧啶)两种。

7.血脂包括有甘油三脂、磷脂、胆固醇、胆固醇脂、游离脂肪酸。

四.名词解释(每题4分,共20分)

1.等点电:在某一PH值的水溶液中,加入某种氨基酸,该氨基酸解离成阴离子和阳离子的趋势相等,变成兼性离子,次PH值称…

3.腐败:肠道未被消化的蛋白质和未被吸收的氨基酸,在肠道细菌作用下进行的氧化分解的反应过程,产生一系列对人体有害的物质,称…

五.问答题(每题6分,共30分)

5.三羧循环有何重要生理意义?

15.属于芳香族氨基酸的是(苯丙氨酸,色氨酸,酪氨酸)

生物化学复习重点

第二章 蛋白质 1、凯氏定氮法:蛋白质含量=总含氮量-无机含氮量)×6.25 例如:100%的蛋白质中含N 量为16%,则含N 量8%的蛋白质含量为50% 100% /xg=16% /1g x=6.25g 2、根据R 基的化学结构,可将氨基酸分为脂肪族氨基酸、芳香族氨基酸、杂环氨基酸和杂环亚氨基酸。 按照R 基的极性,可分为非极性R 基氨基酸、不带电荷的极性R 基氨基酸、极性带负电荷(1)一般物理性质 无色晶体,熔点极高(200℃以上),不同味道;水中溶解度差别较大(极性和非极性),不溶于有机溶剂。氨基酸是两性电解质。 氨基酸等电点的确定: 酸碱确定,根据pK 值(该基团在此pH 一半解离)计算: 等电点等于两性离子两侧pK 值的算术平均数。

(2)化学性质 ①与水合茚三酮的反应:Pro产生黄色物质,其它为蓝紫色。在570nm(蓝紫色)或440nm (黄色)定量测定(几μg)。 ②与甲醛的反应:氨基酸的甲醛滴定法 ③与2,4-二硝基氟苯(DNFB)的反应:形成黄色的DNP-氨基酸,用来鉴定多肽或蛋白质的N 端氨基酸,又称Sanger法。或使用5-二甲氨基萘磺酰氯(DNS-Cl,又称丹磺酰氯)也可测定蛋白质N端氨基酸。 ④与异硫氰酸苯酯(PITC)的反应:多肽链N端氨基酸的α-氨基也可与PITC反应,生成PTC-蛋白质,用来测定N端的氨基酸。 4、肽的结构 线性肽链,书写时规定N端放在左边,C端放在右边,用连字符将氨基酸的三字符号从N 端到C端连接起来,如Ser-Gly-Tyr-Ala-Leu。命名时从N端开始,连续读出氨基酸残基的名称,除C端氨基酸外,其他氨基酸残基的名称均将“酸”改为“酰”,如丝氨酰甘氨酰酪氨酰丙氨酰亮氨酸。若只知道氨基酸的组成而不清楚氨基酸序列时,可将氨基酸组成写在括号中,并以逗号隔开,如(Ala,Cys2,Gly),表明此肽有一个Ala、两个Cys和一个Gly 组成,但氨基酸序列不清楚。 由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一个平面,称作肽平面或酰胺平面。 5、、蛋白质的结构 (一)蛋白质的一级结构(化学结构) 一级结构中包含的共价键主要指肽键和二硫键。 (二)蛋白质的二级结构 (1)α-螺旋(如毛发) 结构要点:螺旋的每圈有3.6个氨基酸,螺旋间距离为0.54nm,每个残基沿轴旋转100°。(2)β-折叠结构(如蚕丝) (3)β-转角 (4)β-凸起 (5)无规卷曲 (三)蛋白质的三级结构(如肌红蛋白) (四)蛋白质的司机结构(如血红蛋白) 6、蛋白质分子中氨基酸序列的测定 氨基酸组成的分析: ?酸水解:破坏Trp,使Gln变成Glu, Asn变成Asp ?碱水解:Trp保持完整,其余氨基酸均受到破坏。 N-末端残基的鉴定:

《生物化学》考研复习重点大题

中国农业大学研究生入学考试复习资料 《生物化学》重点大题 1.简述Chargaff 定律的主要内容。 答案:(1)不同物种生物的DNA 碱基组成不同,而同一生物不同组织、器官的DNA 碱基组成相同。(2)在一个生物个体中,DNA 的碱基组成并不随年龄、营养状况和环境变化而改变。 (3)几乎所有生物的DNA 中,嘌呤碱基的总分子数等于嘧啶碱基的总分子数,腺嘌呤(A)和胸腺嘧啶(T) 的分子数量相等,鸟嘌呤(G)和胞嘧啶(C)的分子数量相等,即A+G=T+C。这些重要的结论统称 为Chargaff 定律或碱基当量定律。 2.简述DNA 右手双螺旋结构模型的主要内容。 答案:DNA 右手双螺旋结构模型的主要特点如下: (1)DNA 双螺旋由两条反向平行的多核苷酸链构成,一条链的走向为5′→3′,另一条链的走向为3′→5′;两条链绕同一中心轴一圈一圈上升,呈右手双螺旋。 (2)由脱氧核糖和磷酸构成的骨架位于螺旋外侧,而碱基位于螺旋内侧。 (3)两条链间A 与T 或C 与G 配对形成碱基对平面,碱基对平面与螺旋的虚拟中心轴垂直。 (4)双螺旋每旋转一圈上升的垂直高度为3.4nm(即34?),需要10 个碱基对,螺旋直径是2.0nm。(5)双螺旋表面有两条深浅不同的凹沟,分别称为大沟和小沟。 3.简述DNA 的三级结构。 答案:在原核生物中,共价闭合的环状双螺旋DNA 分子,可再次旋转形成超螺旋,而且天然DNA 中多为负超螺旋。真核生物线粒体、叶绿体DNA 也是环形分子,能形成超螺旋结构。真核细胞核内染色体是DNA 高级结构的主要表现形式,由组蛋白H2A、H2B、H3、H4 各两分子形成组蛋白八聚体,DNA 双螺旋缠绕其上构成核小体,核小体再经多步旋转折叠形成棒状染色体,存在于细胞核中。 4.简述tRNA 的二级结构与功能的关系。 答案:已知的tRNA 都呈现三叶草形的二级结构,基本特征如下:(1)氨基酸臂,由7bp 组成,3′末端有-CCA-OH 结构,与氨基酸在此缩合成氨基酰-tRNA,起到转运氨基酸的作用;(2)二氢尿嘧啶环(DHU、I 环或D 环),由8~12 个核苷酸组成,以含有5,6-二氢尿嘧啶为特征;(3)反密码环,其环中部的三个碱基可与mRNA 的三联体密码子互补配对,在蛋白质合成过程中可把正确的氨基酸引入合成位点;(4)额外环,也叫可变环,通常由3~21 个核苷酸组成;(5)TψC 环,由7 个核苷酸组成环,和tRNA 与核糖体的结合有关。 5.简述真核生物mRNA 3′端polyA 尾巴的作用。 答案:真核生物mRNA 的3′端有一段多聚腺苷酸(即polyA)尾巴,长约20~300 个腺苷酸。该尾巴与mRNA 由细胞核向细胞质的移动有关,也与mRNA 的半衰期有关;研究发现,polyA 的长短与mRNA 寿命呈正相关,刚合成的mRNA 寿命较长,“老”的mRNA 寿命较短。 6.简述分子杂交的概念及应用。 答案:把不同来源的DNA(RNA)链放在同一溶液中进行热变性处理,退火时,它们之间某些序列互补的区域可以通过氢键重新形成局部的DNA-DNA 或DNA-RNA 双链,这一过程称为分子杂交,生成的双链称杂合双链。DNA 与DNA 的杂交叫做Southern 杂交,DNA 与RNA 杂交叫做Northern 杂交。 核酸杂交已被广泛应用于遗传病的产前诊断、致癌病原体的检测、癌基因的检测和诊断、亲子鉴定和动

