当前位置:文档之家› 电镜复习题

电镜复习题

电镜复习题
电镜复习题

第一章

复习题:

1.什么是轴对称场?为什么电子只有在轴对称场中才被聚焦成像?

所谓轴对称场,是指在这种场中,电位的分布对系统的主光轴具有旋转对称性。

非旋转对称磁场在不同方向上对电子的汇聚能力不同,因此不能将所有电子汇聚在轴上的同一点,会发生象散。

2.磁透镜的象散是怎样形成的?如何加以矫正?

像散是由于透镜磁场的非旋转对称而引起的。极靴内孔不圆、上下极靴的轴线错位、制作极靴的材料材质不均匀以及极靴孔周围局部污染等原因,都会使电磁透镜的磁场产生椭圆度。透镜磁场的这种非旋转对称,使它在不同方向上的聚焦能力出现差别,结果使物点P通过透镜后不能在像平面上聚焦成一点。

像散可通过消像散器补偿。

3.什么是透镜畸变?为什么电子显微镜进行低倍率观察时会产生畸变?如何矫正?

透镜的畸变是由球差引起的,像的放大倍数将随离轴径向距离的加大而增加或减小。

当透镜作为投影镜时,特别在低放大倍数时更为突出。因为此时在物面上被照射的面积有相当大的尺寸,球差的存在使透镜对边缘区域的聚焦能力比中心部分大。反映在像平面上,即像的放大倍数将随离轴径向距离的加大而增加或减小。

可以通过电子线路校正:使用强励磁,使球差系数Cs显著下降;在不破坏真空的情况下,根据放大率选择不同内径的透镜极靴;使用两个投影镜,使其畸变相反,以消除。

4.TEM的主要结构,按从上到下列出主要部件

1)电子光学系统——照明系统、图像系统、图像观察和记录系统;

2)真空系统;

3)电源和控制系统。

电子枪、第一聚光镜、第二聚光镜、聚光镜光阑、样品台、物镜光阑、物镜、选区光阑、中间镜、投影镜、双目光学显微镜、观察窗口、荧光屏、照相室。

5. TEM和光学显微镜有何不同?

光学显微镜用光束照明,简单直观,分辨本领低(0.2微米),只能观察表面形貌,不能做微区成分分析;TEM分辨本领高(1A)可把形貌观察,结构分析和成分分析结合起来,可以观察表面和内部结构,但仪器贵,不直观,分析困难,操作复杂,样品制备复杂。

6.几何像差和色差产生原因,消除办法。

球差即球面像差,是由于电磁透镜的中心区域和边缘区域对电子的折射能力不符合预定的规律而造成的。

减小球差可以通过减小C S值和缩小孔径角来实现。

色差是由于入射电子波长(或能量)的非单一性造成的。

采取稳定加速电压的方法可以有效的减小色差;适当调配透镜极性;卡斯汀速度过滤器。

7.TEM分析有那些制样方法?适合分析哪类样品?各有什么特点和用途?

制样方法:化学减薄、电解双喷、竭力、超薄切片、粉碎研磨、聚焦离子束、机械减薄、离子减薄;

TEM样品类型:

块状,用于普通微结构研究;

平面,用于薄膜和表面附近微结构研究;

横截面样面,均匀薄膜和界面的微结构研究;

小块粉末,粉末,纤维,纳米量级的材料。

二级复型法:研究金属材料的微观形态;

一级萃取复型:指制成的试样中包含着一部分金属或第二相实体,对它们可以直接作形态检验和晶体结构分析,其余部分则仍按浮雕方法间接地观察形态;

金属薄膜试样:电子束透明的金属薄膜,直接进行形态观察和晶体结构分析;

粉末试样:分散粉末法,胶粉混合法

思考题:

1.一电子管,由灯丝发出电子,一负偏压加在栅极收集电子,之后由阳极加速,回答由灯丝到栅极、由栅极到阳极电子的折向及受力方向?

见答案1

2.为什么高分辨电镜要使用比普通电镜更短的短磁透镜作物镜?

高分辨电镜要比普通电镜的放大倍数高。为了提高放大倍数,需要短焦距的强磁透镜。透镜的光焦度1/f与磁场强度成H2正比。较短的f可以提高NA,使极限分辨率更小。

3.为什么选区光栏放在“象平面”上?

电子束之照射到待研究的视场内;防止光阑受到污染;将选区光阑位于向平面的附近,通过一次放大向的范围来限制试样成像或产生电子衍射的范围。

5.电镜中的像差是如何形成的?分别谈如何消除各种像差。

见复习题。

6.什么是景深和焦深?

景深:固定像点,物面轴向移动仍能保持清晰的范围;

焦深:固定物点,像面轴向移动仍能保持清晰的范围。

7.电子显微镜象散产生的原因是什么?

见复习题。

第二章

复习题;

1.电子束入射固体样品表明会激发哪些信号?它们有哪些特点和用途?

二次电子:二次电子能量较低,在电场作用下可呈曲线运动翻越障碍进入检测器,因而能使样品表面凹凸的各个部分都能清晰成像。二次电子强度与试样表面的几何形状、物理和化学性质有关。1)对样品表面形貌敏感2)空间分辨率高3)信号收集效率高,是扫描电镜成像的主要手段。

背散射电子(BE):通常背散射电子的能量较高,基本上不受电场的作用而呈直线进入检测

器。背散射电子的强度与试样表面形貌和组成元素有关。对样品物质的原子序数敏感

分辨率和信号收集效率较低。

吸收电子(AE):吸收电子与入射电子强度之比和试样的原子序数、入射电子的入射角、试样的表面结构有关。利用测量吸收电子产生的电流,既可以成像,又可以获得不同元素的定性分布情况,它被广泛用于扫描电镜和电子探针中。1)随着原子序数的增大,背散射电子增多,吸收电子较少;2)吸收电流图像的衬度正好与背散射电子图像相反。

特征X射线:以辐射形式放出,产生特征X射线。各元素都有自己的特征X射线,可以用来进行微区成分分析和晶体结构研究。

俄歇电子(AUE):每一种元素都有自己的特征俄歇能谱。1)适合分析轻元素及超轻元素2)适合表面薄层分析(<1nm)(如渗氮问题)

透射电子(TE):如果试样只有10~20nm的厚度,则透射电子主要由弹性散射电子组成,成像清晰。如果试样较厚,则透射电子有相当部分是非弹性散射电子,能量低于E0,且是变量,经过磁透镜后,由于色差,影响了成像清晰度。1)质厚衬度效应2)衍射效应3) 衍衬效应

感应电导:在电子束作用下,由于试样中电子电离和电荷积累,试样的局部电导率发生变化。(电子感生电导)用于研究半导体。

荧光:(阴极发光)各种元素具有各自特征颜色的荧光,因此可做光谱分析。大多数阴极材料对杂质十分敏感,因此可以用来检测杂质。

各种物理信号产生的深度和广度:

俄歇电子<1nm;二次电子<10nm;

背散射电子>10nm;X射线1um

2.电子束透过试样时,电子透射强度受哪些因素影响?

加速电压、样品厚度、入射方向、晶体结构、样品物质成分。

3.简述二级复型、一级萃取复型。

二级复型:

a按一般金相法,抛光原始试样,选择合适的浸蚀剂腐蚀试样表面,以显示内部组织;或者选用新鲜断口作为试样。

b在被复制试样表面滴一滴丙酮,再覆盖一张比试样稍大的AC纸,用软棉球或软橡皮按压,以形成不夹气泡的均匀负复型。

c把上述带有负复型的试样放在红外灯下烘干,然后用镊子将留有试样表面信息的AC纸揭下。

d使负复型与试样接触的面朝上,用透明胶纸平整地固定在载玻片上。把载玻片放入真空喷镀仪中进行喷碳

e为提高衬度使用真空喷镀仪中另一对电极,进行投影,投影材料为铬或金,投影角为30度。f将喷好的复型膜剪成2.5mm × 2.5mm的小块,置于丙酮中,使AC纸充分溶解。并用干净丙酮反复清洗碳膜2-3次,最后用Φ3mm的铜网直接捞取碳膜,用滤纸将丙酮吸干后,供电子显微镜直接观察。

一级萃取复型:

a金相试样制备同二级复型,但浸蚀表面的深度视第二相质点的尺寸决定,最佳浸蚀深度为略大于第二相质点的一半,以便易于萃取在复型上;对断口试样一般不浸蚀。

b在试样表面上真空喷镀一层碳。

c将带有碳膜的试样用小刀轻轻划成2.5mm见方的小块。用电解法或化学法使碳膜分离。

d不同的试样选择不同的电解液(或腐蚀液),它只浸蚀基体而不浸蚀要萃取的第二相。

e待碳膜从试样表面全部分离并漂浮于液面时,用铜网捞起。

f在一定浓度的硝酸酒精或盐酸酒精中清洗碳膜,再于酒精或丙酮中反复清洗,最后用Φ3mm

的铜网捞取碳膜,用滤纸将其吸干后,供电子显微镜观察。

思考题:

1.随着原子序数增大,背散射电子、吸收电子的变化。

随着原子序数的增加,背散射电子增多,吸收电子减少。

第三章

复习题

1.分析电子衍射于X射线衍射有何异同?

