当前位置:文档之家› 平面向量与解三角形小结2012.3.4

平面向量与解三角形小结2012.3.4

平面向量与解三角形小结2012.3.4
平面向量与解三角形小结2012.3.4

平面向量与解三角形知识小结

一.平面向量知识归纳

1.向量:既有大小又有方向的量 几何表示法 AB ,a ;坐标表示法(,)a xi yj x y =+=

向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a

|.

向量不能比较大小,但向量的模可以比较大小.

2.零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 0

与任意向量垂直.

3.单位向量:若|a |=1,则称a 为单位向量.(0)||

a a a ≠

是与a

共线的单位向量.

4.平行向量(共线向量):方向相同或相反的非零向量,称为平行向量(共线向量),记作a ∥b

5.相等向量:长度相等且方向相同的向量,记为a b =

.相等向量经过平移后总可以重合.

6.向量加法有“三角形法则”与“平行四边形法则”:当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:

AB BC CD PQ QR AR +++++=

,但这时必须“首尾相连”

. 7.相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -

.00-=

8.向量减法:向量a 加上b 的相反向量叫做a 与b 的差,记作:()a b a b -=+-

a b - 可以表示为从b 的终点指向a 的终点的向量(a 、b

有共同起点)

. 9.平面向量的坐标表示:在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j

作为基底,

则该平面内的任一向量a 可表示成a xi yj =+

,把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a

在x 轴上的坐标,y 叫做在y 轴上的坐标

注意:相等的向量坐标相同,坐标相同的向量是相等的向量,即1122(,)(,)x y x y =12

12

x x y y =???=?

10

11.两个向量共线定理:向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ

12.平面向量的基本定理:若12,e e

是平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只

有一对实数12,λλ使:1122a e e λλ=+ ,称不共线的向量12,e e

为表示这一平面内所有向量的一组基底.

13.特别注意:

(1)相等向量一定是平行向量,但向量平行不一定向量相等.

(2)向量平行与直线平行有区别,直线平行不包括共线,而向量平行,则向量所在直线平行或重合 (3)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关

14.向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ(00

0180θ≤≤)叫做向

量a 与b 的夹角.cos θ=cos ,||||a b a b a b ?<>=?

注意:0

与其它任何非零向量之间不谈夹角这一问题.

15.垂直:如果a 与b 的夹角为900

,则称a 与b 垂直,记作a ⊥b

16.向量的投影:︱b ︱cos θ=||

a b

a ? ∈R ,称为向量

b 在a 方向上的投影投影的绝对值称为射影.

17.乘法公式成立: ()()

2222||||a b a b a b a b +?-=-=- ;()

2222a b a a b b ±=±?+ 22||2||a a b b =±?+

特别注意:(1)结合律不成立:()()

a b c a b c ??≠?? ;(2)消去律不成立a b a c ?=?

,不能得到b c =?

(3)

a b ? =0不能得到a =0 或b =0

18.两点间的距离公式:||AB = 19.设a =(11,x y ), b

=(22,x y ),λ为实数.

(1)两个向量平行: a ∥1221(0)0b b a b x y x y λ≠?=?-=

(2)两个向量垂直:121200a b a b x x y y ⊥??=?+=

20.向量 PA PB PC 、、中三终点

A B C 、、共线?存在实数αβ、使得PA PB PC αβ=+

且1αβ+=. 21.设12PP PP λ= ,

M 为平面内的任一点,则121MP MP MP λλ+=+ ,其中P 为12PP 的中点12

2MP MP

MP +?=

. 分点坐标公式:若12PP PP λ=

;1P

,P ,2P 的坐标分别为(11,x y ),(,x y ),(22,x y ); 则1212

11x x x y y y λλλλ+?=??+?+?=?+?

(1λ≠-), 中点坐标公式:121222

x x x y y y +?

=???

+?=??. 22.向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用.

(2)||||||||||||a b a b a b -≤±≤+

,特别地,

当 a b 、同向或有0 ?||||||a b a b +=+ ≥||||||||a b a b -=- ; 当 a b 、反向或有0 ?||||||a b a b -=+ ≥||||||||a b a b -=+ ; 当 a b 、不共线?||||||||||||a b a b a b -<±<+

(这些和实数比较类似).

(3)在ABC ?中,

①1()3

PG PA PB PC =++ ?G 为ABC ?的重心,特别地0PA PB PC P ++=? 为ABC ?的重心;

若()()()112233,,,,,A x y B x y C x y ,则其重心的坐标为123123,33x x x y y y G ++++??