生物化学考试重点总结

生化总结 1。蛋白质的pI:在某一pH溶液中,蛋白质解离为正离子和解离为负离子的过程和趋势相等,处于兼性离子状态,该溶液的pH值称蛋白质的pI。 2。模体:在蛋白质分子中,二个或二个以上具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间现象,具有特殊的生物学功能。 3。蛋白质的变性:在某些理化因素的作用下,蛋白质特定的空间构象被破坏,从而导致其理化性质的改变和生物学活性丧失的现象。 4。试述蛋白质的二级结构及其结构特点。 (1)蛋白质的二级结构指蛋白质多肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。主要包括,α-螺旋、β-折叠、β-转角、无规则卷曲四种类型,以氢键维持二级结构的稳定性。 (2)α-螺旋结构特点:a、单链、右手螺旋;b、氨基酸残基侧链位于螺旋的外侧;c、每一个螺旋由3.6个氨基酸残基组成,螺距0.54nm;d、每个残基的-NH和前面相隔三个残基的-CO之间形成氢键;e、氢键方向与螺距长轴平行,链内氢键是α-螺旋的主要因素。 (3)β-折叠结构特点:a、肽键平面充分伸展,折叠成锯齿状;b、氨基酸侧链交替位于锯齿状结构的上下方;c、维系依靠肽键间的氢键,氢键方向与肽链长轴垂直;d、肽键的N末端在同一侧---顺向平行,反之为反向平行。 (4)β-转角结构特点:a、肽链出现180转回折的“U”结构;b、通常由四个氨基酸残基构成,第二个氨基酸残基常为脯氨酸,由第1个氨基酸的C=O与第4个氨基酸残基的N-H形成氢键维持其稳定性。 (5)无规则卷曲:肽链中没有确定的结构。 5。蛋白质的理化性质有:两性解离;蛋白质的胶体性质;蛋白质的变性;蛋白质的紫外吸收性质;蛋白质的显色反应。 6。核小体(nucleosome):是真核生物染色质的基本组成单位,有DNA和5种组蛋白共同组成。A、B、和共同构成了核小体的核心组蛋白,长度约150bp的DNA双链在组蛋白八聚体上盘绕1.75圈形成核小体的核心颗粒,核心颗粒之间通过组蛋白和DNA连接形成的串珠状结构称核小体。 7。解链温度/融解温度(melting temperature,Tm):在DNA解链过程中,紫外吸光度的变化达到最大变化值的一半时所对应的温度称为DNA的解链温度,或称熔融温度(Tm值)。 8。DNA变性(DNA denaturation):在某些理化因素(温度、pH、离子强度)的作用下,DNA双链间互补碱基对之间的氢键断裂,使双链DNA解离为单链,从而导致DNA理化性质改变和生物学活性丧失,称为DNA的变性作用。9。试述细胞内主要的RNA类型及其主要功能。 (1)核糖体RNA(rRNA),功能:是细胞内含量最多的RNA,它与核蛋白体蛋白共同构成核糖体,为mRNA,tRNA 及多种蛋白质因子提供相互结合的位点和相互作用的空间环境,是细胞合成蛋白质的场所。 (2)信使RNA(mRNA),功能:转录核内DNA遗传信息的碱基排列顺序,并携带至细胞质,指导蛋白质合成。是蛋白质合成模板。成熟mRNA的前体是核内不均一RNA(hnRNA),经剪切和编辑就成为mRNA。 (3)转运RNA(tRNA),功能:在蛋白质合成过程中作为各种氨基酸的载体,将氨基酸转呈给mRNA。转运氨基酸。 (4)不均一核RNA(hnRNA),功能:成熟mRNA的前体。 (5)小核RNA(SnRNA),功能:参与hnRNA的剪接、转运。 (6)小核仁RNA(SnoRNA),功能:rRNA的加工和修饰。 (7)小胞质RNA(ScRNA/7Sh-RNA),功能:蛋白质内质网定位合成的信号识别体的组成成分。 10。试述Watson-Crick的DNA双螺旋结构模型的要点。 (1)DNA是一反向平行、右手螺旋的双链结构。两条链在空间上的走向呈反向平行,一条链的5’→3’方向从上向下,而另一条链的5’→3’是从下向上;脱氧核糖基和磷酸基骨架位于双链的外侧,碱基位于内侧,两条链的碱基之间以氢键相接触,A与T通过两个氢键配对,C与G通过三个氢键配对,碱基平面与中心轴相垂直。 (2)DNA是一右手螺旋结构。螺旋每旋转一周包含了10.5碱基对,每个碱基的旋转角度为36。DNA双螺旋结构的直径为2.37nm,螺距为3.54nm,每个碱基平面之间的距离为0.34nm。DNA双螺旋分子存在一个大沟和小沟。(3)DNA双螺旋结构稳定的维系横向靠两条链之间互补碱基的氢键,纵向则靠碱基平面间的碱基堆积力维持。11。酶的活性中心:酶分子的必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异地结合并将底物转化为产物,这一区域称为酶的活性中心。 12。同工酶:是指催化相同的化学反应,而酶的分子结构、理化性质乃至免疫学性质不同的一组酶。 13。何为酶的Km值?简述Km和Vm意义。