见答案7。

2.电子衍射分析的基本原理是什么?它有哪些特点?

Bragg定律:2dsinθ=nλ

倒易点阵与爱瓦尔德球图解法:

晶带定理与零层倒易截面:hu+kv+lw=0

结构因子--倒易点阵的权重:F hkl=∑f j exp[2πi(hx j+ky j+lz j)]

简单立方:Fhkl恒不等于零,即无消光现象。面心立方:h、k、l为异性数时,Fhkl=0;h、k、l为同性数时,Fhkl≠0(0作偶数)。体心立方:h+k+l=奇数时,Fhkl=0;h+k+l=偶数时,Fhkl≠0

偏离矢量与倒易阵点扩展:

偏离矢量S即倒易杆中心与爱瓦尔德球面交截点的距离。

电子衍射基本公式:rd=Lλ r为衍射斑到原点的距离;d为晶面间距;L为样品到照相底版的距离;λ为入射波长

3.衍射象和一次放大像都在物镜的什么部位形成?

衍射像成像在物镜后焦面上,一次放大像在物镜的像平面上

4.电子衍射基本公式,相机常数的标定方法

rd=Lλ

测量喷镀的标准物质的Ri,确定ri,因物质结构已知,有ASTM卡片确定di,计算K=ri*di,取平均值,即可。若要求精确,画出ri*di随ri变化曲线,以供分析位置结构电子衍射谱用。

5.用爱瓦尔德图解法证明布拉格定律。

O*G=g,因此k′-k=g,它与Bragg定律是完全等价的。由O向O*G作垂线,垂足为D因为g平行于(hkl)晶面的法向N HKL,所以OD就是正空间中(hkl)晶面的方位,若它与入射束方向的夹角为θ则有O*D=OO*sinθ即g/2=ksinθ由于g=1/d,k=1/λ因此2dsinθ=λ.

6.在电子显微镜中进行选区电子衍射分析,如何能将形貌观察及结构分析结合起来?

7.说明多晶、单晶及非晶衍射花样的特征及形成原理。

多晶体的电子衍射花样是一系列不同半径的同心圆环。

多晶取向完全混乱,可看作是一个单晶体围绕一点在三维空间内旋转,故其倒易点是以倒易原点为圆心,(hkl)晶面间距的倒数为半径的倒易球,与反射球相截为一个圆。所有能产生衍射的半点都扩展为一个圆环,故为一系列同心圆环。

单晶体的电子衍射花样由排列的十分整齐的许多斑点组成。

倒易原点附近的球面可近似看作是一个平面,故与反射球相截的是而为倒易平面,在这平面上的倒易点阵都坐落在反射球面上,相应的晶面都满足Bragg方程,因此,单电子的衍射谱是而为倒易点阵的投影,也就是某一特征平行四边形平移的花样。

非晶态物质的电子衍射花样只有一个漫散的中心斑点。

非晶没有整齐的晶格结构。

8.结合例子说明如何利用电子衍射图谱进行物相鉴定和取向关系的测定。

见课本117页

9.电子衍射分析的精确性受哪些参数的影响?如何进行精确计算?

精确测定L及λ;……

思考题

1.已知一多晶物质的前五个衍射环的半径分别为: r1=8.42mm, r2=11.83mm, r3=14.52mm, r4=16.84mm, r5=18.88mm. 晶格常数a=

2.81埃.

(1)确定此物质的结构, 并标定这些环对应的指数;

(2)求衍射常数Ll.

2.画出面心立方晶体(211)*的零阶和一阶劳厄带重叠图,(必须写出具体计算过程)

见课本144页

5.零阶与高阶劳厄区之间的空白区宽度,与什么因素有关,有什么关系?

零阶与高阶劳厄区之间的空白宽度,处于试样厚度有关外,还与衍射物质的晶格常数有关,试样厚度越小,晶格常数越大(即不同层倒易面月靠近)空白区越窄。

6.利用那种衬度操作可看到位错的半原子面和位移R1、R2;利用那种衬度操作可看到应变场位错线,如何操作可观察位错割阶,如何操作可观察反相筹?

相位衬度;衍射衬度;如果要观察攀移形成的割阶,电子束的入射方向必须垂直于位错线,但是要平行于滑移面;要观察反向畴界,电子束的入射方向必须平行于畴壁。

7.电子衍射与x光衍射的异同?

见复习题

8.晶面间距越小越容易出现高阶劳埃带,对么?为什么?

不对。间距越大,倒易面越接近,才容易出现高阶劳埃带。

9.什么是菊池极菊池带、什么是超点阵斑?

菊池线对的中线即(hkl)面与荧光屏的截线,两条中线的交点即两个对应的晶面所属的晶带轴与荧光屏的截点,

称为菊池极。

晶面和入射电子束间的夹角f。当f=q,即晶格严格处于布拉格衍射位置,倒易点hkl正好落在反射球上,菊池线正好通过hkl单晶衍射斑,而暗线过000点(透射斑点),在这种双光束情况下,菊池线的特征不明显,只在000与hkl之间一个菊池带(暗),这个暗带的两边就相当于上述菊池线位置。

超点阵斑点:当晶体内不同原子产生有序排列时,将引起电子衍射结果的变化,即可以使本来消光的斑点出现,这中额外的斑点称为超点阵斑点。

10.什么是对称谱,为什么电子束平行晶面仍可得到电子衍射图?(待定)

电子束平行于晶带轴入射形成。

样品薄倒易杆比较长,电子束波长短反射球曲率小。

第四章

复习题、思考题:

1.如何应用g·b=0位错不可见判据测量b?

因为g·b=0表示g与b垂直,所以选择两个g矢量做操作衍射时位错线均不可见,则可以列

出两个方程,即g h1k1l1·b=0;g h2k2l2·b=0.联立可得位错线的柏氏矢量b

2.试简要说明电子象衬度形成有哪几种机制?

相位衬度:经过物质试样的透射束和衍射束经物镜相互干涉的结果形成的;

振幅衬度:由晶体试样结构振幅不同和满足布拉格条件的程度不同而引起的衬度。包括质厚

衬度,衍射衬度等。

3.为什么刃型位错在g·b=0时仍可不消衬,在什么条件下才可能消衬?

位错不可见判据g·b=0在刃型位错中,必须考虑R2的影响。只有当柏氏矢量及位错线都平行

于膜面,换言之即位错是在垂直于入射电子束的滑移面上,g·b=0时位错才不可见,此时

R2对位错衍衬图象才不起作用。

4.b与刃型和螺位错之间有什么关系?

刃型位错与b垂直,螺位位错与b平行。

5.在第二相粒子影响下,若取向确定,衍射斑周围会纪录到什么样的二次花样,取向不确定

会纪录到什么样的二次花样?

若第二相为非常弥散的细小粒子,且取向确定,则倒易阵点周围有一弥散壳层,衍射斑点周

围可记录到晕环状漫散带;

若取向分散则形成多晶德拜环花样。

6.当第二相为薄圆片,且平行电子束时,在衍射谱中可看到什么样的二次衍射,为什么?