???

②PA PB PB PC PC PA P ?=?=??

为ABC ?的垂心;

③向量()(0)||||AB AC AB AC λλ+≠ 所在直线过ABC ?的内心(是BAC ∠的角平分线所在直线); ④||||||PA PB PC P ==?

为ABC ?的外心.

二.解三角形知识归纳

1.解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C . (1)角与角关系:A+B+C = π,

(2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b . (3)边与角关系:正弦定理 ,余弦定理

(4)面积公式:111111

sin sin sin 222222a b c S ah bh ch ab C ac B bc A ?=

=====. 2.正弦定理:

2sin sin sin a b c

R A B C

===(R 为△ABC 的外接圆的半径). 两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(一解) (2)已知两边和其中一边的对角,求其他边角.(一解,两解、无解)

正弦定理的变形:(1)2sin ,2sin ,2sin a R A b R B c R C ===(2)

sin ,sin ,sin 222a b c

A B C R R R

=== (3)sin :sin :sin ::A B C a b c =(4)

2sin sin sin a b c

R A B C

++=++

3.余弦定理: 222222

2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C

?=+-?=+-??=+-?

或222222222cos ,cos ,cos 222b c a a c b b a c A B C bc ac ab +-+-+-===.

两类余弦定理解三角形的问题:(1)已知三边求三角.(一解)

(2)已知两边和他们的夹角,求第三边和其他两角.(一解)

余弦定理的变形:22222

2

2

2

()2cos ,cos 122b c a b c a bc A b c a A bc bc

+-+-=+-=

=- 解斜三角形的常规思维方法是:

(1)已知两角和一边(如A 、B 、C ),由A+B+C = π求C ,由正弦定理求a 、b . (2)已知两边和夹角(如a 、b 、c ),应用余弦定理求c 边;再应用正弦定理先求较短边所对的角,然后

利用A+B+C = π,求另一角.

(3)已知两边和其中一边的对角(如a 、b 、A ),应用正弦定理求B ,由A+B+C = π求C ,再由正弦定

理或余弦定理求c 边,要注意解可能有多种情况.

(4)已知三边a 、b 、c ,应余弦定理求A 、B ,再由A+B+C = π,求角C . 4.射影定理 cos cos ,cos cos ,cos cos a b C c B b c A a C c b A a B =+=+=+

5.三角形的面积公式:

△ABC 的面积用S 表示,外接圆半径用R 表示,内切圆半径用r 表示,半周长用p 表示,则:

(1)12ABC S =

底×高;(2)111sin sin sin 222ABC S ab C bc A ca B ?===.

(3)1||2

OAB A B B A S x y x y ?=-. (4

)ABC S ?=5)4ABC abc

S R

?=;(R 为外接圆半径)

(6)ABC S pr ?=(其中r 是内切圆半径)(7)2

2sin sin sin ABC S R A B C ?=;(R 为外接圆半径) 注意:直角三角形中2

c R =(c 为斜边),1

()2r a b c =++-

6.三角形的有关结论:

A C C

B A b a

a

b a>b 时,一解 a ≤b 时,无解

已知边a,b 和∠A 有两个解仅有一个解

无解CH=bsinA

C A B π+?

=-222()C A B π?=-+ sin(A+B)=sinC,cos(A+B) cosC ,tan(A+B) tanC,sin cos ,cos sin ,tan cot

222222

A B C A B C A B C

+++=-=-=== t a n

t a n t a n t a n t a n A B C A B C ++=?? (2)任意两边之和大于第三边,任意两边之差小于第三边

(3)等边对等角:a b A B =?=,大边对大角:a b A B >?> (4)sin sin cos cos a b A B A B A B (5)sin sin A B A B =?=,

sin =0cos 1 A B A B A B -?-=?=()(),

sin 2sin 2+=

2

A B A B A B π

=?=或

(6)△ABC 为锐角三角形222

222222a b c b c a c a b ?+>?

?+>??+>?

△ABC 为直角三角形222222222

a b c b c a c a b ?+=+=+=或或

△ABC 为钝角三角形222222222

a b c b c a c a b a b c b c a c a b

???+<+<+

+>+>+>???或或 7.解三角形个数的讨论

一般地,已知两边a, b 和其中一边的对角A ⑴若A 为锐角时:

⑵若A 为直角或钝角时

注意:在判断三角形解的个数时,必须符合以下三点:

(1)A B C π++=; (2)等边对等角:a b A B =?=,大边对大角:a b A B >?> (3)若A 为三角形的内角,则0sin 1A <≤,其中

若sin 1A =时,2

A π

=

(一解);若sin 1A >时,三角形无解.