生物化学测试题及答案.

生物化学第一章蛋白质化学测试题 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少?B(每克样品*6.25) A.2.00g B.2.50g C.6.40g D.3.00g E.6.25g 2.下列含有两个羧基的氨基酸是:E A.精氨酸B.赖氨酸C.甘氨酸 D.色氨酸 E.谷氨酸 3.维持蛋白质二级结构的主要化学键是:D A.盐键 B.疏水键 C.肽键D.氢键 E.二硫键(三级结构) 4.关于蛋白质分子三级结构的描述,其中错误的是:B A.天然蛋白质分子均有的这种结构 B.具有三级结构的多肽链都具有生物学活性 C.三级结构的稳定性主要是次级键维系 D.亲水基团聚集在三级结构的表面 E.决定盘曲折叠的因素是氨基酸残基 5.具有四级结构的蛋白质特征是:E A.分子中必定含有辅基 B.在两条或两条以上具有三级结构多肽链的基础上,肽链进一步折叠,盘曲形成 C.每条多肽链都具有独立的生物学活性 D.依赖肽键维系四级结构的稳定性 E.由两条或两条以上具在三级结构的多肽链组成 6.蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定:C A.溶液pH值大于pI B.溶液pH值小于pI C.溶液pH值等于pI D.溶液pH值等于7.4 E.在水溶液中 7.蛋白质变性是由于:D A.氨基酸排列顺序的改变B.氨基酸组成的改变C.肽键的断裂D.蛋白质空间构象的破坏E.蛋白质的水解 8.变性蛋白质的主要特点是:D A.粘度下降B.溶解度增加C.不易被蛋白酶水解

D.生物学活性丧失 E.容易被盐析出现沉淀 9.若用重金属沉淀pI为8的蛋白质时,该溶液的pH值应为:B A.8 B.>8 C.<8 D.≤8 E.≥8 10.蛋白质分子组成中不含有下列哪种氨基酸?E A.半胱氨酸 B.蛋氨酸 C.胱氨酸 D.丝氨酸 E.瓜氨酸二、多项选择题 1.含硫氨基酸包括:AD A.蛋氨酸 B.苏氨酸 C.组氨酸D.半胖氨酸2.下列哪些是碱性氨基酸:ACD A.组氨酸B.蛋氨酸C.精氨酸D.赖氨酸 3.芳香族氨基酸是:ABD A.苯丙氨酸 B.酪氨酸 C.色氨酸 D.脯氨酸 4.关于α-螺旋正确的是:ABD A.螺旋中每3.6个氨基酸残基为一周 B.为右手螺旋结构 C.两螺旋之间借二硫键维持其稳定(氢键) D.氨基酸侧链R基团分布在螺旋外侧 5.蛋白质的二级结构包括:ABCD A.α-螺旋 B.β-片层C.β-转角 D.无规卷曲 6.下列关于β-片层结构的论述哪些是正确的:ABC A.是一种伸展的肽链结构 B.肽键平面折叠成锯齿状 C.也可由两条以上多肽链顺向或逆向平行排列而成 D.两链间形成离子键以使结构稳定(氢键) 7.维持蛋白质三级结构的主要键是:BCD A.肽键B.疏水键C.离子键D.范德华引力 8.下列哪种蛋白质在pH5的溶液中带正电荷?BCD(>5) A.pI为4.5的蛋白质B.pI为7.4的蛋白质 C.pI为7的蛋白质D.pI为6.5的蛋白质 9.使蛋白质沉淀但不变性的方法有:AC A.中性盐沉淀蛋白 B.鞣酸沉淀蛋白 C.低温乙醇沉淀蛋白D.重金属盐沉淀蛋白

生物化学复习资料

什么是蛋白质的变性作用?引起蛋白质变性的因素有哪些?有何临床意义?在某些理化因素作用下, 使蛋白质严格的空间结构破坏,引起蛋白质理化性质改变和生物学活性丧失的现象称为蛋白质变性。引起蛋白质变性的因素有:物理因素,如紫外线照射、加热煮沸等;化学因素,如强酸、强碱、重金属盐、有机溶剂等。临床上常常利用加热或某些化学士及使病原微生物的蛋白质变性,从而达到消毒的目的,在分离、纯化或保存活性蛋白质制剂时,应采取防止蛋白质变性的措施。 比较蛋白质的沉淀与变性 蛋白质的变性与沉淀的区别是:变性强调构象破坏,活性丧失,但不一定沉淀;沉淀强调胶体溶液稳定因素破坏,构象不一定改变,活性也不一定丧失,所以不一定变性。 试述维生素B1的缺乏可患脚气病的可能机理 在体内Vit B1 转化成TPP,TPP 是α-酮酸氧化脱羧酶系的辅酶之一,该酶系是糖代谢过程的关键酶。维生素B1 缺乏则TPP 减少,必然α-酮酸氧化脱羧酶系活性下降,有关代谢反应受抑制,导致ATP 产生减少,同时α-酮酸如丙酮酸堆积,使神经细胞、心肌细胞供能不足、功能障碍,出现手足麻木、肌肉萎缩、心力衰竭、下肢水肿、神经功能退化等症状,被通称为“脚气病”。 简述体内、外物质氧化的共性和区别 共性①耗氧量相同。②终产物相同。③释放的能量相同。

