当前位置:文档之家› Fe3O4/Pt复合纳米粒子的原位合成及其催化性质的研究

Fe3O4/Pt复合纳米粒子的原位合成及其催化性质的研究

Fe3O4/Pt复合纳米粒子的原位合成及其催化性质的研究
Fe3O4/Pt复合纳米粒子的原位合成及其催化性质的研究

2011年第69卷化学学报V ol. 69, 2011第9期, 1060~1064 ACTA CHIMICA SINICA No. 9, 1060~1064

jlyao@https://www.doczj.com/doc/691079820.html,

*

E-mail:

Received August 18, 2010; revised December 7, 2010; accepted January 14, 2011.

国家自然科学基金(Nos. 21073128, 20973120)资助项目.

No. 9 郭清华等:Fe3O4@C/Pt复合纳米粒子的原位合成及其催化性质的研究1061

催化氧化还原的性能提高. 而碳材料在磁性Fe3O4纳米粒子外的包裹, 不仅能提高内核的稳定性和粒子的生物兼容性, 其表面富含的羟基、醛基等官能团使磁性材料的进一步修饰更加简便易行.

Pt族纳米粒子作为高效金属催化剂一直受到人们的广泛关注. 被广泛用于烃类的催化重整、加氢/脱氢、选择性氧化、尾气处理等过程. 在电化学中, 它们是应用最广泛的电催化材料, 是质子交换膜燃料电池(PEMFC)和直接醇类燃料电池(DAFC)难以取代的催化剂[13]. 但由于Pt族金属资源匮乏、价格昂贵, 如何进一步提高铂族金属纳米材料的催化活性、稳定性和利用效率一直是氢能源和相关领域的关键问题.

本工作利用原位还原的方法, 将Pt纳米粒子修饰于C层包裹的磁性纳米粒子上, 利用磁性内核与Pt间的作用提高Pt的催化效率, 研究了其催化还原硝基苯酚的能力以及催化剂的循环利用的可能性.

1 实验部分

1.1 试剂与仪器

氯铂酸(H2PtCl6?4H2O), 葡萄糖(C6H12O6), 氯化铁(FeCl3?6H2O)均为分析纯. 所用溶液采用Milli-Q超纯水配制. UV-vis吸收光谱在北京普析TU-1810紫外光谱仪上测定. 形貌测定采用日本日立公司S-4700型扫描电子显微镜和荷兰FEI公司TEcnaiG20型高分辨透射电子显微镜. 拉曼光谱实验采用法国Jobin Yvon公司的HR800型拉曼光谱仪. 激光光源为氦-氖离子激光器, 波长为632.8 nm.

1.2 实验过程

1.2.1 纳米粒子的制备

(a) Fe3O4纳米粒子的制备: 参照文献[14]的方法, 将0.65 g FeCl3和0.2 g柠檬酸钠溶于20 mL乙二醇中, 加入1.2 g醋酸钠. 搅拌30 min后, 将混合溶液转入50 mL高压反应釜中, 保持200 ℃下10 h.

(b) Fe3O4@C的制备: 将上述制备的Fe3O4分散于

0.1 mol?L-1 HNO3中, 超声10 min后, 磁分离, 洗涤3次后将其分散于0.5 mol?L-1葡萄糖溶液中, 转入反应釜中, 保持160 4 h.

℃磁分离, 水洗涤3次, 最后分散于

20 mL水中.

(c) Fe3O4@C/Pt的制备: 取上述10 mL Fe3O4@C的水分散溶液, 回流5 min后, 向其中迅速加入3.2 mL 5 mmol?L-1H2PtCl6水溶液, 回流20 min, 洗涤后重新分散于5 mL H2O中, 采用AES测量其Pt含量为106.7 mg/L. 1.2.2 催化性质的测量

采用硼氢化钠还原对硝基苯酚(4-NP)作为模型反应来测量粒子的催化活性. 将0.03 mL 0.01 mol? L-1 4-NP 以及0.2 mL 0.1 mol?L-1 NaBH4, 2.5 mL H2O加入到比色皿中, 混合均匀后, 加入0.1 mL所制备的纳米粒子. 采用紫外-可见光谱监测其催化效率. 根据测量计算, 将Pt的总浓度相同的2 nm Pt纳米粒子加入到相同的溶液中对比研究催化效率. 在催化剂循环测试中, 由于每次磁吸均会造成一定的损失, 因此在起始阶段提高催化剂用量为上述的2倍左右, 保证首次在5 min内转化完成.

2 结果与讨论

2.1 纳米粒子形貌表征

图1为Fe3O4以及Fe3O4@C纳米粒子的SEM图. 由图可见, 粒子呈球状, 均一性及分散性良好. Fe3O4纳米粒子表面较为粗糙, 包覆C层以后, 趋于平滑, 毛刺结构被C层填平. 高温高压下合成的Fe3O4粒子的结晶度较大, 因而具有较强磁性. 由于在Fe3O4粒子表面直接修饰其他金属纳米粒子相对较为困难, 且限制了其在电化学中的应用(少量修饰的金属纳米粒子不能形成良好的壳层, 因此复合粒子的导电性较差), 为此设想在其外层包裹一层具有较好导电性的C层, 一方面保持内核的较强的磁性, 另一方面便于外层的修饰和功能化

.