若0sin 1,A b a <<<或c a <时,A 有两解(一个是锐角,一个是钝角); 8.实际应用问题中的常用术语

仰角:目标视线在水平线上方的叫仰角; 俯角:目标视线在水平线下方的叫俯角; 方位角:北方向线顺时针方向到目标方向线的夹角。

解三角形知识点归纳总结

第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外 接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++=== A + B +A B . 2)化边为角: C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin = == 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理 ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

解三角形知识点归纳总结

第一章解三角形 .正弦定理: 2)化边为角: a : b: c sin A : sin B : sin C ? 7 a si nA b sin B a sin A b sin B ' c sin C J c sin C ' 3 )化边为角: a 2Rsin A, b 2Rsin B, c 2Rsin C 4 )化角为边: sin A sin B a ; sin B J b sin C b sin A a c' sin C c ' a b 5 )化角为边:si nA , si nB , si nC 2R 2R 3. 利用正弦定理可以解决下列两类三角形的问题: ① 已知两个角及任意一边,求其他两边和另一角; 例:已知角B,C,a , 解法:由 A+B+C=180,求角A,由正弦定理a 竺A, 竺B b sin B c sin C b 与c ②已知两边和其中一边 的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理旦 血 求出角B,由A+B+C=180求出角C,再使用正 b sin B 弦定理a 泄求出c 边 c sin C 4. △ ABC 中,已知锐角A ,边b ,贝U ① a bsin A 时,B 无解; ② a bsinA 或a b 时,B 有一个解; ③ bsinA a b 时,B 有两个解。 如:①已知A 60 ,a 2,b 2 3,求B (有一个解) ②已知A 60 ,b 2,a 2.3,求B (有两个解) 注意:由正弦定理求角时,注意解的个数 .三角形面积 各边和它所对角的正弦的比相等, 并且都等于外 接圆的直径, 即 a b c sin A sin B sinC 2.变形:1) a b c a sin sin si sin 2R (其中R 是三角形外接圆的半径) b c sin sinC c 2R 沁;求出 sin C 1.正弦定理:在一个三角形中, bsin A

(浙江专用)高考数学二轮复习专题一三角函数与平面向量第2讲三角恒等变换与解三角形学案

第2讲 三角恒等变换与解三角形 高考定位 1.三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心;2.正弦定理与余弦定理以及解三角形问题是高考的必考内容,主要考查边、角、面积的计算及有关的范围问题. 真 题 感 悟 1.(2018·全国Ⅲ卷)若sin α=1 3,则cos 2α=( ) A.89 B.79 C.-79 D.-89 解析 cos 2α=1-2sin 2 α=1-2×? ????132 =7 9 . 答案 B 2.(2018·全国Ⅲ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 2 4 , 则C =( ) A.π2 B.π3 C.π4 D. π6 解析 根据题意及三角形的面积公式知12ab sin C =a 2 +b 2 -c 2 4,所以sin C =a 2 +b 2 -c 2 2ab =cos C ,所以在△ABC 中,C =π4 . 答案 C 3.(2018·浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B =________,c =________. 解析 因为a =7,b =2,A =60°,所以由正弦定理得sin B =b sin A a =2× 3 27=21 7.由 余弦定理a 2 =b 2 +c 2 -2bc cos A 可得c 2 -2c -3=0,所以c =3. 答案 21 7 3 4.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接 CD ,则△BDC 的面积是________,cos ∠BDC =________.

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

(完整版)解三角形知识点及题型总结

基础强化(8)——解三角形 1、①三角形三角关系:A+B+C=180°;C=180°-(A+B); ②. 三角形三边关系:a+b>c; a-bB>C 则6090,060A C ?≤