若第二相为薄的圆盘或片状,则倒易阵点为垂直于盘或平面的杆,视这些杆相对于入射电子

束的方向不同情况而在衍射谱上记录到小的圆形斑点(当盘、片平面垂直于电子束方向时),

或漫散条纹(当盘、片平面平行于电子束方向时)。

7.什么是错陪度,写出错配度公式。

错配度:表示基体与第二项在界面处点阵常数的差别程度

8.写出平行波文图周期D的计算公式。

9.什么是基体应变衬度、第二相衬度、两相界面衬度?

基体应变衬度:第二相和基体的界面点阵共格,但匹配界面的点阵常数略有差别,存在一定错配度。这就势必在界面附近的基体中造成应变场,即点阵畸变。电子束经过此狭窄畸变区时,波的相位发生改变,从而显示出不同于远离界面处的基体衬度,这就是应变衬度。

第二相衬度:结构因子衬度与取向衬度

结构因子衬度为第二相和基体组成物质不同,因而结构因子不同。结构因子不同则操作反射下的消光距离不同,从而显示出基体和第二相的不同像衬;取向衬度是倾斜试样,使第二相处于准确布拉格衍射条件,基体偏离布拉格条件,则在明场下第二相粒子有深的衬度,与浅的基体背景衬度形成强烈对比。暗场像衬正好反过来。

两相界面衬度:当第二相尺寸较大,且和基体存在明显的界面时,界面处将产生一些特征衬度,它们是界面处的第二相和基体共同作用于电子束的结果。这类衬度有界面错配位错、位移条纹和波纹图三种类型。

10.电子衍射衬度受那些参数的影响?

主要是精确测定L及λ,其次受样品厚度、偏离矢量、电子束与样品倾斜、离焦量等影响。

11.什么是相位衬度?用说明欠焦量与样品厚度对相位衬度有何影响?

相位衬度是透射电子束和各级衍射束之间相互干涉而形成的。

欠焦量与样品厚度非直观的影响高分辨像的衬度。高分辨像照片中黑色背底上的白点可能随欠焦量和试样厚度的改变而变成白色背底上的黑点,即出现图像衬度反转,同时,像点的分布规律也会发生改变。(部分见答案2)

12.高分辨像的衬度与原子排列有何对应关系?

满足弱相位近似及最佳欠焦条件下拍摄的像能正确反应晶体结构,不满足时,需要与计算机模拟的像进行匹配来确定晶体结构。

13.有几种类型的高分辨像?分别能提供哪些信息?

见答案3

14.晶格条纹像和二维结构像有何差别?二者成像条件有何不同?

见答案3

15.解释高分辨像时应注意哪些问题?

见12题,及课本231页

16.举例说明高分辨电子显微术在材料研究中的应用。

见课本239页

17.用公式说明离焦量与Cs对相位衬度的影响。

见答案2

18.3g暗场象如何形成,有何应用?

转动电子枪与样品成3θ角,此时+g移动到视场中心,而3g方向符合Bragg衍射的条件成为最强衍射方向,形成3g微束暗场像。

在讨论位错,扩散或微笑的珠粒状微粒衬度时应用。

19.若将+g移到荧光屏中心,此时中心斑是亮斑还是暗斑?为什么?

暗斑,见上题。

20.当偏离矢量S0﹥0,位错左侧应变场偏离矢量S’﹤0,时照片的位错线在实际位错线的哪一侧;S0﹤0,左侧S’﹤0呢?

在位错左侧S0+S’=0,会形成一衬度峰值,显示位错线在实际位错的左侧;反之在右侧。21.为什么观察复型样品时正反面的衬度一样而球对称粒子在上下或正反面不同。

复型样品的衬度是质厚衬度,随厚度而变化,不随位置变化;而球对称粒子是基体应变衬度,随着深度的变化,衬度会发生明显的变化。

22.晶格常数大容易看到高阶劳埃带和高分辨晶格图像是同一道理么,为什么?

晶格常数大,倒易面的面间距就小,容易与反射球相交,形成高阶劳埃带。

提示:传播函数,结构与像一一对应。

第五章

复习题

1.扫描电镜的分辨率受哪些因素影响?用不同的信号成像时,其分辨率有何不同?所谓扫描电镜的分辨率是指用何种信号成像时的分辨率?

在其他条件相同的情况下(如信噪比、磁场条件及机械振动等)电子束的束斑大小、检测信号的类型以及检测部位的原子序数是影响扫描电子显微镜分辨率的三大因素。

成像分辨率(nm):二次电子5-10,背散射电子50-200,吸收电子100-1000特征X射线100-1000,俄歇电子5-10

所谓扫描电镜的分辨率是指二次电子像的分辨率。

2.扫描电镜的成像原理与透射电镜有何不同?

它不用电磁透镜放大成像,而是用类似电视显影显像的方式,利用细聚焦电子束在样品表面扫面试激发出来的各种物理信号来调制成像的。

3.二次电子和背散射电子像在显示表面形貌衬度时有何相同与不同之处?

相同:都可以利用收集到的信号进行形貌分析

不同:二次电子像主要反映试样表面的形貌特征。像的衬度是形貌衬度,主要决定于试样表面相对于入射电子束的倾角。试样表面光滑平整(无形貌特征),倾斜放置时的二次电子发射电流比水平放置时大,一般选在45度左右。用二次电子信号作形貌分析时,可以在检测器收集栅上加一正电压(一般为250-500V),来吸引能量较低的二次电子,使它们以弧形路线进入检测器,这样在样品表面某些背向检测器或凹坑等部位上逸出的二次电子也能对成像有所贡献,图像层次增加,细节清楚。

用背散射电子信号进行形貌分析时,其分辨率要比二次电子低,因为背散射电子是在一个较大的作用体积内被入射电子激发出来的,成像单元变大是分辨率降低的原因。

背散射电子的能量很高,它们以直线轨迹逸出样品表面,对于背向检测器的样品表面,因检测器无法收集到背散射电子而变成一片阴影,因此在图像上显示出很强的衬度,以至失去细节的层次,不利于分析。

4.电子探针仪与扫描电镜有何异同?电子探针仪如何与扫描电镜和透射电镜配合进行组织结构和微区化学成分的同位分析?

电子探针的镜筒及样品室和扫描电镜没有本质上的差别,但在检测器部分使用的额是X射线谱仪,专门用来测定特征波长(WDS)或特征能量(EDS),以此来对委屈化学成分进行分析。

电子探针一般作为附件安装在扫描电镜或透射电镜上,满足微区组织形貌、晶体结构级化学成分三位一体分析的需要。

5.举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。

点分析:将电子束固定在所要分析的某一点上,用手动或马达带动来改变晶体和计数器的相对位置,就可以接收到此点内的不同元素的X射线。

线分析:将谱仪(波谱仪或能谱仪)固定在所要测量的某一元素特征X射线信号(波长或能量)的位置上,使电子束沿指定的路径作直线扫描,便可得到该元素在此直线上的浓度分布曲线。改变谱仪的位置,便可得到另一元素的浓度分布曲线。

面分析:电子束在样品表面作光栅扫描时,把谱仪(波谱仪或能谱仪)设定在接收某一元素特征X射线信号的位置上,此时在荧光屏上便可得到该元素的面分布图像。图像中的亮区表示这种元素的含量较高。

若把谱仪设定为在另一元素,则可获得另一种元素得浓度分布图像。

思考题

1.简述能谱仪、波谱仪在分析工作中的优缺点

能谱仪与波谱仪比较

优点:

探测效率高。能谱仪的灵敏度比波谱仪高一个数量级。

能谱仪可同时对分析点所有元素进行测定。波谱仪只能逐个测量每种元素的特征波长。

能谱仪的结构比波谱仪简单。

能谱仪不必聚焦。因此对样品表面没有特殊要求,适合于粗糙表面的分析工作。

缺点:

分辨率比波谱仪低。

能谱仪只能分析原子序数大于11的元素,而波谱仪可测定原子序数4-92之间的所有元素。能谱仪的Si(Li)探头必须用液氮冷却。

2.当对样品的扫描幅度为5×10-3mm、在荧光屏上的扫描幅度为50mm时扫描电镜的放大倍数是多少?

M=50mm/5×10-3mm=104

3.对扫描电镜来说当放大倍数为20000、发散半角β=5×10-3rad时的场深为多少?

D=0.2/βM=0.2/(5×10-3×20000)=0.02mm

4.扫描电镜的物镜与透射电镜的物镜有什么不同?