图1Fe3O4 (A)以及Fe3O4@C (B)纳米粒子的SEM图Figure 1 SEM images of Fe3O4 nanoparticles (A) and Fe3O4@C nanoparticles (B)

1062

化 学 学 报 V ol. 69, 2011

图2为Fe 3O 4以及Fe 3O 4@C 纳米粒子的TEM 图, 由图可见, 所制备的Fe 3O 4纳米粒子的直径约为200 nm. 包覆C 后粒子直径增大为210 nm 左右, 说明C 层的平均厚度约5 nm(图2B 插图). 内核纳米粒子的尺寸大小影响其磁性的强弱. 图3A 的Fe 3O 4@C 纳米粒子的红外图谱进一步有力的证明了C 层的包裹. 葡萄糖作为C 源先后经历脱水、聚合以及碳化等几个重要过程, 而1629及1708 cm -1处出现的峰为C =C 振动和葡萄糖聚合后未完全碳化而残余的CHO 官能团中的C =O 振动[15]. Raman 光谱也检测到了位于1326以及1579 cm -1附近可归属为无定形C 的光谱特征(如图3B 所示), 由此说明C 层已经成功包裹到磁性内核表面, 并且根据酸性溶液中电化学研究结果, 包裹C 层后其Fe(II)/Fe(III)氧化还原峰消失, 说明C 层完全包裹表面, 针孔效应可忽略. C 层的包覆不仅可以改善Fe 3O 4纳米粒子的分散性及稳定性, 更重要的是, 其表面富含的亲水性羟基、醛基等官能团可以使粒子能被进一步修饰, 从而可更广泛应用于生物医药等检测中, 大大拓展了其应用范围

.

图2 Fe 3O 4 (A)以及Fe 3O 4@C (B)纳米粒子的TEM 图

Figure 2 TEM images of Fe 3O 4 nanoparticles (A) and Fe 3O 4@C nanoparticles (B)

Fe 3O 4@C 的表面修饰金属纳米粒子可通过其表面修饰功能分子后连接纳米粒子或直接原位合成的方法覆盖纳米粒子, 后者较前者过程更为简单且所得到的复合纳米粒子具有更好的导电性, 因此采用溶剂热的方法在Fe 3O 4@C 的表面直接修饰上Pt 纳米粒子(如图4所示). Pt 纳米粒子粒径较小以致无法明显观察到其单个粒

图3 Fe 3O 4@C 核壳纳米粒子的FTIR (A)以及拉曼(B)光谱 Figure 3 FTIR (A) and Raman (B) spectra of Fe 3O 4@C

nanoparticles

图4 Fe 3O 4@C/Pt 复合纳米结构的TEM (A)及EDX (B)光谱 Figure 4 TEM (A) and EDX (B) images of Fe 3O 4@C/Pt nanoparticles

No. 9 郭清华等:Fe3O4@C/Pt复合纳米粒子的原位合成及其催化性质的研究1063

子的形貌特征, 小尺寸的Pt纳米粒子可能稳定地分散于C层周围, 并不形成完整壳层覆盖Fe3O4@C表面. 通过测得Fe3O4@C/Pt纳米粒子的EDX(图4B)可明显检测到Pt. 由于合成之后的Fe3O4@C/Pt粒子经过多次磁分离洗涤, 溶液中并不含有未连接于Fe3O4@C上的Pt纳米粒子, 因此, EDX所检测到的Pt来自于成功连接到Fe3O4@C粒子表面的Pt纳米粒子, 而并不是单独成核的Pt纳米粒子.

2.2 Fe3O4@C/Pt纳米粒子的催化性能

选用NaBH4还原对硝基苯酚作为模型反应来测试纯Pt纳米粒子(2 nm)及Fe3O4@C/Pt负载型催化剂的催化性能, 以紫外可见吸收光谱(UV-vis)来监测其催化反应进程及催化效率(图5). 通常在无金属催化剂存在时, 即使过量的NaBH4也无法促使4-硝基苯酚转变为4-氨基苯酚. 紫外可见光谱中观察到400 nm处强的吸收峰来源于NaBH4加入后生成了4-硝基苯酚负离子, 当微量的催化剂加入后, 紫外可见光谱中400 nm处的吸收峰逐渐降低, 而4-氨基苯酚在295 nm处的特征吸收

图5光谱记录的间隔为2 min时采用2 nm Pt 纳米粒子(A)以及Fe3O4@C/Pt复合纳米结构(B)催化4-NP还原反应过程中的紫外可见光谱

Figure 5UV-Vis spectra for the reduction of 4-NP measured at 2 min intervals using 2 nm Pt particles (A) and Fe3O4@C/Pt nanoparticles (B) 峰逐渐增强, 表明4-硝基苯酚开始向4-氨基苯酚转变. 值得说明的是图5A和5B的对比实验中加入到反应溶液中催化剂中含Pt的量基本相同, 纯Pt纳米粒子催化体系中12 min时催化反应仅进行了约三分之一(根据4-硝基苯酚紫外吸收峰的强度变化推算), 而Fe3O4@C/Pt 负载型催化剂体系中, 在10 min内能催化反应完成, 即4-硝基苯酚的吸收峰完全消失. 由此可见, 负载在氧化物C层复合载体上的贵金属催化剂相比单组分的金属催化剂具有更高的催化活性. 负载后催化剂的活性提高主要由于在金属与氧化物之间的界面处存在强烈的协同催化作用. 以往研究表明当金属催化剂直接负载在氧化物上, 电子通过两者界面自由传导, 引起金属与氧化物载体的电子结构改变, 使催化活性大大增加. Wang 等[15]发展了可控刻蚀哑铃状Fe3O4-Au纳米结构催化剂的方法, 然后通过对刻蚀后的单组分的纳米催化剂的催化活性与刻蚀前的比较, 为金属催化剂与Fe3O4载体间存在电荷转移提供了直接的有力证据, 他们认为电荷从Fe传递给Pt, 使Pt更富电子. 在目前的研究中发现当Pt负载到Fe3O4@C上后其开路电位较2 nm Pt纳米粒子负载于200 nm碳球表面更负, 说明其还原反应活性提高, 与NaBH4反应产生更多的活性氢, 从而加快了4-硝基苯酚转变为4-氨基苯酚的反应.