高中数学-解三角形知识点汇总情况及典型例题1

实用标准

—tanC。

例 1 ? (1 )在 ABC 中,已知 A 32.00 , B 81.80 因为 00 v B v 1800,所以 B 640,或 B 1160. c as nC 空啤 30(cm). sin A s in400 ②当B 1160时, 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形; 对于解三角形中的复杂运算可使用计算器 题型2 :三角形面积 2 , AC 2 , AB 3,求tan A 的值和 ABC 的面积。 2 (2 )在 ABC 中,已知 a 20 cm , b 28 cm , 40°,解三角形(角度精确到 10,边长精确 到 1cm ) o 解:(1 )根据三角形内角和定理, C 1800 (A B) 1800 (32.00 81.80) 66.20 ; 根据正弦定理,b asinB 42.9sin81.80 si nA 眾厂 80.1(cm); 根据正弦定理,c 聲C 丝9也彰 74.1(cm). sin 32.0 (2 )根据正弦定理, s"B 舸 A 28sin4°0 a 20 0.8999. ,a 42.9 cm ,解三角形; ①当 B 640 时, C 1800 (A B) 1800 (40° 640) 760, C 1800 (A B) 1800 (400 116。)240 , c asinC si nA 呼 13(cm). sin 40 (2) 解法一:先解三角方程,求出角 A 的值。 例2 ?在ABC 中, sin A cos A

si nA cos A j2cos(A 45 )-—, 2 1 cos(A 45 )-. 又 0 A 180 , A 45o 60o , A 105.° o o 1 \/3 L tan A tan(45 60 ) 一字 2 J3, 1 73 42 si nA sin105 sing5 60) sin4 5 co$60 cos45 si n60 ——-—. 1 1 /2 洽 n S ABC AC AB si nA 2 3 近 46)。 2 2 4 4 解法二:由sin A cos A 计算它的对偶关系式 si nA cos A 的值。 v 2 — si nA cos A —— ① 2 2 1 (si nA cos A)2 2 1 2sin Acos A — 2 Q0o A 180o , si nA 0,cos A 0. 1 另解(si n2A —) 2 2 3 (s in A cos A) 1 2 sin Acos A —, *'6 _ si nA cos A — ② 2 $2 J6 ①+②得sin A --------------- 。 4 ①-②得 cosA <6 。 4 u 而丄 A si nA J 2 J 6 4 c 匚 从而 tan A l l 2 ~3。 cosA 4 v2 v 6

解三角形知识点归纳

解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C o .

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

平面向量与解三角形

第八单元平面向量与解三角形 (120分钟150分) 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.锐角△ABC的三内角A、B、C所对边的长分别为a、b、c,若2c sin B=b,则角C的大小为 A.B.C.D. 解析:由正弦定理得2sin B==,∴sin C=,∴C=. 答案:A 2.若向量u=(3,-6),v=(4,2),w=(-12,-6),则下列结论中错误的是 A.u⊥v B.v∥w C.w=u-3v D.对任一向量,存在实数a,b,使=a u+b v 解析:因为u·v=0,所以u⊥v,显然w∥v,因为u与v不共线,所以对任意向量,存在实数a,b,使=a u+b v. 答案:C 3.在△ABC中,B=,三边长a,b,c成等差数列,且ac=6,则b的值是 A.B.C.D. 解析:因为2b=a+c,由余弦定理得b2=a2+c2-2ac cos B=(a+c)2-3ac,化简得b=. 答案:D 4.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且·=·,则·等于 A.—4 B.0 C.4 D.8 解析:由·=·,得·(-)=·=0,即⊥,所以||=2,∠BAD=60°,所以 ·=4×2×=4. 答案:C 5.在△ABC中,角A,B,C所对边的长分别为a,b,c,若a2+b2=2c2,则cos C的最小值为 A.B.C.D.-

解析:cos C==≥=,当且仅当a=b时等号成立. 答案:C 6.设A(a,1),B(2,b),C(4,3)为坐标平面上三点,O为坐标原点,若与在方向上的投影相同,则 a与b满足的关系式为 A.5a-4b=3 B.4a-3b=5 C.4a+5b=14 D.5a+4b=14 解析:由与在方向上的投影相同,可得·=·?(a,1)·(4,3)=(2,b)·(4,3),即4a+3=8+3b,4a-3b=5. 答案:B 7.在△ABC内,角A,B,C的对边分别是a,b,c,若b sin B+a sin A=c sin C,c2+b2-a2=bc,则B等于 A.B.C.D. 解析:因为c2+b2-a2=bc,所以cos A==,所以cos A=,A=, 因为b sin B+a sin A=c sin C,所以b2+a2=c2,所以C=,B=. 答案:A 8.已知向量a=(x-1,2),b=(4,y),其中x>1,y>0,若a∥b,则log2(x-1)+log2y等于 A.1 B.2 C.3 D.4 解析:∵a∥b,则=,∴(x-1)y=8,∴log2(x-1)+log2y=log2(x-1)y=log28=3. 答案:C 9.在△ABC中,若(a+b+c)(a+b-c)=3ab且sin C=2sin A cos B,则△ABC是 A.等腰三角形 B.等边三角形 C.等腰直角三角形 D.直角三角形 解析:因为(a+b+c)(a+b-c)=3ab,所以a2+b2-c2=ab,cos C==,所以C=,因为sin C=2sin A cos B,所 以c=2a·,得a=b,所以△ABC是等边三角形. 答案:B 10.如图,在矩形ABCD中,AB=,BC=2,点E为BC的中点,点F在边CD上,若·=,则·的值是