扫描电子显微镜一般都有三个聚光镜。前两个聚光镜是强磁透镜,用于缩小电子束光斑;第三个聚光镜是弱磁透镜(称为物镜),具有较长的焦距。目的是使样品室和透镜之间留有一定的空间,以便装入各种探测器,不作成像透镜用,不放大物象。

5.直进式波谱仪和回转式波谱仪各有什么优缺点?

直进式:分光晶体直线运动,检测器能在几个位置上接收到衍射束,表明试样被激发的体积

内存在着相应的几种元素。衍射束的强度大小和元素含量成正比。

回转式:结构简单,但是X射线出射方向变化很大,所以X射线的出射窗口要开的很大,因而影响不平表面的分析结果。

重点掌握

(1)a说明如何操作在电镜上获得选区电子衍射,b说明电子衍射相对X光衍射的特点,c说明已知相机常数和样品晶体结构的单晶电子衍射谱的标定方法,d写出立方晶系非零层倒易点在零层的投影公式、立方晶系孪晶斑点的计算公式、当φ和θ都不为零时菊池线d值的计算公式。

(2)a说明如何操作在电镜上获得明暗场象,b通过干涉函数公式指出完整晶体等厚干涉条文强度在t为何值时为极大、极小;指出等倾干涉条文强度在s为何值时极大、极小。c面心立方晶体,层错面{111}时,举例说明α为何值时显示衬度,为何值时不显示衬度。d.说明位错不可见判据,如何确定柏氏矢量。

见答案7

扫描电镜实验报告

扫描电镜分析实验 一实验目的 1. 了解扫描电子显微镜的原理、结构; 2. 运用扫描电子显微镜进行样品微观形貌观察。 二实验原理 扫描电镜(SEM)是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射以及背散射电子等物理信号,二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。扫描电镜由下列五部分组成,如图1(a)所示。各部分主要作用简介如下: 1.电子光学系统 它由电子枪、电磁透镜、光阑、样品室等部件组成,如图1(b)所示。为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪,

其性能如表2所示。前两种属于热发射电子枪,后一种则属于冷发射电子枪,也叫场发射电子枪。由表可以看出场发射电子枪的亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。 电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。 六硼化镧阴极电子枪105~1061~10 ≈500 10-4 场发射电子枪107~108 0.01~ 0.1 ≈5000 10-7~10-8 样品室中有样品台和信号探测器,样品台还能使样品做平移运动。 2.扫描系统 扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。 3.信号检测、放大系统 样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。不同的物理信号要用不同类型的检测系统。它大致可分为三大类,即电子检测器、阴极荧光

材料研究与测试方法复习题答案版

材料研究与测试方法复习题答案版

复习题 一、名词解释 1、系统消光: 把由于F HKL=0而使衍射线有规律消失的现象称为系统消光。 2、X射线衍射方向: 是两种相干波的光程差是波长整数倍的方向。 3、Moseley定律:对于一定线性系的某条谱线而言其波长与原子序数平方近似成反比关系。 4、相对强度:同一衍射图中各个衍射线的绝对强度的比值。 5、积分强度:扣除背影强度后衍射峰下的累积强度。 6、明场像暗场像:用物镜光栏挡去衍射束,让透射束成像,有衍射的为暗像,无衍射的为明像,这样形成的为明场像;用物镜光栏挡去透射束和及其余衍射束,让一束强衍射束成像,则无衍射的为暗像,有衍射的为明像,这样形成的为暗场像。 7、透射电镜点分辨率、线分辨率:点分辨率表示电镜所能分辨的两个点之间的最小距离;线分辨率表示电镜所能分辨的两条线之间的最小距离。 8、厚度衬度:由于试样各部分的密度(或原子序数)和厚度不同形成的透射强度的差异; 9、衍射衬度:由于晶体薄膜内各部分满足衍射条件的程度不同形成的衍射强度的差异;10相位衬度:入射电子收到试样原子散射,得到透射波和散射波,两者振幅接近,强度差很小,两者之间引入相位差,使得透射波和合成波振幅产生较大差异,从而产生衬度。 11像差:从物面上一点散射出的电子束,不一定全部聚焦在一点,或者物面上的各点并不按比例成像于同一平面,结果图像模糊不清,或者原物的几何形状不完全相似,这种现象称为像差 球差:由于电磁透镜磁场的近轴区和远轴区对电子束的汇聚能力不同造成的 像散:由于透镜磁场不是理想的旋转对称磁场而引起的像差 色差:由于成像电子的波长(或能量)不同而引起的一种像差 12、透镜景深:在不影响透镜成像分辨本领的前提下,物平面可沿透镜轴移动的距离 13、透镜焦深:在不影响透镜成像分辨本领的前提下,像平面可沿透镜轴移动的距离 14、电子衍射:电子衍射是指当一定能量的电子束落到晶体上时,被晶体中原子散射,各散射电子波之间产生互相干涉现象。它满足劳厄方程或布拉格方程,并满足电子衍射的基本公式Lλ=Rd L是相机长度,λ为入射电子束波长,R是透射斑点与衍射斑点间的距离。 15、二次电子:二次电子是指在入射电子作用下被轰击出来并离开样品表面的原子的核外电子。

sem实验报告

电子显微镜 一、实验目的 1、了解并掌握电子显微镜的基本原理; 2、初步学会使用电子显微镜,并能够利用电子显微镜进行基本的材料表面分析。 二、实验仪器 透射电镜一是由电子光学系统(照明系统)、成像放大系统、电源和真空系统三大部分组成。 本实验用S—4800冷场发射扫描电子显微镜。 实验原理 电子显微镜有两类:扫描电子显微镜、透射电子显微镜,该实验主要研究前者。 (一)扫描电子显微镜(SEM) 由电子枪发射的电子束,经会聚镜、物镜聚焦后,在样品表面形成一定能量和极细的(最小直径可以达到1-10nm)电子束。在扫描线圈磁场的作用下,作用在样品表面上的电子束将按一定时间、空间顺序作光栅扫描。电子束从样品中激发出来的二次电子,由二次电子收集极,经加速极加速至闪烁体,转变成光信号,此信号经光导管到达光电倍增管再转变成电信号。该电信号经视屏放大器放大,输送到显像管栅极,调制显像管亮度,使之在屏幕上呈现出亮暗程度不同的反映表面起伏的二次电子像。由于电子束在样品表面上的扫描和显像管中电子束在荧屏上的扫描由同一扫描电路控制,这就保证了它们之

间完全同步,即保证了“物点”和“像点”在时间和空间上的一一对应。 扫描电镜的工作原理如图1。 图1 扫描电镜的工作原理 高能电子束轰击样品表面时,由于电子和样品的相互作用,产生很多信息,如图2所示,主要有以下信息:

图2 电子束与样品表面作用产生的信息示意图 1、二次电子:二次电子是指入射电子束从样品表面10nm左右深度激发出的低能电子(<50eV)。二次电子的产额主要与样品表面的起伏状况有关,当电子束垂直照射表面,二次电子的量最少。因此二次电子象主要反映样品的表面形貌特征。 2、背散射电子象:背散射电子是指被样品散射回来的入射电子,能量接近入射电子能量。背散射电子的产额与样品中元素的原子序数有关,原子序数越大,背散射电子发射量越多(因散射能力强),因此背散射电子象兼具样品表面平均原子序数分布(也包括形貌)特征。 3、X射线显微分析:入射电子束激发样品时,不同元素的受激,发射出不同波长的特征X射线,其波长λ与元素原子序数Z有以下关系(即莫斯莱公式):ν=hc/λ=K(Z-σ)2 SEM主要特点