区别:体外燃烧是有机物的C 和H 在高温下直接与O2 化合生成CO2 和H2O,并以光和热的形式瞬间放能;而生物氧化过程中能量逐步释放并可用于生成高能化合物,供生命活动利用。 简述生物体内二氧化碳和水的生成方式 ⑴CO2 的生成:体内CO2 的生成,都是由有机酸在酶的作用下经脱羧反应而生成的。根据释放CO2 的羧基在有机酸分子中的位置不同,将脱羧反应分为: α-单纯脱羧、α-氧化脱羧、β-单纯脱羧、β-氧化脱羧四种方式。 ⑵水的生成:生物氧化中的H2O 极大部分是由代谢物脱下的成对氢原子(2H),经一系列中间传递体(酶和辅酶)逐步传递,最终与氧结合产生的。 试述体内两条重要呼吸链的排练顺序,并分别各举两种代谢物氧化脱氢 NADH 氧化呼吸链:顺序:NADH→FMN/(Fe-S)→CoQ→Cytb→c1→c→aa3 如异柠檬酸、苹果酸等物质氧化脱氢,生成的NADH+H+均分别进入NADH 氧化呼吸链进一步氧化,生成2.5 分子ATP。 琥珀酸氧化呼吸链:FAD·2H/(Fe-S)→CoQ→Cytb→c1→c→aa3 如琥珀酸、脂酰CoA 等物质氧化脱氢,生成的FAD·2H 均分别进入琥珀酸氧化呼吸链进一步氧化,生成1.5 分子ATP。 试述生物体内ATP的生成方式 生物体内生成ATP 的方式有两种:底物水平磷酸化和氧化磷酸化。

生物化学复习重点

绪论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及其应用;蛋白质分离纯化的方法及其基本原理。 【复习思考题】 1. 名词解释:蛋白质一级结构、蛋白质二级结构、蛋白质三级结构、蛋白质四级结构、肽单元、模体、结构域、分子伴侣、协同效应、变构效应、蛋白质等电点、电泳、层析 2. 蛋白质变性的概念及本质是什么有何实际应用? 3. 蛋白质分离纯化常用的方法有哪些其原理是什么? 4. 举例说明蛋白质结构与功能的关系 核酸的结构与功能 掌握:核酸的分类、细胞分布,各类核酸的功能及生物学意义;核酸的化学组成;两类核酸(DNA与RNA)分子组成异同;核酸的一级结构及其主要化学键;DNA 右手双螺旋结构要点及碱基配对规律;mRNA一级结构特点;tRNA二级结构特点;核酸的主要理化性质(紫外吸收、变性、复性),核酸分子杂交概念。 第三章酶 掌握:酶的概念、化学本质及生物学功能;酶的活性中心和必需基团、同工酶;酶促反应特点;各种因素对酶促反应速度的影响、特点及其应用;酶调节的方式;酶的变构调节和共价修饰调节的概念。 第四章糖代谢 掌握:糖的主要生理功能;糖的无氧分解(酵解)、有氧氧化、糖原合成及分解、糖异生的基本反应过程、部位、关键酶(限速酶)、生理意义;磷酸戊糖途径的生理意义;血糖概念、正常值、血糖来源与去路、调节血糖浓度的主要激素。 【复习思考题】 1. 名词解释:.糖酵解、糖酵解途径、高血糖和糖尿病、乳酸循环、糖原、糖异生、三羧酸循环、活性葡萄糖、底物水平磷酸化。 2.说出磷酸戊糖途径的主要生理意义。 3.试述饥饿状态时,蛋白质分解代谢产生的丙氨酸转变为葡萄糖的途径。

生物化学精彩试题酶

1 / 23 第三章酶. 三、典型试题分析 1.一个酶作用于多种底物时,其天然底物的Km值应该是(1995年生 化考题) A.最大B.与其他底物相同C.最小 D.居中E.与K3相同 [答案]C 2.下列关于酶的活性中心的叙述哪些是正确的(1996年生化考题) A.所有的酶都有活性中心 B.所有的酶活性中心都含有辅酶 C.酶的必需基团都位于活性中心之内 D.所有抑制剂都作用于酶的活性中心 E.所有酶的活性中心都含有金属离子 [答案]A 3.乳酸脱氢酶经透析后,催化能力显著降低,其原因是(1997年生化考题) A.酶蛋白变形 B.失去辅酶 C.酶含量减少 D.环境PH值发生了改变

E.以上都不是 2 / 23 [答案]B 4.关于酶的化学修饰,错误的是 A.酶以有活性(高活性),无活性(低活性)两种形式存在 B.变构调节是快速调节,化学修饰不是快速调节 B.两种形式的转变有酶催化 D.两种形式的转变由共价变化 E.有放大效应 [答案]B 5..测定酶活性时,在反应体系中,哪项叙述是正确的 A.作用物的浓度越高越好B.温育的时间越长越好 C.pH必须中性D.反应温度宜以3713为佳 E.有的酶需要加入激活剂 [答案]E 6.下列关于酶活性中心的叙述哪些是正确的(1999年生化试题) A.是由一条多肽链中若干相邻的氨基酸残基以线状排列而成B.对于整个酶分子来说,只是酶的一小部分 C.仅通过共价键与作用物结合D.多具三维结构 (答案]B和D 7.酶的变构调节 A.无共价键变化B.构象变化 C.作用物或代谢产物常是变构剂