2.3 Fe3O4@C/Pt催化剂的循环利用研究

磁性Fe3O4内核不仅可提高Pt的催化活性, 而利用载体的超顺磁性可实现催化剂的分离回收. 由于每次磁吸清洗回收不可避免带来一些损失, 目前的实验中采用的相同的溶液但催化剂的用量提高为原来的2倍, 保证首次催化在较短时间内(5 min)快速完成. 在循环实验过程中, 当反应完成后, 利用外加磁场将负载贵金属的磁性催化剂富集到容器底部, 弃去上层溶液, 洗涤催化剂后再进行下一次循环催化实验. 图6为Fe3O4@C/Pt纳

图64-NP催化还原转化率与Fe3O4 @C/Pt循环次数关系曲线Figure 6Recycling times of Fe3O4 @C/Pt catalysts dependence of conversion percentage for the catalytic reduction of 4-NP

1064化学学报V ol. 69, 2011

米粒子催化反应产物的转化率与循环次数的关系图. 由图可见, 复合催化剂在循环过程一直保持高催化活性, 催化转化率(5 min内)均接近100%, 具有很高的循环利用率, 约循环20次以后转化率慢慢降低, 这可能由于两方面的原因造成, 一方面反复的磁富集以及洗涤过程导致催化剂损失(通过原子吸收的测量, 每次循环将损失3%~5%的催化剂), 20次以上的循环将使催化剂浓度达到完全催化的临界情况, 引起“突变”; 另一方面系催化剂表面活性降低所致.

3 结论

采用高压反应成功制备具有磁性的Fe3O4粒子, Fe3O4@C复合粒子, 并采用原位合成方法在Fe3O4@C 表面修饰Pt纳米粒子, 所获得的复合纳米材料具有较好的磁性以及高效的催化效率. 负载后的Fe3O4@C/Pt 催化剂催化硝基苯酚转变为氨基苯酚反应的效率较纯Pt纳米催化剂更高, 这主要由于内核Fe3O4与Pt之间的电荷转移所致, 在NaBH4体系中, 电荷由Fe转移到Pt, 从而使Pt具有更高的还原性. 此类复合催化剂由于内核Fe3O4具有磁性, 通过外加磁场可富集溶液中的催化剂, 利于其循环利用, 目前的负载型催化剂的循环次数约20次. 该初步研究对于提高贵金属催化剂的效率, 减少贵金属的负载量以及循环利用等方面提供了新的实验途径. References

1Lu, A. H.; Salabas, E. L.; Schuth, F. Angew. Chem., Int. Ed.

2007, 46, 1222.

2Li, Z.; Wei, L.; Gao, M. Y.; Lei, H. Adv. Mater. 2005, 17, 1001.

3Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seo, J. W.; Jang, J. T.;

Song, H. T. Nat. Med. 2007, 13, 95.

4Chen, S.; Han, S. Y.; Yao, J. L.; Gu, R. A. Acta Chim.

Sinica2010, 68, 2151 (in Chinese).

(陈帅, 韩三阳, 姚建林, 顾仁敖, 化学学报, 2010, 68, 2151.)

5Li, Z.; Sun, Q.; Gao, M. Y. Angew. Chem., Int. Ed. 2005, 44, 123.

6Zhang, L. H.; Liu, B. F.; Dong, S. J. J. Phys. Chem. B2007, 111, 10448.

7Xie, H. Y.; Zuo, C.; Liu, Y.; Zhang, Z. L.; Pang, D. W.; Li, X. L.; Gong, J. P.; Dickinson, C.; Zhou, W. Z. Small2005, 1, 506.

8Park, H. Y.; Schadt, M. J.; Ang, L. Y.; Lim, I. S.; Njoki, P.

N.; Kim, S. H.; Jang, M. Y.; Luo, J.; Zhong, C. J. Langmuir 2007, 23, 9050.

9Bao, F.; Li, J. F.; Ren, B.; Yao, J. L.; Gu, R. A.; Tian, Z. Q.

J. Phys. Chem. C2008, 112, 345.

10Atarashi, T.; Kim, Y. S.; Fujita, T.; Nakatsuka, K. J. Magn.

Magn. Mater. 1999, 201, 7.

11Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.;

Williams, M. E. Nano Lett. 2004, 4, 719.

12Wang, C.; Daimon, H.; Sun, S. Nano Lett. 2009, 9, 1493.

13Wasmus, S.; Kuver, A. J. Electroanal. Chem. 1999, 461, 14. 14Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y.

D. Angew. Chem. 2005, 117, 2842.

15Sun, X.; Li, Y.-D. Angew. Chem., Int. Ed. 2004, 43, 597.

(A1008186 Zhao, C.)