扫描电子显微镜入门

扫描电子显微镜入门 1. 光学显微镜以可见光为介质,电子显微镜以电子束为介质,由于电子束波长远较可见光小,故电子显微镜分辨率远比光学显微镜高。光学显微镜放大倍率最高只有约 1500倍,扫描式显微镜可放大到10000倍以上。 2. 根据de Broglie波动理论,电子的波长仅与加速电压有关: λe=h / mv= h / (2qmV)1/2=12.2 / (V)1/2 (?) 在 10 KV 的加速电压之下,电子的波长仅为0.12?,远低于可见光的4000 - 7000?,所以电子显微镜分辨率自然比光学显微镜优越许多,但是扫描式电子显微镜的电子束直径大多在50-100?之间,电子与原子核的弹性散射 (Elastic Scattering) 与非弹性散射 (Inelastic Scattering) 的反应体积又会比原有的电子束直径增大,因此一般穿透式电子显微镜的分辨率比扫描式电子显微镜高。 3. 扫描式显微镜有一重要特色是具有超大的景深(depth of field),约为光学显微镜的300倍,使得扫描式显微镜比光学显微镜更适合观察表面起伏程度较大的样品。 4. 扫描式电子显微镜,其系统设计由上而下,由电子枪发射电子束,经过一组磁透镜聚焦 (聚焦后,用遮蔽孔径选择电子束的尺寸后,通过一组控制电子束的扫描线圈,再透过物镜聚焦,打在样品上,在样品的上侧装有讯号接收器,用以择取二次电子或背向散射电子成像。 5. 电子枪的必要特性是亮度要高、电子能量散布要小,目前常用的种类计有三种,钨(W)灯丝、六硼化镧(LaB6)灯丝、场发射 (Field Emission),不同的灯丝在电子源大小、电流量、电流稳定度及电子源寿命等均有差异。 6. 热游离方式电子枪有钨(W)灯丝及六硼化镧(LaB6)灯丝两种,它是利用高温使电子具有足够的能量去克服电子枪材料的功函数(work function)能障而逃离。对发射电流密度有重大影响的变量是温度和功函数,但因操作电子枪时均希望能以最低的温度来操作,以减少材料的挥发,所以在操作温度不提高的状况下,就需采用低功函数的材料来提高发射电流密度。 7. 价钱最便宜使用最普遍的是钨灯丝,以热游离 (Thermionization) 式来发射电子,电子能量散布为 2 eV,钨的功函数约为4.5eV,钨灯丝系一直径约100μm,弯曲成V形的细线,操作温度约2700K,电流密度为1.75A/cm2,在使用中灯丝的直径随着钨丝的蒸发变小,使用寿命约为40~80小时。 8. 六硼化镧(LaB6)灯丝的功函数为2.4eV,较钨丝为低,因此同样的电流密度,使用LaB6只要在1500K 即可达到,而且亮度更高,因此使用寿命便比钨丝高出许多,电子能量散布为 1 eV,比钨丝要好。但因LaB6在加热时活性很强,所以必须在较好的真空环境下操作,因此仪器的购置费用较高。 9. 场发射式电子枪则比钨灯丝和六硼化镧灯丝的亮度又分别高出 10 - 100 倍,同时电子能量散布仅为 0.2 - 0.3 eV,所以目前市售的高分辨率扫描式电子显微镜都采用场发射式电子枪,其分辨率可高达 1nm 以下。 10. 场发射电子枪可细分成三种:冷场发射式,热场发射式,及萧基发射式 11. 当在真空中的金属表面受到108V/cm大小的电子加速电场时,会有可观数量的电子发射出来,此过程叫做场发射,其原理是高电场使电子的电位障碍产生Schottky效应,亦即使能障宽度变窄,高度变低,因此电子可直接"穿隧"通过此狭窄能障并离开阴极。场发射电子系从很尖锐的阴极尖端所发射出来,因此可得极细而又具高电流密度的电子束,其亮度可达热游离电子枪的数百倍,或甚至千倍。

临床检验仪器复习题及答案

临床检验仪器复习题及 答案 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

《临床检验仪器学》 一、选择题 1.流式细胞仪检测细胞的大小的信号是.:前向角散射 2、VCS白细胞分类技术不包括:细胞化学染色技术 3.毛细管粘度计不适合检测:全血 4、尿液分析仪的测试项目中,与酸碱指示剂无关的项目是:尿葡萄糖 5.血细胞分析仪中对网织红细胞的检测原理: 光散射和细胞化学染色 6、关于光学显微镜的分辨率,下列有误的是:与照明光的波长成反比 7、流式细胞仪中的光电倍增管接收:荧光 8、前向角散射可以检测:被测细胞的大小 9、流式细胞仪测定的标本,不论是外周血细胞,还是培养细胞,首先要保证是:单细胞悬液 10、电阻抗型血细胞分析仪的缺点是只能将白细胞按体积大小分为:三个亚群或二个亚群 11、有关血细胞分析仪的叙述不正确的是:高档次血细胞分析仪白细胞的分类计数很准确 12、双磁路磁珠法中,随着纤维蛋白的产生增多,磁珠的振幅逐渐:减弱 13、毛细管黏度计工作原理的依据是:泊肃叶定律 14、尿蛋白定性干化学检测法只适用于检测:清蛋白 15、流式细胞术尿沉渣分析仪的工作原理是:应用流式细胞术和电阻抗 16、BacT/Alert血培养瓶的底部含一个传感器,用于检测:二氧化碳

17、密度梯度离心法又称为:区带离心法 18、根据样品组份的密度差别进行分离纯化的分离方法是:等密度区带离心法 19、等密度区带离心法对于密度梯度液柱的要求是:液柱顶部的密度明显小于样品组份的密度,液柱底部的密度明显大于样品组份的密度 20、表示从转轴中心至试管最内缘或试管顶的距离的转头参数是:Rmin 21、pH玻璃电极对样本溶液pH的敏感程度取决于:电极的玻璃膜 22、PCO 电极属于:气敏电极 2 23、临床上大量使用的电解质分析仪,测量样本溶液中离子浓度的电极是:离子选择电极 24、通常血气分析仪中毛细管pH玻璃电极的pH测定范围是:0?10 25、为将血气分析仪气路系统所提供的气体饱和湿化,需经过的装置是:湿化器 26、世界上最早的自动生化分析仪是:管道式自动生化分析仪 27、具有空气分段系统的自动生化分析仪是:连续流动式自动生化分析仪 28、离心式自动生化分析仪特有的关键部件是:转头 29、自动分析仪中采用“顺序分析”原理的是:连续流动式自动生化分析仪 30、微孔板固相酶免疫测定仪器(酶标仪)的固相支持是:PVC微孔板 31、以空气为加热介质的PCR仪是:离心式实时定量PCR仪 32、能在细胞内进行PCR扩增的PCR仪为:原位PCR仪

扫描电镜实验报告

扫描电镜实验报告 姓名:xxx 专业:xxx 学号:xxxxxxxx 一、实验目的 1. 了解扫描电镜的构造及工作原理; 2.学习扫描电镜的样品制备; 3. 学习扫描电镜的操作; 3. 利用扫描电镜对铝粉的形貌进行观察。 二、实验原理 扫描电镜原理是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。扫描电镜由下列五部分组成,主要作用简介如下: 1.电子光学系统。其由电子枪、电磁透镜、光阑、样品室等部件组成。为了获得较高的信号强度和扫描像,由电子枪发射的扫描电子束应具有较高的亮度和尽可能小的束斑直径。常用的电子枪有三种形式:普通热阴极三极电子枪、六硼化镧阴极电子枪和场发射电子枪。前两种属于热发射电子枪;后一种则属于冷发射电子枪,也叫场发射电子枪,其亮度最高、电子源直径最小,是高分辨本领扫描电镜的理想电子源。电磁透镜的功能是把电子枪的束斑逐级聚焦缩小,因照射到样品上的电子束斑越小,其分辨率就越高。扫描电镜通常有三个磁透镜,前两个是强透镜,缩小束斑,第三个透镜是弱透镜,焦距长,便于在样品室和聚光镜之间装入各种信号探测器。为了降低电子束的发散程度,每级磁透镜都装有光阑;为了消除像散,装有消像散器。样品室中有样品台和信号探测器,样品台还能使样品做平移、倾斜、转动等运动。 2. 扫描系统。扫描系统的作用是提供入射电子束在样品表面上以及阴极射线管电子束在荧光屏上的同步扫描信号。 3. 信号检测、放大系统。样品在入射电子作用下会产生各种物理信号、有二次电子、背散射电子、特征X射线、阴极荧光和透射电子。不同的物理信号要用不同类型的检测系统。它大致可分为三大类,即电子检测器、阴极荧光检测器和X射线检测器。 4. 真空系统。镜筒和样品室处于高真空下,它由机械泵和分子涡轮泵来实现。开机后先由机械泵抽低真空,约20分钟后由分子涡轮泵抽真空,约几分钟后就能达到高真空度。此时才能放试样进行测试,在放试样或更换灯丝时,阀门会将镜筒部分、电子枪室和样品室分别分隔开,这样保持镜筒部分真空不被破坏。 5. 电源系统。其由稳压、稳流及相应的安全保护电路所组成,提供扫描电镜各部分所需要的电源。