平面向量知识点及方法总结总结

平面向量知识点及方法总结总结 一、平面向量两个定理 1、平面向量的基本定理 2、共线向量定理。 二、平面向量的数量积 1、向量在向量上的投影:,它是一个实数,但不一定大于0、 2、的几何意义:数量积等于的模与在上的投影的积、三坐标运算:设,,则(1)向量的加减法运算:,、(2)实数与向量的积:、(3)若,,则,即一个向量的坐标等于表示这个向量的有向线段的终点坐标减去起点坐标、(4)平面向量数量积:、(5)向量的模:、 四、向量平行(共线)的充要条件、 五、向量垂直的充要条件、六、七、向量中一些常用的结论 1、三角形重心公式在中,若,,,则重心坐标为、 2、三角形“三心”的向量表示(1)为△的重心、(2)为△的垂心、(3)为△的内心; 3、向量中三终点共线存在实数,使得且、 4、在中若D为BC边中点则 5、与共线的单位向量是七、向量问题中常用的方法 (一)基本结论的应用

1、设点M是线段BC的中点,点A在直线BC外,则(A)8 (B)4 (C)2 (D) 12、已知和点M满足、若存在实数m使得成立,则m= A、2 B、3 C、4 D、 53、设、都是非零向量,下列四个条件中,能使成立的条件是() A、 B、 C、 D、且 4、已知点____________ 5、平面向量,,(),且与的夹角等于与的夹角,则() A、 B、 C、 D、6、中,P是BN上一点若则m=__________ 7、o为平面内一点,若则o是____心 8、(xx课标I理)已知向量的夹角为,则、 (二)利用投影定义

9、如图,在ΔABC中,,,,则= (A)(B)(C)(D 10、已知点、、、,则向量在方向上的投影为 A、 B、 C、 D、11设是边上一定点,满足,且对于边上任一点,恒有则 A、 B、 C、 D、 (二)利用坐标法 12、已知直角梯形中,//,,,是腰上的动点,则的最小值为____________、 13、(xx课标II理)已知是边长为的等边三角形,为平面内一点,的最小值是() (三)向量问题基底化 14、在边长为1的正三角形ABC中, 设则____________、 15、(xx天津理)在中,,,、若,,且,则的值为 ___________、 16、见上第11题 (四)数形结合代数问题几何化,几何问题代数化例题 1、中,P是BN上一点若则m=__________

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

平面向量复习基本知识点及经典结论总结

1、向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。 如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____ (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ± ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量 和任何向量平行。 提醒: ①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合; ③平行向量无传递性!(因为有0 ); ④三点A B C 、、共线? AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题: (1)若a b = ,则a b = 。 (2)两个向量相等的充要条件是它们的起点相同,终点相同。 (3)若AB DC = ,则ABCD 是平行四边形。 (4)若ABCD 是平行四边形,则AB DC = 。 (5)若,a b b c == ,则a c = 。 (6)若//,//a b b c ,则//a c 。其中正确的是______ 2、向量的表示方法: (1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后; (2)符号表示法:用一个小写的英文字母来表示,如,,等; (3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,为基底,则平面内 的任一向量可表示为(),a xi y j x y =+= ,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量 的起点在原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a=1λe 1+2λe 2。 如(1)若(1,1),a b == (1,1),(1,2)c -=- ,则c = ______ (2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213 (2,3),(,)24e e =-=- (3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b == ,则BC 可用向量,a b 表示为_____ (4)已知ABC ?中,点D 在BC 边上,且?→ ??→ ?=DB CD 2,?→ ??→ ??→ ?+=AC s AB r CD ,则s r +的值是___ 4、实数与向量的积:实数λ与向量的积是一个向量,记作λ,它的长度和方向规定如下: ()()1,2a a λλ= 当λ>0时,λ的方向与的方向相同,当λ<0时,λ的方向与的方向相反,当λ=0时,0a λ= ,注意:λ≠0。 5、平面向量的数量积: (1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b == ,AOB θ∠= ()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π 时,,垂直。