纳米四氧化三铁的应用

纳米四氧化三铁的应用一、纳米四氧化三铁的简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO〃Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向 移动,粒径在一定范围之 内具有超顺磁性,以及在 外加交变电磁场作用下能 产生热量等特性,其化学 性能稳定,因而用途相当 广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过

在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、纳米四氧化三铁的配置方法 由于纳米四氧化三铁特殊的理化学性质 , 使其在实际应用中越来越广泛 , 而其制备方法和性质的研究也得到了深入的进展。磁性纳米微粒的制备方法主要有物理方法和化学方法。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一产品纯度低、颗粒分布不均匀 , 易被氧化 , 且很难制备出10nm 以下的纳米微粒 , 所以在工业生产和试验中很少被采纳。 化学方法主要有共沉淀法、溶胶 - 凝胶法、微乳液法、水解法、水热法等。采用化学方法获得的纳米微粒的粒子一般质量较好 , 颗粒度较小 , 操作方法也较为容易 , 生产成本也较低 , 是目前研究、生产中主要采用的方法。

纳米催化剂

纳米催化剂的制备及应用 学院:化工学院专业:化学工程与技术 学生姓名:学号: 摘要:纳米催化剂具有大比表面积、高表面能、高度的光学非线性、特异催化性和光催化性等特性,在一些反应中表现出优良的催化性能。本文简要介绍了纳米催化剂的基本性质,综述了纳米催化剂的制备方法和特性,讨论了纳米催化在化工中的应用,对今后纳米催化材料研究方向进行了展望。 关键词:纳米催化剂制备在化工中的应用发展 近年来,纳米催化剂(Nanometer catalyst--NCs)的相关研究蓬勃发展。NCs 具有比表面积大、表面活性高等特点,显示出许多传统催化剂无法比拟的优异特性;此外,NCs还表现出优良的电催化、磁催化等性能,已被广泛地应用于石油、化工、能源、涂料、生物以及环境保护等许多领域。目前,纳米技术的研究主要向两个方向进行:一是通过新技术减少目前使用的材料如金属氧化物的用量;二是进行新材料的开发,如复合氧化物纳米晶。由于纳米粒子表面积大、表面活性中心多,所以是一种极好的催化材料。将普通的铁、钴、镍、钯、铂等金属催化剂制成纳米微粒,可大大改善催化效果。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。目前已经将纳米粉材如铂黑、银、氧化铝和氧化铁等直接用于高分子聚合物氧化、还原和合成反应的催化剂。纳米铂黑催化剂可使乙烯的反应温度从600e降至常温。随着世界对环境和能源问题认识的深入,纳米材料在处理污染、降解有毒物质方面有良好光解效果[1]。在润滑油中添加纳米材料可显著提高其润滑性能和承载能力,减少添加剂的用量,提高产品的质量。对纳米催化剂的研究无论理论上还是实际应用上都具有深远的意义。 1纳米催化剂的制备方法 纳米催化剂的制备方法直接影响到其结构、粒径分布和形态,从而影响其催化性能。文献中报道的制备方法多达数10种,本文主要介绍其中常用的几种。1.1溶胶-凝胶法 溶胶-凝胶法是指金属有机或无机化合物经过溶胶-凝胶化和热处理形成氧化物或其他固体化合物的方法。其过程是:用液体化学试剂(或粉状试剂溶于溶剂中)或溶胶为原料,而不是传统的粉状物为反应物,在液体中混合均匀并进行反

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性

软磁性四氧化三铁纳米粒子的共沉淀法合成及磁性 一、实验目的 1.掌握共沉淀法合成无机功能材料的原理和方法。 2.掌握XRD、SEM进行无机材料的晶相,形态分析方法。 3.理解并测试磁性材料的基本性能参数。 二、实验原理 近年来,纳米Fe3O4颗粒的制备及性能研究受到广泛关注。Fe3O4纳米颗粒在磁记录、微波吸波、废水净化,特别是核磁共振成像、药物运输和热磁疗等生物学领域有着巨大的应用价值。纳米材料的粒径是影响其物理化学性质的重要因素,不同的应用领域对Fe3O4纳米颗粒的粒径有着不同的要求。因此制备尺寸和性能可调的纳米Fe3O4颗粒有着十分重要的意义。制备Fe3O4纳米颗粒的方法有很多:如沉淀法、水热和溶剂热法、微乳液法、溶胶-凝胶法等,但制备粒径可调的Fe3O4纳米颗粒的方法却并不多。其中一些方法涉及的反应条件苛刻而且工序复杂,给工业生产带来了极大的不便,寻求一种简便有效的方法来实现粒径调控的纳米Fe3O4颗粒的制备显得尤为重要。 沉淀法实在原料溶液中加入适当的沉淀剂,使得原料溶液中的阳离子形成各种形式的沉淀物的方法。沉淀颗粒的大小和形状可由反应条件来控制,然后再经过滤、洗涤、干燥,有时还需经过加热分解等工艺过程二得到陶瓷粉体。沉淀法又可分为直接沉淀法、共沉淀法和均匀沉淀法。 直接沉淀法是使溶液中的某一种金属阳离子发生化学反应二形成沉淀物,其优点是可以制备高纯度的氧化物粉体。 化学共沉淀法一般是把化学原料以溶液状态混合。并向溶液加入适当的沉淀剂,使溶液中已经混合均匀的各个组分按化学计量比共同沉淀出来,或者在溶液中先反应沉淀出一种中间产物,再把它煅烧分解。由于反应在液相中可以均匀进行,从而获得在微观线度中按化学计量比混合的产物。共沉淀法是制备含有两种或两种以上金属元素的复合氧化物粉体的重要方法。 Fe3O4纳米粒子付费共沉淀制备反应如下: Fe2++2Fe3++8OH—→Fe3O4+4H2O 在室温或者更高温度惰性氛围下,通过共沉淀Fe2+/Fe3+盐溶液合成Fe3O4,此法简便易得。磁性纳米粒子的粒径、形状及组成取决于所用盐的种类(如氯酸盐、硫酸盐、硝酸盐)、Fe2+/Fe3+的比率、反应温度、pH值以及介质的离子强度。 共沉淀法最大的困难是如何阻止粒子的团聚现象。近年来,通过使用有机添加剂作为固定剂或还原介质,在制备不同尺寸单分散磁性纳米粒子的方法上有了重大的改进。 三、实验设备及材料 实验设备:容量瓶,烧杯,分析天平,水浴锅,搅拌器,鼓风干燥箱,电动搅拌机,酸度计(ph试纸)