TEM透射电镜习题答案及总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成? 各系统之间关系如何? 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统就是其核心。其她系统为辅助系统。 2、照明系统的作用就是什么?它应满足什么要求? 答:照明系统由电子枪、聚光镜与相应的平移对中、倾斜调节装置组成。它的作用就是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场与暗场成像需求。 3、成像系统的主要构成及其特点、作用就是什么? 答:主要由物镜、物镜光栏、选区光栏、中间镜与投影镜组成、 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a、提高像衬度,b、减小孔经角,从而减小像差。C、进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a、控制电镜总放大倍数。B、成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜内孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏与底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并画 出光路图。 答:如果把中间镜的物平面与物镜的像平面重合,则在荧光屏上得到一幅放大像,这就就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面与物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就就是电子显微镜中的电子衍射操作,如图(b)所示。

扫描电镜实验报告

扫描电镜实验报告 一实验目的 1 了解扫描电镜的发展,原理,应用范围。 2 初步掌握扫描电镜的使用及其注意事项。 二实验仪器及样品 JEOL扫描电镜;硫酸钙晶须。 三实验原理 扫描电镜,全称为扫描电子显微镜,英文为scanning electron microscope(SEM),是一种用于观察物体表面结构的电子光学仪器。 1 扫描电镜的原理 扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。如对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息;对X射线的采集,可得到物质化学成分的信息。扫描电镜的工作原理是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与电子束入射角有关,也就是说与样品的表面结构有关,次级电子由探测体收集,并在那里被闪烁器转变为光信号,再经光电倍增管和放大器转变为电信号来控制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。图像为立体形象,反映了标本的表面结构。 2扫描电镜的结构 (1)镜筒镜筒包括电子枪、聚光镜、物镜及扫描系统。其作用是产生很细的电子束(直径约几个nm),并且使该电子束在样品表面扫描,同时激发出各种信号。 (2)电子信号的收集与处理系统在样品室中,扫描电子束与样品发生相互作用后产生多种信号,其中包括二次电子、背散射电子、X射线、吸收电子、俄歇(Auger)电子等。在上述信号中,最主要的是二次电子,它是被入射电子所激发出来的样品原子中的外层电子,产生于样品表面以下几纳米至几十纳米的区域,其产生率主要取决于样品的形貌和成分。通常所说的扫描电镜像指的就是二次电子像,它是研究样品表面形貌的最有用的电子信号。检测二次电子的检测器的探头是一个闪烁体,当电子打到闪烁体上时,就在其中产生光,这种光被光导管传送到光电倍增管,光信号即被转变成电流信号,再经前置放大及视频放大,电流信号转变成电压信号,最后被送到显像管的栅极。 (3)电子信号的显示与记录系统扫描电镜的图象显示在阴极射线管(显像管)上,并由照相机拍照记录。显像管有两个,一个用来观察,分辨率较低,是长余辉的管子;另一个用来照相记录,分辨率较高,是短余辉的管子。 (4)真空系统及电源系统扫描电镜的真空系统由机械泵与油扩散泵组成。电源系统供给各部件所需的特定的电源。 3扫描电镜的用途 扫描电镜最基本的功能是对各种固体样品表面进行高分辨形貌观察。大景深图像是扫描电镜观察的特色,例如:生物学,植物学,地质学,冶金学等等。观察可以是一个样品的表

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因、裂纹的扩展途径以及断裂机制。图实5-1是比较常见的金属断口形貌二次电子像。较典型的

TEM-透射电镜习题答案及总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成各系统之间关系如何 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么它应满足什么要求 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜内孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并 画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

SEM扫描电镜结构与断口观察

扫描电镜结构与断口观察 一、实验目的: 1、了解扫描电镜的基本结构,成相原理; 2、掌握电子束与固体样品作用时产生的信号和各种信号在测试分析中的作用; 3、了解扫描电镜基本操作规程; 4、掌握扫描电镜样品制备技术; 5、掌握韧性断裂、脆性断裂的典型断口形貌。 二、实验原理: 1、扫描电子显微镜的构造和工作原理: 扫描电子显微镜(Scanning Electronic Microscopy, SEM)。扫描电镜是介于透射电镜和光学显微镜之间的一种微观性貌观察手段,扫描电镜的优点是,①有较高的放大倍数,20-30万倍之间连续可调;②有很大的景深,视野大,成像富有立体感,可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。目前的扫描电镜都配有X射线能谱仪装置,这样可以同时进行显微组织性貌的观察和微区成分分析,因此它像透射电镜一样是当今十分有用的科学研究仪器。 扫描电子显微镜是由电子光学系统,信号收集处理、图象显示和记录系统,真空系统三个基本部分组成。 其中电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。扫描电子显微镜中的各个电磁透镜不做成相透镜用,而是起到将电子束逐级缩小的聚光作用。一般有三个聚光镜,前两个是强磁透镜,可把电子束缩小;第三个透镜是弱磁透镜,具有较长的焦距以便使样品和透镜之间留有一定的空间,装入各种信号接收器。扫描电子显微镜中射到样品上的电子束直径越小,就相当于成相单元的尺寸越小,相应的放大倍数就越高。 扫描线圈的作用是使电子束偏转,并在样品表面做有规则的扫动。电子束在样品上的扫描动作和显相管上的扫描动作保持严格同步,因为它们是由同一个扫描发生器控制的。电子束在样品表面有两种扫描方式,进行形貌分析时都采用光栅扫描方式,当电子束进入上偏转线圈时,方向发生转折,随后又有下偏转线圈使它的方向发生第二次转折。发生二次偏转的电子束通过末级透镜的光心射到样品表面。在电子束偏转的同时还带用逐行扫描的动作,电子束在上下偏转线圈的作用下,在样品表面扫描出方形区域,相应地在样品上也画出一帧比例图像。样品上各点受到电子束轰击时发出的信号可由信号探测器收集,并通过显示系统在

扫描电子显微镜成像原理及基本操作

扫描电子显微镜成像原理及基本操作 一、基本结构组成: 1.电子光学系统:电子枪;聚光镜(第一、第二聚光镜和物镜);物镜光阑。 2.扫描系统:扫描信号发生器;扫描放大控制器;扫描偏转线圈。 3.信号探测放大系统:探测二次电子、背散射电子等电子信号。 4.图象显示和记录系统:SEM采用电脑系统进行图象显示和记录。 5.真空系统:常用机械真空泵、扩散泵、涡轮分子泵等使真空度高于10 -4 Torr 。 6.电源系统:高压发生装置、高压油箱。 二、扫描电子显微镜成像原理 扫描电镜是用聚焦电子束在试样表面逐点扫描成像。试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。其中二次电子是最主要的成像信号。由电子枪发射的能量为 5 ~35keV 的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面按一定时间、空间顺序作栅网式扫描。聚焦电子束与试样相互作用,产生二次电子发射(以及其它物理信号),二次电子发射量随试样表面形貌而变化。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,得到反映试样表面形貌的二次电子像。三、扫描电镜具有以下的特点

(1) 制样方法简单,对试样的尺寸、形态等无严格要求,可以观察直径为的大块试样以及粉末等。 (2) 场深大,适用于粗糙表面和断口的分析观察;图像富有立体感、真实感、易于识别和解释。 (3) 放大倍数变化范围大,对于多相、多组成的非均匀材料便于低倍下的普查和高倍下的观察分析。 (4) 具有相当高的分辨率,可达到为3.5 ~6nm。 (5) 可以通过电子学方法有效地控制和改善图像的质量,如通过调制可改善图像反差的宽容度,使图像各部分亮暗适中。 (6) 可进行多种功能的分析。与X 射线谱仪配接,可在观察形貌的同时进行微区成分分析。 (7) 可使用,观察在不同环境条件下(加热、冷却和拉伸等样品台进行动态试验)的相变及形态变化等。 四、扫描电镜的用途 通过样品中的电子激发出的各种信号,扫描电镜可以做出电子图像分析,如可利用二次电子进行样品表面形貌及结构分析的分析;以两片探测器信号做积分运算,通过背散射电子可以分析样品表面成分像,以两片探测器信号做微分运算时,则可用于样品表面形貌像德分析;此外,通过透射电子则可对析晶体的内部结构及晶格信息进行分析。而且,其配上其它一些配套设备,还可做显微化学成份分析,显微晶体结构分析,显微阴极发光图像分析,这更加扩大的扫描电镜的广泛应用度。常见的扫描电镜配套设备主要有:x射线波谱仪、x射线能