3 / 23 D.酶动力学遵守米式方程 (答案)A、B和C 8.酶原之所以没有活性是因为(2000年生化试题) A.酶蛋白肽链合成不完全B.缺乏辅酶或辅基 C.活性中心未形成或未暴露 D.酶原是已经变性的蛋白质 E.酶原是普通的蛋白质 [答案]C 四、测试题 (一)A型题 1,下列对酶的叙述,哪一项是正确的? A.所有的蛋白质都是酶B,所有的酶均以有机化合物作为底物 C.所有的酶均需特异的辅助因子 D.所有的酶对其底物都是有绝对特异性 E.少数RNA具有酶一样的催化活性 2.在常温常压及中性pH条件下,酶比一般催化剂的效率可高A.10~102倍B.102~104倍巳104~108倍 D.108~1012倍E.1020倍以上 3.以下哪项不是酶的特点 A.多数酶是细胞制造的蛋白质 4 / 23 B.易受pH,温度等外界因素的影响

生化复习要点

绪论 1 生物化学的定义,研究内容。 2 了解生物化学与药学之间的关系。 3 了解生物化学的发展历史。 第1章糖的化学 1 重要概念: 糖,单糖,寡糖,多糖,同聚多糖,均一多糖,杂聚多糖,不均一多糖,黏多糖,结合糖,糖蛋白与蛋白聚糖,糖脂与脂多糖,透明质酸, 2 了解知道平时接触到的一些糖类在化学上属于哪类糖? 3 糖的主要生物学作用。 4 掌握糖类的化学通式, 5 了解下面的常见糖类分别是什么类糖?果糖,蔗糖,葡萄糖,麦芽糖,乳糖,半乳糖,棉子糖,核糖,脱氧核糖,赤藓酮糖,赤藓糖,木酮糖,甘油醛,二羟丙酮,淀粉,糖原,纤维素,琼脂等。 6 了解多糖的几种分类方法。 7 淀粉是由α-D-葡萄糖组成的,连接的化学键是α-1,4-糖苷键,直链与支链淀粉的区别是什么? 8 糖原是由α-D-葡萄糖组成的,连接的化学键是α-1,4-糖苷键、α-1,6-糖苷键,与淀粉有什么不同和相同之处? 9 纤维素是由β-D-葡萄糖组成的,连接的化学键是β-1,4-糖苷键。

10 几丁质是由N-乙酰氨基葡萄糖组成的,连接的化学键β-1,4-糖苷键。 11 常见的黏多糖有透明质酸、肝素、硫酸软骨素。 12 透明质酸是由D-葡萄糖醛酸、N-乙酰氨基葡萄糖交替组成的? 13 组成细菌细胞壁的多糖中最主要的是肽聚糖。 14 大致了解一下有药理活性的多糖有哪些?有没有正在使用的属于糖类的药物? 15 了解有哪些糖类以及衍生物等被用做药物使用。 第2章脂类 1 重要的概念:脂类,单纯脂类,复合脂类,衍生脂类,饱和脂肪酸,不饱和脂肪酸,必需脂肪酸, 2 掌握脂肪的化学结构式, 3 了解脂类的主要生物学功能。 4 熟悉表2-1和2-2中脂肪酸的类型,掌握各种脂肪酸的结构特点(含有几个碳原子和双键?俗名是什么?) 5 所谓的“脑黄金”的化学结构是什么? 6 磷脂分为甘油磷脂、鞘磷脂。 7 写出甘油磷脂结构式,在细胞内有什么作用?常见的甘油磷脂有暖磷脂、脑磷脂、磷脂酰丝氨酸、磷酸酰肌醇、缩醛磷脂、二磷脂酰甘油。 8 鞘磷脂由鞘氨醇、脂肪酸、磷酸、胆碱组成。其中含有的醇类是鞘氨醇。在细胞内的重要作用是什么?

生化考试复习题汇总及答案整理

核酸化学及研究方法 一、名词解释 1.正向遗传学:通过研究突变表型确定突变基因的经典遗传学方法。 2.核小体组蛋白修饰:组成核小体组蛋白,其多肽链的N末端游离于核小体之外,常被化学基团修饰,修饰类型包括:乙酰化、甲基化、磷酸化和泛素化,修饰之后会改变染色质的结构和活性。 3.位点特异性重组:位点特异性重组是遗传重组的一类。这类重组依赖于小范围同源序列的联会,重组只发生在同源短序列的范围之内,需要位点特异性的蛋白质分子参与催化。 4.转座机制:转座酶上两个不同亚基结合在转座子的特定序列上,两个亚基靠在一起形成有活性的二聚体,切下转座子,转座酶-转座子复合物结合到靶DNA上,通过转座酶的催化将转座子整合到新位点上。 5.基因敲除:利用DNA同源重组原理,用设计的外源同源DNA与受体细胞基因组中序列相同或相近的靶基因发生重组,从而将外源DNA整合到受体细胞的基因组中,产生精确的基因突变,完成基因敲除。 6.Sanger双脱氧终止法:核酸模板在核酸聚合酶、引物、四种单脱氧碱基存在的条件下复制或转录时,如果在四管反应系统中分别按比例引入四种双脱氧碱基,若双脱氧碱基掺入链端,该链便停止延长,若单脱氧碱基掺入链端,该链便可继续延伸。如此每管反应体系中便合成了以共同引物为5’端,以双脱氧碱基为3’端的一系列长度不等的核酸片段。反应终止后,分四个泳道进行电泳,以分离长短不一的核酸片段(长度相邻者仅差一个碱基),根据片段3’的双脱氧碱基,便可依次阅读合成片段的碱基排列顺序。 7.荧光实时PCR技术原理 探针法:TaqMan探针是一小段可以与靶DNA序列中间部位结合的单链DNA,它的5’和3’端分别带有一个荧光基团,这两个荧光基团由于距离过近,相互发生淬灭,不产生绿色荧光。PCR反应开始后,靶DNA变性,产生单链DNA,TaqMan探针结合到与之配对的靶DNA序列上,之后被Taq DNA聚合酶切除降解,从而解除荧光淬灭,荧光基团在激发光下发出荧光,最后可根据荧光强度计算靶DNA的数量。染料法:荧光染料(如SYBR GreenⅠ)能与双链DNA发生非序列特异性结合,并激发出绿色荧光。PCR反应开始后,随着DNA的不断延伸,结合到DNA上的荧光染料也相应增加,被激发产生的荧光也相应增加,可根据荧光强度计算初始模板的数量。 8.双分子荧光互补(BiFC)技术原理 将荧光蛋白在某些特定的位点切开,形成不发荧光的N片段和C片段。这2个片段在细胞内共表达或体外混合时,不能自发地组装成完整的荧光蛋白,不能产生荧光。但是,当这2个荧光蛋白的片段分别连接到一组有相互作用的目标蛋白上,在细胞内共表达或体外混合这两个目标蛋白时,由于目标蛋白质的相互作用,荧光蛋白的2个片段在空间上互相靠近互补,重新构建成完整的具有活性的荧光蛋白分子,并在该荧光蛋白的激发光激发下,发射荧光。 简言之,如果目标蛋白质之间有相互作用,则在激发光的激发下,产生该荧光蛋白的荧光。反之,若目标蛋白质之间没有相互作用,则不能被激发产生荧光。 二.问答题: 1.怎样将一个基因克隆到pET32a载体上;原核表达后,怎样纯化该蛋白? 2.通过哪几种方法可以获得cDNA的全长?简述其原理。 (一)已知序列信息 1.同源序列法:根据基因家族各成员间保守氨基酸序列设计简并引物,利用简并引物进行RT-PCR扩增,得到该基因的部分cDNA序列,然后再利用RACE(cDNA末端快速扩增技术)获得cDNA全长。 2.功能克隆法:cDNA文库;基因组文库 (二)未知序列信息: 1.基于基因组DNA的克隆:是在鉴定已知基因的功能后,进而分离目标基因的一种方法。