纳米四氧化三铁的应用

精心整理纳米四氧化三铁的应用 一、纳米四氧化三铁的简介 )前面 显+2与大, 胶溶化法和添加改性剂及分散剂的方 法,通过在颗粒表面形成吸附双电层结 构阻止纳米粒子团聚,制备稳定分散的 水基和有机基纳米磁性液体。制备的磁

性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 二、 泛, ,所 ,操 磁性 目前,制备磁性Fe3O4纳米颗粒方法的机理已研究得很透彻,归结起来一般分为两种。一是采用二价和三价铁盐,通过一定条件下的反应得到磁性Fe3O4纳米颗粒;另一种则是用三价铁盐,在一定条件下转变为三价的氢氧化物,最后通过烘干、煅烧等手段得到磁性Fe3O4纳米颗 粒。

(一)共沉淀法 沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中,加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。 (二)溶胶-凝胶法 溶胶-凝胶方法(Sol-Gel)是日本科学家Sugimoto等于上世纪90年代发展 ,油(OΠ , 对实验设备和制备条件方面的要求相对高一些,因而大多数也只停留在研究阶段。 三、纳米四氧化三铁的应用 当粒子的尺寸降至纳米量级时,由于纳米粒子的小尺寸效应、表面效

应、量子尺寸效应和宏观量子隧道效应等的影响,使其具有不同于常规体相材料的特殊的磁性质。这也使其在工业、生物医药等领域有着特殊的应用。(一)生物医药 磁性高分子微球(也称免疫磁性微球)是一种由磁性纳米颗粒和高分子骨架材料制备而成的生物医用材料,其中的高分子材料包括聚苯乙烯、硅烷、聚乙烯、聚丙烯酸、淀粉、葡聚糖、明胶、白蛋白、乙基纤维素等,骨架 .用 能长期稳定的存在,不产生沉淀与分离。目前,磁性流体已经广泛应用于选矿技术、精密研磨、磁性液体阻尼装置、磁性液体密封、磁性液体轴承、磁性液体印刷、磁性液体润滑、磁性液体燃料、磁性液体染料、磁性液体速度传感器和加速度传感器、磁性液体变频器、磁性液体陀螺仪、水下低

氧化物载体负载纳米钯金属催化剂的制备方法

氧化物载体负载纳米钯金属催化剂的制备方法 2016-11-02 13:52来源:内江洛伯尔材料科技有限公司作者:研发部 纳米钯金属催化剂的制备方法 纳米贵金属催化剂正逐渐成为高效催化剂的典型代表和催化剂研宄的热点。然而由于纳米颗粒极大的比表面积,使其非常的不稳定,极易发生团聚失活。同时在催化反应中,由于各种复杂的反应状况,催化剂颗粒也会发生团聚失活并伴有不同程度的流失。这些问题严重限制了纳米催化剂的制备和应用,因此制备稳定的(反应过程中)纳米催化剂显得尤为重要。纳米颗粒负载在固体载体上是最常用的,也是最有效的制备稳定的催化剂。近来,人们的研宄主要集中与纳米颗粒固载在金属氧化物上。主要的金属有氧化硅,氧化铝,氧化钛,氧化锆等。纳米钯金属催化剂在催化氢化、氧化、C-X耦合反应等领域具有重要的应用前景。 Copelin在欧洲专利中EP0009802中公开了一种Pd/Si02催化剂 及蒽醌法制备双氧水的方法,在该过程中钯催化剂比较稳定,可能由于钯催化剂一般都是以钯氧化物的形式存在,有效防止了催化剂的失活。Semagina等将Pd纳米颗粒置于聚环氧乙烷和聚乙烯基吡啶的嵌段共聚胶束的核心中,然后将该共聚物负载在Al 2O3上。该催化剂对丁炔二醇的选择性还原有极高的活性,可以回收使用多次,可见催化剂被很好的保护在胶束中(N.Semagina,et al Appl.