电镜练习题及参考答案

一、电镜练习题及答案 一、透射电镜标本取材的基本要求并简要说明。 答:取材的基本要求如下: 组织从生物活体取下以后,如果不立即进行及时固定处理,就有可能出现缺血缺氧后的细胞超微结构的改变,如细胞出现细胞器变性或溶解等现象,这些都可造成电镜观察中的人为假象,直接影响观察结果分析,甚至导致实验失败。此外,由于处理不当造成组织微生物污染,导致细胞的超微结构结构遭受破坏。 因此,为了使细胞结构尽可能保持生前状态,取材成败是关键,取材成功的关键在于操作者必须要注意把握“快、小、冷、准”四个取材要点。(1).快:就是指取材动作要迅速,组织从活体取下后应在最短时间(争取在1~2分钟之内)投入前固定液。对于实验动物,最好在断血流、断气之前就进行取材,以免缺血缺氧后使细胞代谢发生改变而破坏细胞的超微结构。当然,最好是采用灌注固定法。为了使前固定的效果更佳,组织块要充分和固定液混合,应采用振荡固定10分钟以上,有条件的可采用微波固定法固定。 (2).小:由于常用的固定剂渗透能力较弱,组织块如果太大,块的内部将不能得到良好的固定。因此所取组织的体积要小,一般不超过1mm3。为便于定向包埋,可将组织修成大小约1mm×1mm×2mm长条形。 (3).冷:为了防止酶对自身细胞的酶解作用,取材操作最好在低温(5℃~15℃)环境下进行,这样可以降低酶的活性,防止细胞自溶。所采用的固定剂以及取材器械要预先在冰箱(5℃)中存放一段时间。 (4).准:就是取材部位要准确,这就要求取材者对所取的组织解剖部位要熟悉,必须取到与实验要求相关的部位,不同实验组别间要取相同部位,如需要定向包埋的标本,则要作好定向取材工作。 此外,还要求操作动作轻柔,熟练,尽量避免牵拉、挫伤与挤压对组织造成的人为损伤。 二、|什么是瑞利准则电镜与光镜在原理上有何相似和不同之处 答:1、光线通过二个比较靠近的小孔时,这二个小孔的衍射图会重叠在一起。 当一个衍射图的中央亮斑正好落在另一个衍射图的第一暗环中心时,这二个点刚可以分辩。这就是显微镜分辩本领的瑞利准则。 2、相似点:光学显微镜是利用玻璃制作的透镜对光进行折射,将一物点发 出不同角度的光线最终会聚成一个像点。电子显微镜是以电子束作为光源,利用电磁透镜产生的电场或磁场折射电子束,并通过电子束轰击荧光屏激发荧光而达到成像目的。 不同点:光镜的照明源是可见光,而电镜是用电子束照明。光镜的透镜用玻璃制成,而电镜的透镜是轴对称的电场或磁场。 四、简述透射电镜及扫描电镜样品制作流程 答:1、透射电镜样品制作流程为取材——漂洗(生理盐水)——前固定(%戊二醛,4oC冰箱2小时以上)——漂洗(磷酸缓冲液,3次,45分钟)——后固定(1%锇酸1小时左右)——漂洗(磷酸缓冲液,3次,45分钟)——块染

扫描电镜实验报告

HUNAN UNIVERSITY 姓名:扫描电镜实验报告 姓名:高子琪 学号: 2

一.实验目的 1.了解扫描电镜的基本结构与原理; 2.掌握扫描电镜样品的准备与制备方法; 3.掌握扫描电镜的基本操作并上机操作拍摄二次电子像; 4.了解扫描电镜图片的分析与描述方法。 二.实验设备及样品 1.实验仪器:D5000-X衍射仪 基本组成:1)电子光学系统:电子枪、聚光镜、物镜光阑、样品室等 2)偏转系统:扫描信号发生器、扫描放大控制器、扫描偏转线圈 3)信号探测放大系统 4)图象显示和记录系统 5)真空系统 2.样品:块状铝合金 三.实验原理 1.扫描电镜成像原理 从电子枪阴极发出的电子束,经聚光镜及物镜会聚成极细的电子束(0.00025微米-25微米),在扫描线圈的作用下,电子束在样品表面作扫描,激发出二次电子和背散射电子等信号,被二次电子检测器或背散射电子检测器接收处理后在显象管上形成衬度图象。二次电子像和背反射电子反映样品表面微观形貌特征。而利用特征X射线则可以分析样品微区化学成分。 扫描电镜成像原理与闭路电视非常相似,显像管上图像的形成是靠信息的传送完成的。电子束在样品表面逐点逐行扫描,依次记录每个点的二次电子、背散射电子或X射线等信号强度,经放大后调制显像管上对应位置的光点亮度,扫描发生器所产生的同一信号又被用于驱动显像管电子束实现同步扫描,样品表面与显像管上图像保持逐点逐行一一对应的几何关系。因此,扫描电子图像所包含的信息能很好地反映样品的表面形貌。 2.X射线能谱分析原理 X射线能谱定性分析的理论基础是Moseley定律,即各元素的特征X射线频率ν的平方根与原子序数Z成线性关系。同种元素,不论其所处的物理状态或化学状态如何,所发射的特征X射线均应具有相同的能量。

TEM-透射电镜习题答案及总结

T E M-透射电镜习题答案及总 结 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体内向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成各系统之间关系如何 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么它应满足什么要求 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜内孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关 系,并画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

扫描电子显微镜的操作步骤和注意事项-心得教学提纲

扫描电子显微镜的操作步骤和注意事项-心 得

扫描电子显微镜的操作步骤与注意事项 一、样品制备 将分散好的样品滴于铜片上,干燥后将载有样品的铜片粘在样品座上的导电胶带上(对于大颗粒样品可直接将样品粘在导电胶带上)。 对于导电性不好的样品必须蒸镀导电层,通常为蒸金:将样品座置于蒸金室中,合上盖子,打开通气阀门,对蒸金室进行抽真空。选择好适当的蒸金时间,达到真空度定好时间后加电压并开始计时,保持电流值,时间到后关闭电压,关闭仪器。取出样品。(注意:打开蒸金室前必须先关闭通气阀门,以防液体倒流。) 二、扫描电镜的操作 1.安装样品 1) 按“Vent”直至灯闪,对样品交换室放氮气,直至灯亮; 2) 松开样品交换室锁扣,打开样品交换室,取下原有的样品台,将已固定好样品的样品台,放到送样杆末端的卡抓内(注意:样品高度不能超过样品台高度,并且样品台下面的螺丝不能超过样品台下部凹槽的平面); 3) 关闭样品交换室门,扣好锁扣; 4) 按“EVAC”按钮,开始抽真空,“EVAC”闪烁,待真空达到一定程度,“EVAC”点亮; 5) 将送样杆放下至水平,向前轻推至送样杆完全进入样品室,无法再推动为止,确认“Hold”灯点亮,将送样杆向后轻轻拉回直至末端台阶露出导板外将送样杆竖起卡好。(注意:推拉送样杆时用力必须沿送样杆轴线方向,以防损坏送样杆) 2.试样的观察(注意:软件控制面板上的背散射按钮千万不能点,以防损坏仪器) 1) 观察样品室的真空“PVG”值,当真空达到9.0×10-5Pa时,打开“ Maintenance”,加高压5kv,软件上扫描的发射电流为10μA,工作距离“WD”为8mm,扫描模式为“Lei”(注意:为减少干扰,有磁性样品时,工作距离一般为15mm左右); 2) 操作键盘上按“Low Mag”、“Quick View”,将放大倍率调至最低,点击“Stage Map”,对样品进行标记,按顺序对样品进行观察; 3) 取消“Low Mag”,看图像是否清楚,不清楚则调节聚焦旋钮,直至图像清楚,再旋转放大倍率旋钮,聚焦图像,直至图像清楚,再放大……,直到放大到所需要的图;