生物化学期末考试重点

等电点:在某PH的溶液中,氨基解离呈阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的P H称为该氨基酸的等电点 DNA变性:某些理化因素会导致氢键发生断裂,使双链DNA解离为单链,称为DNA变性 解链温度(Tm):在解链过程中,紫外吸收值得变化达到最大变化值的一半时所对应的温度 酶的活性中心:酶分子中一些必需基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合,并将底物转化为产物,这一区域称为酶的活性中心 同工酶:指催化相同化学反应,但酶蛋白的分子结构、理化性质、免疫学性质不同的一组酶 诱导契合:在酶和底物相互接近时,其结构相互诱导、相互变性、相互适应,这一过程为酶底物结合的诱导契合 米氏常数(Km值):等于酶促反应速率为最大反应速率一半时的底物浓度 酶原的激活:酶的活性中心形成或暴露,酶原向酶的转化过程即为。。 有氧氧化:葡萄糖在有氧条件下彻底氧化成水和二氧化碳的反应过程称为有氧氧化 三羧酸循环:是指乙酰CoA和草酰乙酸缩合生成含3个羧基的柠檬酸,再4次脱氢,2次脱羧,又生成草酰乙酸的循环反应过程 糖异生:从非糖化合物转化为葡萄糖或糖原的过程称为。。 脂肪动员:指储存在脂肪细胞中的甘油三酯,被酯酸逐步水解为游离脂酸和甘油并释放入血,通过血液运输至其他组织,氧化利用的过程 酮体:是脂酸在肝细胞线粒体中β-氧化途径中正常生成的中间产物:乙酰乙酸、β-羟丁酸、丙酮脂蛋白:血浆中脂类物质和载脂蛋白结合形成脂蛋白 呼吸链:线粒体内膜中按一定顺序排列的一系列具有电子传递功能的酶复合体,可通过连锁的氧化还原将代谢物脱下的电子最终传递给氧生成水。这一系列酶和辅酶称为呼吸链或电子传递链 营养必需氨基酸:体内需要而又不能自身合成,必须由食物提供的氨基酸 一碳单位:指某些氨基酸在分解代谢过程中产生的含有一个碳原子的基因 半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模极,按碱基配对规律,合成与模极互补的子链、子代细胞的DNA。一股单链从亲代完整的接受过来,另一股单链则完全重新合成。两个子细胞的DNA都和亲代DNA碱基序列一致,这中复制方式称为半保留复制 生物转化:机体对内外源性的非营养物质进行代谢转变,使其水溶性提高,极性增强,易于通过胆汁或尿液排出体外,这一过程为生物转化 氧化磷酸化:代谢物脱氢进入呼吸链,彻底氧化成水的同时,ADP磷酸化生成ATP,称为氧化磷酸化 底物水平磷酸化:底物由于脱氢脱水作用,底物分子内部能量重新分布生成高能键,使ATP磷酸化生成ATP的过程 密码子:在mRNA的开放阅读框架区,以每3个相邻的核苷酸为一组,代表一种氨基酸。这种三联体形成的核苷酸行列称为密码子 盐析:在蛋白质溶液中加入大量中性盐,以破坏蛋白质的胶体性质,使蛋白质从溶液中沉淀析出称为盐析 糖酵解:葡萄糖或糖原在组织中进行类似的发酵的降解反应过程,最终形成乳酸或丙酮酸,同时释放出部分能量,形成ATP供组织利用 蛋白质的一级结构:指在蛋白质分子从N-端至C-端的氨基酸排列顺序 蛋白质的二级结构:多肽链主链骨架原子的相对空间位置。 蛋白质的三级结构:整条肽链中全部氨基酸残基的相对空间位置。即肽链中所有原子在三维空间的排布位置。 蛋白质的四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用 DNA的空间结构与功能

(完整版)生物化学-酶(习题附答案)