Catal.A:Gen. 2005, 280, 141-147)。Das 等在 MCM-41 中固载了单一分散的 Pd 纳米颗粒,颗粒在常温下还原得到,但是却表现出优异的稳定性。催化剂在500°C烧结后,纳米颗粒由2. 8nm仅增加到3. 4nm。该催化剂用于Suzuki反应,ICP测试分析表明滤液中只有6ppb 的Pd (D. D. Das, et al, J. Catal.,2007, 246, 60-65. 33)。这些纳米钯催化剂的制备方法可以获得高活性的纳米金属催化剂,但大多过程复杂,不利于大规模生产。 纳米钯金属催化剂的技术方案:将功能助剂与载体进行接枝,助剂会与金属钯发生配位作用,从而有利于过渡金属颗粒的生成、分散与稳定。在功能助剂的帮 助下,加入的金属钯化合物可以很快被载体从金属钯化合物溶液中捕获,集中到载体表面。随后加入还原剂硼氢化钠、水合肼,或在高温下通入氢气均可以还原得到纳米金属钯颗粒。最后利用包埋剂将金属钯颗粒进行分隔包覆,这样有利于催化剂在反应过程中的稳定,防止金属钯颗粒在反应过程中聚集和流失。本方法的技术特征在于的载体功能化接枝,以及纳米金属催化剂的分隔包覆,其技术效果表现为功能助剂的接枝作用有利于纳米钯金属颗粒的形成和分散,包埋剂能够使钯纳米颗粒催化剂的使用过程当中,增强催化剂的稳定性,有利于催化剂的回收,以便于重复使用。此催化剂制备方法简单方便,且原料便宜易得,适合进行工业化生产。

纳米钯催化剂的催化应用

纳米钯催化剂的催化应用 摘要:介绍了纳米钯催化剂以及钯金属在工业生产中起着不可或缺的作用,详细说明了纳米钯催化剂对Heck 反应的影响以及纳米钯催化剂的电催化氧化还有纳米钯催化的Suzuki 偶联反应,简要说明了纳米钯催化芳卤羰化反应等。展望了纳米钯催化剂在工业生产中存在的一些问题并提出相关建议。 关键词:钯,催化剂,纳米,催化应用 1:前言 催化是现代社会生产生活的基础之一,大到化石能源的开发利用,小到食品工业的加氢重整,催化已经影响了人类生活的方方面面。催化的重要性毋庸赘言,因此科学工作者对催化过程的研究以及对催化本质的探求从未停歇。早在19世纪,催化反应的吸附理论和中间体等概念就已提出。 20世纪中叶,真空技术的发展拉开了现代表面化学的序幕,科学家成功地给出了在真空条件下化学反应如何在催化剂表面发生的细节。近半个世纪以来,纳米科技的高速发展对异相催化的研究产生了诸多积极影响,“纳米催化”或“纳米催化剂”等新名词得到了科学界的广泛关注。 应当指出,纳米催化并非有别于传统催化的新兴领域,因为大多数传统工业催化剂的尺寸本身就是纳米级的,正如人们所说,“催化天生是纳米的”。但不可否认,正是在纳米材料合成技术日臻成熟以及表征手段不断丰富的基础上,科学家才逐渐认识到催化剂活性、选择性、稳定性与催化剂的尺寸、形貌、组成、元素空间分布等因素的关系,为我们从分子水平上认识催化剂的构效关系提供了可能,同时也为催化剂的设计奠定了基础。因此,纳米催化作为一门古老又年轻的学科,具有重要的科学研究价值和工业应用前景。 VIII族元素钯位于元素周期表第四周期,价层电子构型为4d105s0。钯纳米催化剂广泛用于石油化工、汽车尾气处理、燃料电池等领域。钯在地壳中含量稀少,因此价格昂贵,我国的钯、铂金属资源更加稀缺,主要分布在云南、甘肃两省。如何提高贵金属钯、铂催化剂的活性、选择性以及稳定性对于我国稀有资源的高效利用和国民经济的发展具有重要的意义。 纳米尺度的钯主要用于汽车尾气处理,消耗量约占全球开采总量的一半。汽车尾气所含的污染物包括一氧化碳、氮氧化合物、碳氢化合物等,这些气体可引发酸雨、破坏臭氧层以及造成烟雾。尾气排出前会通过触媒转换器,经由Pt-Rh-Pd 组成的三元催化剂,转化为对环境低害的二氧化碳、氮气、水蒸气,转化率高达90%。钯纳米催化剂在石油炼制工业中也有重要应用。在原油精制过程中钯催化剂用于石油的加氢裂化过程。 纳米材料和纳米技术在石油和化学工业中有广泛的应用前景,特别是在催化领域具有巨大的潜力,而在我国目前对纳米技术的研究开发还仅仅开始纳米材料用作催化剂或催化剂载体,既具有高活性,高选择性,又有简单的制备工艺,不污染环境,可大量节省贵金属用量,降低生产成本,提高生产效益,可获取显著的收益。建议政府和企业家们给以财力、物力的支持和合作,尽快克服制约因素,使其实现产业化和市场化,使传统的化学工业重新焕发青春。 2:研究现状 2.1纳米钯催化剂对Heck 反应的影响

纳米材料的概述及化工制备方法

目录 摘要 (1) 引言 (2) 1 纳米材料的概述 (3) 1.1纳米材料的定义 (3) 1.2纳米材料的制备方法 (4) 1.2.1机械法 (4) 1.2.2化学制备方法 (5) 2 微乳反应器原理 (6) 2.1微乳液 (6) 2.2微乳反应器原理 (7) 2.2.1分别增溶有反应物A、B的微乳液混合 (8) 2.2.2反应物A的微乳液与反应物B水溶液混合 (9) 2.2.3反应物A的微乳液与反应物B气体 (9) 2.3微乳反应器的形成及结构 (10) 2.3.1微乳液的形成机理 (10) 2.3.2微乳液的结构 (11) 3 微乳反应器的应用——纳米颗粒材料的制备 (12) 3.1纳米催化材料的制备 (12) 3.2聚合物纳粒的制备 (12) 3.3金属单质和合金的制备 (13) 3.4无机化合物纳粒的制备 (13) 3.5磁性氧化物颗粒的制备 (13) 结论 (14) 致谢 (16) 参考文献 (17)