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

高中数学平面向量知识点总结82641

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:可表示为 3.模的概念:向量的大小——长度称为向量的模。 记作:|| 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作。的方向是任意的。 注意与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:∥∥ 规定:与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:= 规定:= 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + b A A A B B B C C a +b a + b a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:+=+ 3?向量加法的结合律:(+) +=+ (+) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ = 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

解三角形知识点归纳总结归纳

欢迎阅读 第一章 解三角形 一.正弦定理: 1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 R C c B b A a 2sin sin sin ===(其中R 是三角形外接圆的半径) 2.变形:1)sin sin sin sin sin sin a b c a b c C C ++===A +B +A B . 2)化边为角:C B A c b a sin :sin :sin ::=; ;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a = 3)化边为角:C R c B R b A R a sin 2,sin 2,sin 2=== 4)化角为边: ;sin sin b a B A = ;sin sin c b C B =;sin sin c a C A = 5)化角为边: R c C R b B R a A 2sin ,2sin ,2sin === 3. 利用正弦定理可以解决下列两类三角形的问题: 4. ①已知两个角及任意—边,求其他两边和另一角; 例:已知角B,C,a , 解法:由A+B+C=180o ,求角A,由正弦定理;sin sin B A b a = ;sin sin C B c b = ;sin sin C A c a =求出b 与c ②已知两边和其中—边的对角,求其他两个角及另一边。 例:已知边a,b,A, 解法:由正弦定理B A b a sin sin =求出角B,由A+B+C=180o 求出角C ,再使用正弦定理C A c a sin sin =求出c 边 4.△ABC 中,已知锐角A ,边b ,则 ①A b a sin <时,B 无解; ②A b a sin =或b a ≥时,B 有一个解; ③b a A b <

平面向量复习基本知识点及经典结论总结

平面向量复习基本知识点及经典结论总结 1、向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量 就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到 的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ± ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因 为有0 );④三点A B C 、、共线? AB AC 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b = ,则a b = 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若A B D C = ,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC = 。(5)若,a b b c == ,则a c = 。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+= ,称(),x y 为向量a 的 坐标,a =(),x y 叫做向量a 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。如(1)若(1,1),a b == (1,1),(1,2)c -=- ,则c = ______(答:1322 a b - ) ;(2)下列向量组中,能作为平面内所有向量基底的是 A. 12(0,0),(1,2)e e ==- B. 12(1,2),(5,7)e e =-= C. 12(3,5),(6,10)e e == D. 1213 (2,3),(,)24 e e =-=- (答:B ) ;(3)已知,AD BE 分别是ABC ?的边,BC AC 上的中线,且,AD a BE b == ,则BC 可用向量,a b 表示为_____(答:2433 a b + ); (4)已知ABC ?中,点D 在BC 边上,且?→ ??→ ?=DB CD 2,?→ ??→ ??→ ?+=AC s AB r CD ,则s r +的值是___(答:0) 4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度和方向规定如下:()() 1,2a a λλ= 当λ>0时,λa 的方向与a 的方向相同,当λ<0时,λa 的方向与a 的方向相反,当λ=0时,0a λ= ,注意:λa ≠0。 5、平面向量的数量积: (1)两个向量的夹角:对于非零向量,,作,OA a OB b == ,AOB θ∠= ()0θπ≤≤称为向量,的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ=2π 时,,垂直。 (2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θ 叫做a 与b 的数 量积(或内积或点积),记作:?,即?=cos a b θ 。规定:零向量与任一向量的数量积是0,注意数量积是 一个实数,不再是一个向量。如(1)△ABC 中,3||=?→ ?AB ,4||=?→ ?AC ,5||=?→ ?BC ,则=?BC AB _________(答:- 9);(2)已知11(1,),(0,),,22a b c a kb d a b ==-=+=- ,c 与d 的夹角为4 π ,则k 等于____(答:1);(3)已知 2,5,3a b a b ===- ,则a b + 等于____;(4)已知,a b 是两个非零向量,且a b a b ==- ,则与a a b +

相关主题
文本预览
相关文档 最新文档