一、名词解释 1 核酶 答案: 具有催化活性的RNA。 2 酶 答案: 酶是生物体内活细胞合成的一种生物催化剂。 3 酶的竞争性抑制剂 答案: 抑制剂与底物化学结构相似,能与底物竞争占据酶的活性中心,形成EI复合物,而阻止ES复合物的形成从而抑制了酶的活性。 4 辅基 答案: 与酶蛋白结合牢固,催化反应时,不脱离酶蛋白,用透析、超滤等方法不易与酶蛋 白分开。 5 辅酶 答案: 与酶蛋白结合松散,催化反应时,与酶蛋白可逆结合,用透析、超滤等方法易与酶 蛋白分开。 6 酶的活性中心 答案: 酶与底物结合,并参与催化的部位。 7 酶原 答案: 没有催化活性的酶前体 8 米氏常数 答案: 酶促反应速度为最大反应速度一半时的底物浓度。 9 酶的激活剂 答案: 能提高酶活性,加速酶促反应进行的物质。 10 酶的抑制剂 答案: 虽不引起蛋白质变性,但能与酶分子结合,使酶活性下降,甚至完全丧失活性,这 种使酶活性受到抑制的特殊物质,称为酶的抑制剂。 11 酶的不可逆抑制剂 答案: 与酶的必需基团共价结合,使酶完全丧失活性,不能用透析、超滤等物理方法解除 的抑制剂。 12 酶的可逆抑制剂 答案: 能与酶非共价结合,但可以用透析、超滤等简单的物理方法解除,而使酶恢复活性的抑制剂。 13 酶的非竞争性抑制剂 答案: 抑制剂与底物化学结构并不相似,不与底物抢占酶的活性中心,但能与酶活性中心 外的必需基团结合,从而抑制酶的活性。 14 酶活力 答案: 指酶加速化学反应的能力,也称酶活性。 15 比活力 答案: 每毫克酶蛋白所含的酶活力单位数(U/mg),也称比活性或简称比活。 二、填空题 1 酶的化学本质大部分是,因而酶具有蛋白质的性质和结构。 答案: 蛋白质,理化性质,各级结构 2 目前较公认的解释酶作用机制的学说分别是、、和。

大学期末复习试题资料整理生化期末复习资料

2016—2017学年度第一学期 食品科学与工程学院《生物化学》期末考试试卷 注意事项:1. 考生务必将自己姓名、学号、专业名称写在指定位置; 2. 密封线和装订线内不准答题。 一、名词解释 (共8小题,每小题2.5分,共20分,答案写在试题第8页) 1. 蛋白质的一级结构 2. 变构效应 3. 透析 4. 增色效应 5.糖酵解 6. 三羧酸循环 7.半保留复制 8. 激素水平代谢调节 二、填空题(共40空,每空0.5分,共20分) 1、蛋白质可受 酸 、 碱 、或 酶 的作用而水解,最后彻底水解为各种 氨基酸 的 混合物。 2、酶活性中心与底物相结合那些基因团称 结合基因 ,而起催化作用的那些基因团称 催化基因 。 3、核酸完全水解的产物是 磷酸 , 含氮碱基 和 戊糖 。 其中 含氮碱基 又可分为 嘌呤 碱和 嘧啶 碱。 4、大多数蛋白质中氮的含量较恒定,平均为__16_%,如测得1克样品含氮量为10mg,则蛋白质含量为 __6.25__%。

5、由于蛋白质分子中的酪氨酸、色氨酸和苯丙氨酸在分子结构中含有__共轭__双键,所以在波长__280nm__处有特征性吸收峰,该特点称为蛋白质的__紫外吸收__性质。 6、当非竞争性抑制剂存在时,酶促反应动力学参数如下Km__不变__,Vmax__降低__。 7、决定蛋白质的空间构象和生物学功能的是蛋白质的__一__级结构,该结构是指多肽链中__氨基酸残疾__的排列顺序。 8、最适温度__不是__酶的特征性常数,它与反应时间有关,当反应时间延长时,最适温度可以__降低__。 9、DNA分子中,两条链通过碱基间的__氢键__相连,碱基间的配对原则是A对__T__、__G__对__C__。 10、三羧酸循环过程中有_____4______次脱氢和_____2____次脱羧反应;该循环的三个限速酶是___柠檬酸合成酶___、____异柠檬酸脱氢酶____和___α—酮戊二酸脱氢酶____ 11、tRNA的三叶草型结构中,其中氨基酸臂的功能是__与氨基酸结合___,反密码环的功能是__识别并结合mRNA__。 12、DNA复制时,连续合成的链称为__前导链__链;不连续合成的链称为__后随链__链。 13、RNA的转录过程分为__起始___、___延长___和__终止__三个阶段。 14、糖异生的主要器官是线粒体。 三、单项选择题(共10小题,每小题1分,共10分) 1.下面好有两个羧基的氨基酸是( D ) A.精氨酸 B.甘氨酸 C.色氨酸 D.谷氨酸 2.下列叙述中不属于蛋白质一级结构内容的是( C ) A.多肽链中氨基酸残基的种类、数目、排列次序 B.多肽链中氨基酸残基的键链方式 C.多肽链中主肽链的空间走向,如a-螺旋 D.胰岛分子中A链与B链间含有两条二硫键,分别是A7-S-S-B7,A20-S-S-B19 3.下列辅因子中,不包含腺苷酸的辅因子是( C ) A.CoA B.NAD+ C.FMN D.维生素C