摘要 本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。 并简单的对什么是纳米材料,纳米材料的一系列制备方法做了介绍,从而了解到微乳化法相对于其它制备方法的优缺点。 关键词:纳米粒子;微乳液;微乳反应器;纳米材料制备

引言 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。1982年,Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合胼或者氢气还原在W/O型微乳液水核中的贵金属盐,得到了单分散的Pt,Pd,Ru,Ir金属颗粒(3~10nm)。从此以后,不断有文献报道用微乳液合成各种纳米粒子。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1ding Blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。

钯纳米催化剂的制备及催化性能研究

摘要 本文以聚苯乙烯-丙烯腈(P(S-AN))为载体,合成了负载型加氢催化剂,再利用电纺丝技术对高分子负载PdCl2催化剂进行纳米化,制备负载型纳米催化剂,并对所制备的催化剂进行了TEM、SEM、XPS、IR等表征。实验还研究了不同外界条件下制备的催化剂对1-辛烯催化加氢的效果,测试表明: 关键词:纳米催化剂,负载催化剂,静电纺丝,氢化

Abstract A series of hydrogenation catalysts supported by polystyrene-acrylonitrile, polyvinylpyrrolidone and Al2O3 were synthesized, then the supported nano-catalyst was prepared by means of the nano-treatment of polymer-supported PdCl2catalyst using elestrospinning. The catalysts were characterized by IR , UV , SEM , XPS and TG.. In the paper, the dependence of the diameter of nanofiber with voltage , receiving range , solvent concentration was also investigated respectively. The catalystic hydrogenation results of 1-hexene showed that the hydrogenation rate of P(S-AN)/PdCl2 nano-catalyst based on electrospinning was 4.7 times of the Al2O3/PdCl2catalyst(PdCl2mass percentage is 9.4%). Keywords:nano-catalyst, polymer supported catalyst, electrospinning, hydrogenation,

四氧化三铁综述

四氧化三铁纳米的制备应用及表征 摘要:总结了磁性纳米Fe3O4粒子的制备方法,有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等,并讨论了磁性纳米Fe3O4粒子在磁性液体、生物医学、微波吸附材料磁记录材料、催化剂载体等领域的应用。简述了Fe3O4得表征手段,最后对纳米Fe3O4的研究前景进行了展望。 关键词:四氧化三铁;磁性纳米颗粒;制备;应用;表征 The Preparation and Application of Fe3O4 Magnetic Nano- particles 【Abstract】The chemical preparation methods were summarized including co-precipitation,sol-gel method, microemulsion , hydro-thermal method etc. Based on the recent progress , relative meritsof those methods were analyzed. The application of Fe3O4nano-particles in magnetic fluid , magnetic recording materials , catalytical and microwave materials and medicine were introduced. 【Key Words】Fe3O4; magnetic nanoparticle; preparation; progress Fe3O4磁性纳米颗粒由于具有与生物组织的相容性、与尺寸和形貌有关的电学和磁学性能,且具有好的亲水性、生物兼容性、无毒和高的化学稳定性,所以成为生物磁应用方面的理想材料使其在电子与生物敏感材料,尤其是生物医学领域被人们广泛关注【1】。应用于生物技术的纳米颗粒需要优良的物理、化学以及磁学特性【2】:(1)具有高磁化率,使材料的磁性较强,一般为铁磁性纳米颗粒;(2)颗粒尺寸为6~15 nm(当颗粒直径小于15 nm 时,就变为单磁畴磁体而具有超顺磁性并且饱和磁化强度很高),比表面积高;(3)具备超顺磁性等。另一方面,磁性纳米颗粒表面需要被特种有机物质修饰,才能具有独特的生物医学功能。磁性纳米微粒的制备方法主要有物理方法和化学方法【3-4】。物理方法制备纳米微粒一般采用真空冷凝法、物理粉碎法、机械球磨法等。但是用物理方法制备的样品一般产品纯度低、颗粒分布不均匀,易被氧化,且很难制备出10nm以下的纳米微粒,所以在工业生产和试验中很少被采纳。化学方法主要有共沉淀法、超声波沉淀法、水热法、微乳液法、水解法、溶胶- 凝胶法,多元醇法等。采用化学方法获得的纳米微粒的粒子一般质量较好,颗粒度较小,操作方法也较为容易, 生产成本也较低, 是目前研究生产中主要采用的方法【5-8】。 1、制备方法 1.1共沉淀法 共沉淀法是在包含两种或两种以上金属离子的可溶性盐溶液中, 加入适当的沉淀剂, 使金属离子均匀沉淀或结晶出来, 再将沉淀物脱水或热分解而制得纳米微粉. 共沉淀法是目前最普遍使用的方法, 其反应原理是: Fe2++ Fe3++ 8OH==Fe3O4+ 4H2O 付云芝【9】等采用共沉淀法制备出立方晶系的单分散、小粒径Fe3O4 颗粒。通过控制制备最佳条件为:铁盐溶液浓度为0. 5mol /L,沉淀剂溶液浓度为0. 2mo l/L,Fe2+:Fe3 +:OH- = 1. 00 :1. 00 :6. 00, 反应温度为30℃,搅拌速度为1000 r /m in. T. Fried【10】等在80℃氩气保护下将氨水缓慢滴加到FeCl2与FeCl3的混合溶液中得到纳米Fe3O4颗粒, 并使用油酸对其进行包覆,得到了平均粒径为2 nm 的Fe3O4颗粒膜。Yong- kang sun【11】等人采用部分限制共沉淀法,只是向酸化了的磁性纳米悬浮液中通入空气进行氧化的情况下制备了平均粒径为7 ~ 13 nm 的纳米Fe3O4。陈亭汝【12】等在搅拌速度较快的情况下,n ( Fe3+ ) /n( Fe2+ )为1. 8 :1,熟化温度70℃,熟化时间30min,以氨水作沉淀剂最佳pH值是9左右,可制得