简述扫描电镜的构造及成像原理资料讲解

简述扫描电镜的构造及成像原理,试分析其与透射电镜在样品表征方面的异同 1、扫描电镜的构造 扫描电镜由电子光学系统、信号收集和图像显示系统、和真空系统三部分组成。 1.1 电子光学系统(镜筒) 电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。 1.1.1 电子枪扫描电子显微镜中的电子枪与透射电镜的电子枪相似,只是加速电压比透射电镜低。 1.1.2 电磁透镜扫描电子显微镜中各电磁透镜都不作成像透镜用,而是做聚光镜用,它们的功能只是把电子枪的束斑逐级聚焦缩小,使原来直径约为50um的束斑缩小成一个只有数个纳米的细小斑点,要达到这样的缩小倍数,必须用几个透镜来完成。扫描电子显微镜一般都有三个聚光镜,前两个聚光镜是强磁透镜,可把电子束光斑缩小,第三个聚光镜是弱磁透镜,具有较长的焦距。布置这个末级透镜(习惯上称之物镜)的目的在于使样品室和透镜之间留有一定空间,以便装入各种信号探测器。扫描电子显微镜中照射到样品上的电子束直径越小,就相当于成像单元的尺寸越小,相应的分辨率就越高。采用普通热阴极电子枪时,扫描电子束的束径可达到6nm左右。若采用六硼化镧阴极和场发射电子枪,电子束束径还可进一步缩小。

1.1.3 扫描线圈扫描线圈的作用是使电子束偏转,并在样品表面作有规则的扫动,电子束在样品上的扫描动作和显像管上的扫描动作保持严格同步,因为它们是由同一扫描发生器控制的。 1.1.4 样品室样品室内除放置样品外,还安置信号探测器。各种不同信号的收集和相应检测器的安放位置有很大关系,如果安置不当,则有可能收不到信号或收到的信号很弱,从而影响分析精度。样品台本身是一个复杂而精密的组件,它应能夹持一定尺寸的样品,并能使样品作平移、倾斜和转动等运动,以利于对样品上每一特定位置进行各种分析。新式扫描电子显微镜的样品室实际上是一个微型试验室,它带有许多附件,可使样品在样品台上加热、冷却和进行机械性能试验(如拉伸和疲劳)。 1.2 信号的收集和图像显示系统 二次电子、背散射电子和透射电子的信号都可采用闪烁计数器来检测。信号电子进入闪烁体后即引起电离,当离子和自由电子复合后就产生可见光。可见光信号通过光导管送入光电倍增器,光信号放大,即又转化成电流信号输出,电流信号经视频放大器放大后就成为调制信号。如前所述,由于镜筒中的电子束和显像管中电子束是同步扫描的,而荧光屏上每一点的亮度是根据样品上被激发出来的信号强度来调制的,因此样品上各点的状态各不相同,所以接收到的信号也不相同,于是就可以在显像管上看到一幅反映试样各点状态的扫描电子显微图像。 1.3 真空系统 为保证扫描电子显微镜电子光学系统的正常工作,对镜筒内的真空度有一定的要求。一般情况下,如果真空系统能提供1.33×10-2 -1.33×10-3 Pa的真空度时,就可防止样品的污染。如果真空度不足,除样品被严重污染外,还会出现灯丝寿命下降,极间放电等问题。 2、扫描电镜的成像原理 扫描电镜是由电子枪发射并经过聚焦的电子束在样品表面扫描,激发样品产生各种物理信号,经过检测、视频放大和信号处理,在荧光屏上获得能反映样品表面各种特征的扫描图像。 3、分析扫描电镜与透射电镜在样品表征方面的异同 3.1 结构差异 主要体现在样品在电子束光路中的位置不同,透射电镜的样品在电子束中间,电子源在样品上方发射电子,经过聚光镜,然后穿透样品后,有后续的电磁透镜继续放大电子光束,最后投影在荧光屏幕上;扫描电镜的样品在电子束末端,

扫描电子显微镜与原子力显微镜技术之比较_陈耀文

中国体视学与图像分析 2006年 第11卷 第1期CH I N ESE JOURNAL O F S TER EOLO GY AND I M AGE ANALYS I S Vo l .11No.1M a rch 2006 53  收稿日期:2005-08-01 基金项目:国家自然科学基金资助(No .30470900);汕头大学研究与发展基金资助(No .L00015)作者简介:陈耀文(1964-),男,副教授,研究方向:医学图像处理与识别,E 2mail:y wchen@stu .edu .cn 文章编号:1007-1482(2006)01-0053-06 ?综述? 扫描电子显微镜与原子力显微镜技术之比较 陈耀文1 , 林月娟1 , 张海丹1 , 沈智威1 , 沈忠英 2 (1.汕头大学中心实验室, 广东 汕头 515063; 2.汕头大学医学院, 广东 汕头 515031) 摘 要:SE M 和AF M 技术是最常用的表面分析方法。本文介绍了SE M 和AF M 两种技术的原理, 描述了这两种技术在样品形貌结构、成分分析和实验环境等方面的性能,比较了两种技术的特性和不足,充分利用两种技术的互补性,将两种技术结合使用,有助于更加深刻地认识样品的特性。关键词:原子力显微镜;扫描电子显微镜;表面形貌;化学成分中图分类号:TG115.21+ 5.3,R319 文献标识码:A The co m par ison of SE M and AF M techn i ques CHEN Yaowen 1 , L I N Yuejuan 1 , ZHANG Haidan 1 , SHEN Zhewei 1 , SHEN Zhongying 2 (1.Central Laborat ory,Shant ou University,Guangdong Shant ou 515063,China;2.Medical College,Shant ou University,Guangdong Shant ou 515031,China ) Abstract:Scanning electr on m icr oscopy (SE M )and at om ic f orce m icr oscopy (AF M )are powerful t ools f or surface investigati ons .This article described the p rinci p les of these t w o techniques,compared and contrasted these t w o techniques with res pect t o the surface structure and compositi on of materials,and en 2vir on ment .SE M and AF M are comp le mentary techniques,by having both techniques in an analytical fa 2cility,surface investigati ons will be p r ovided a more comp lete rep resentati on . Key words:at om ic f orce m icr oscopy;scanning electr on m icr oscopy;surface structure;compositi on 显微镜由于受到衍射极限的限制,其分辨率只能达到光波半波长数量级(0.3μm ),无法观察更小的物体。1924年,德布罗意提出了微观粒子具有波粒二象性的概念,科学家们在物质领域找到了一种波长更短的媒质—电子,并利用电子在磁场中的运动与光线在介质中的传播相似的原理,研制出以电子为光源的各类电子显微镜。扫描电子显微镜(Scanning Electr on M icr oscopy,SE M )的设计思想,早在1935年便已被提出来了,1942年,英国首先制成实验室用的扫描电镜,主要应用于大样品的形貌分析,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。随着电子工业技术水平的不断发展,到1965年开始生产商品扫描电镜,近数十年来,SE M 各项性能不断提高,如分辨率由初期的50nm 发展到现在约0.5nm ,功能除样品的形貌分析之外,现在可获得特征X 2射线,背散射电子和样品电流等 信息。 1982年,Gerd B innig 和Heinrich Rohrer 在I B M 公司苏黎世实验室共同研制成功了第一台扫描隧道显微镜(Scanning Tunneling M icr oscope,ST M ),使人们首次能够真正实时地观察到单个原子在物体表面的排列方式和与表面电子行为有关的物理、化学性质。然而,由于ST M 的信号是由针尖与样品之间的隧道电流的变化决定的,只适用于研究电子性导体和半导体样品,为了克服ST M 的不足之处,ST M 的发明者B innig 等又在1986年发明了原子力显微镜(A t om ic Force M icr oscope,AF M )。AF M 是通过探测探针与被测样品之间微弱的相互作用力(原子力)来获得物质表面形貌的信息,分辨率可达原子级水平。之后,以ST M 和AF M 为基础,衍生出扫描探针显微镜(Scanning Pr obe M icr oscope,SP M )家族,包括扫描隧道显微镜、原子力显微镜、磁力显微镜、静电

相关主题
文本预览
相关文档 最新文档