生物化学考试重点_总结

第一章蛋白质的结构与功能 第一节蛋白质的分子组成 一、蛋白质的主要组成元素:C、H、O、N、S 特征元素:N(16%)特异元素:S 凯氏定氮法:每克样品含氮克数×6.25×100=100g样品中蛋白质含氮量(g%) 组成蛋白质的20种氨基酸 (名解)不对称碳原子或手性碳原子:与四个不同的原子或原子基团共价连接并因而失去对称性的四面体碳 为L-α-氨基酸,其中脯氨酸(Pro)属于L-α-亚氨基酸 不同L-α-氨基酸,其R基侧链不同 除甘氨酸(Gly)外,都为L-α-氨基酸,有立体异构体 组成蛋白质的20种氨基酸分类 非极性氨基酸:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、 亮氨酸(Leu)、异亮氨酸(Ile)、脯氨酸(Pro) 极性中性氨基酸:丝氨酸(Ser)、半胱氨酸(Cys)、蛋氨酸(Met) 天冬酰胺(Asn)、谷氨酰胺(Gln)、苏氨酸(Thr) 芳香族氨基酸:苯丙氨酸(Phe)、色氨酸(Trp)、酪氨酸(Tyr) 酸性氨基酸:天冬氨酸(Asp)、谷氨酸(Glu) 碱性氨基酸:赖氨酸(Lys)、精氨酸(Arg)、组氨酸(His) 其中:含硫氨基酸包括:半胱氨酸、蛋氨酸 四、氨基酸的理化性质 1、两性解离及等电点 ①氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。 ②氨基酸是两性电解质,其解离程度取决于所处溶液的酸碱度。 ③(名解)等电点(pI点):在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。 pHpI 阴离子氨基酸带净正电荷,在电场中将向负极移动 ④在一定pH范围内,氨基酸溶液的pH离等电点越远,氨基酸所携带的净电荷越大 2、含共轭双键的氨基酸具有紫外吸收性质 色氨酸、酪氨酸的最大吸收峰在280 nm 附近 大多数蛋白质含有这两种氨基酸残基,所以测定蛋白质溶液280nm的光吸收值是分析溶液中蛋白质含量的快速简便的方法 3、氨基酸与茚三酮反应生成蓝紫色化合物 在pH5~7,80~100℃条件下,氨基酸与茚三酮水合物共热,可生成蓝紫色化合物,其最大吸收峰在570nm处。此吸收峰值与氨基酸的含量存在正比关系,因此可作为氨基酸定量分析方法 五、蛋白质是由许多氨基酸残基组成的多肽链 (一)氨基酸通过肽键连接而形成肽 1、(名解)肽键(peptide bond)是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键 2、肽是由氨基酸通过肽键缩合而形成的化合物 3、10个以内氨基酸连接而成多肽称为寡肽;由更多的氨基酸相连形成的肽称多肽 肽链中的氨基酸分子因为脱水缩合而基团不全,被称为氨基酸残基

生物化学习题及答案_酶

酶 (一)名词解释 值) 1.米氏常数(K m 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) (二)英文缩写符号 1.NAD+(nicotinamide adenine dinucleotide) 2.FAD(flavin adenine dinucleotide) 3.THFA(tetrahydrofolic acid) 4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide) 6.CoA(coenzyme A) 7.ACP(acyl carrier protein) 8.BCCP(biotin carboxyl carrier protein) 9.PLP(pyridoxal phosphate) (三)填空题

1.酶是产生的,具有催化活性的。2.酶具有、、和等催化特点。3.影响酶促反应速度的因素有、、、、和。 4.胰凝乳蛋白酶的活性中心主要含有、、和基,三者构成一个氢键体系,使其中的上的成为强烈的亲核基团,此系统称为系统或。 5.与酶催化的高效率有关的因素有、、、 、等。 6.丙二酸和戊二酸都是琥珀酸脱氢酶的抑制剂。 7.变构酶的特点是:(1),(2),它不符合一般的,当以V对[S]作图时,它表现出型曲线,而非曲线。它是酶。 8.转氨酶的辅因子为即维生素。其有三种形式,分别为、、,其中在氨基酸代谢中非常重要,是、和的辅酶。 9.叶酸以其起辅酶的作用,它有和两种还原形式,后者的功能作为载体。 10.一条多肽链Asn-His-Lys-Asp-Phe-Glu-Ile-Arg-Glu-Tyr-Gly-Arg经胰蛋白酶水解可得到个多肽。 11.全酶由和组成,在催化反应时,二者所起的作用不同,其中决定酶的专一性和高效率,起传递电子、原子或化学基团的作用。12.辅助因子包括、和等。其中与酶蛋白结合紧密,需要除去,与酶蛋白结合疏松,可以用除去。13.T.R.Cech和S.Alman因各自发现了而共同获得1989年的诺贝尔奖(化学奖)。 14.根据国际系统分类法,所有的酶按所催化的化学反应的性质可分为六类、、、、、和。

生化复习重点及试题酶

生化复习重点及试题(酶) 一、知识要点 在生物体的活细胞中每分每秒都进行着成千上万的大量生物化学反应,而这些反应却能有条不紊地进行且速度非常快,使细胞能同时进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能在常温常压下以极高的速度和很大的专一性进行化学反应,这是由于生物细胞中存在着生物催化剂——酶。酶是生物体活细胞产生的具有特殊催化能力的蛋白质。 酶作为一种生物催化剂不同于一般的催化剂,它具有条件温和、催化效率高、高度专一性和酶活可调控性等催化特点。酶可分为氧化还原酶类、转移酶类、水解酶类、裂解酶类、异构酶类和合成酶类六大类。酶的专一性可分为相对专一性、绝对专一性和立体异构专一性,其中相对专一性又分为基团专一性和键专一性,立体异构专一性又分为旋光异构专一性、几何异构专一性和潜手性专一性。 影响酶促反应速度的因素有底物浓度(S)、酶液浓度(E)、反应温度(T)、反应pH值、激活剂(A)和抑制剂(I)等。其中底物浓度与酶反应速度之间有一个重要的关系为米氏方程,米氏常数(Km)是酶的特征性常数,它的物理意义是当酶反应速度达到最大反应速度一半时的底物浓度。竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用分别对Km值与Vmax的影响是各不相同的。 酶的活性中心有两个功能部位,即结合部位和催化部位。酶的催化机理包括过渡态学说、邻近和定向效应、锁钥学说、诱导楔合学说、酸碱催化和共价催化等,每个学说都有其各自的理论依据,其中过渡态学说或中间产物学说为大家所公认,诱导楔合学说也为对酶的研究做了大量贡献。 胰凝乳蛋白酶是胰脏中合成的一种蛋白水解酶,其活性中心由 Asp102、His57及Ser195构成一个电荷转接系统,即电荷中继网。其催化机理包括两个阶段,第一阶段为水解反应的酰化阶段,第二阶段为水解反应的脱酰阶段。 同工酶和变构酶是两种重要的酶。同工酶是指有机体内能催化相同的化学反应,但其酶蛋白本身的理化性质及生物学功能不完全相同的一组酶;变构酶是利用构象的改变来调节其催化活性的酶,是一个关键酶,催化限速步骤。 酶技术是近年来发展起来的,现在的基因工程、遗传工程、细胞工程、

相关主题
文本预览
相关文档 最新文档