钯催化剂能快速处理三氯乙烯

钯催化剂能快速处理三氯乙烯 2016-05-05 12:57来源:内江洛伯尔材料科技有限公司作者:研发部 钯催化剂降解三氯乙烯示意图 三氯乙烯(TCE)是C2有机氯溶剂中溶解力最强的一种,是最佳的金属脱脂洗剂,主要用于彩电、电冰箱、汽车、空调、精密机械、微电子等行业作金属部件、电子元件的清洗剂,其主要优点是脱脂彻底。用在化工原料上可生产氯乙酸、二氯乙酰氯、八氯二丙醚、六氯乙烷等产品,还可以用作溶剂和萃取剂,在农药和医药行业也有一定用途。 TCE分子中的碳—氯键非常稳定,这在工业上很有用,但却对环境不利。TCE属中等毒性,可经呼吸道、消化道、皮肤吸收。短时间大量吸收可引起急性中毒,表现为头痛、头晕、嗜睡、恶心、呕吐、四肢无力等症状。TCE广泛用作脱脂剂和溶剂,已经有许多地区污染了地下水。在美国环保署有毒废弃物堆场污染清除基金国家优先项目列表中,超过一半废品堆场发现含有TCE,单是清除地下水中TCE 的成本估计要超过50亿美元。 近期美国莱斯大学和中国南开大学科学家合作,首次对6种钯基和铁基催化剂清除致癌物三氯乙烯(TCE)的能力进行了对比测试,发现钯破坏TCE的能力比铁要快得多,甚至高出铁粉10亿倍。研究人员指出,对于开展大规模TCE催化治理实验来说,这一发现有助人们从成本和效率两方面综合考虑,实现成本最优化。 “要打破碳—氯化学键非常困难,而处理TCE要求只打破某些键而不是所有碳—氯键,否则可能带来更危险的副产物如氯乙烯。这是个大难题。”论文作者之一、莱斯大学化学与生物分子工程教授迈克尔·翁说,“通行方法是不破坏这些键,而用气体或碳吸收方法物理性除去污染地下水中的TCE。这些方法容易实施却成本很高。”后来人们发现纯铁和纯钯能将TCE转变为无毒物质,以往的金属降解TCE是让其在水中发生腐蚀作用,但可能产生氯乙烯;后来人们用金属作催化剂来促进碳—氯键断裂,其本身并不与TCE反应。因为铁比钯要廉价得多,更容易操作,因此行业内已普遍用铁来除去TCE,钯只在实验室中使用。 迈克尔·翁和曾在莱斯大学做访问学者的中国南开大学李淑景(音译)等人对6种铁基和钯基催化剂进行了一系列实验,包括两种铁纳米粒子、两种钯纳米粒子,其中就有研究小组2005年开发的用于TCE治理的金—钯纳米粒子催化剂、铁粉和氧化钯铝粉末。 他们测试了6种催化剂分解掉含TCE的水溶液中90%的TCE所需时间。结果是,钯催化剂只花了不到15分钟,两种铁纳米粒子超过25小时,而铁粉则超过

纳米四氧化三铁制备及其性质研究

纳米四氧化三铁制备及其性质研究 摘要:四氧化三铁是一种具有反尖晶石结构的铁氧体,由于其具有独特的物理、化学性质, 已经引起众多专家学者的关注。纳米四氧化三铁具有超顺磁性、小尺寸效应、量子隧道效应等使其能够区别于一般的四氧化三铁。目前在国内外,磁性纳米四氧化三铁已经在催化剂、造影成像、靶向给药、药物载体、DNA检测等应用领域表现出良好的应用前景。尤其随着纳米技术与高分子工程的快速发展,磁性纳米四氧化三铁在细胞分离、蛋白质分离、生物传感器、重金属吸附等领域越来越受到研究者的重视。同时,合成粒径小、分布窄且具有优良磁性、表面性能稳定、具有生物相容性安全的磁性纳米四氧化三铁也是各专家、学者研究的热点之一。 关键词:纳米四氧化三铁;磁性;合成 近年来,有关磁性纳米粒子的制备方法与性质备受关注。然而,由于磁性纳米粒子之间的作用力,如范德华力以及磁力作用,纳米四氧化三铁粒子极易发生团聚,使得比表面积降低,同时减弱了反应活性。通过添加高分子聚合物或表面活性剂对粒子表面进行改性,可以获得稳定分散的磁性纳米粒子,从而有效克服上述缺点。 1.实验部分 1.1 实验原理 化学共沉淀法是指在包含两种或两种以上金属阳离子的可溶性溶液中,加入适当沉淀剂,将金属离子均匀沉淀或结晶出来。具体反应方程式:Fe2+ +2Fe3+ +8OH-==Fe3O4 +4H2O.通常是把FeⅡ和FeⅢ的硫酸盐或氯化物溶液一物质的量比2比3的比例混合后,用过量的氨水或氢氧化钠在一定温度和pH下,高速搅拌进行沉淀反应,然后将沉淀过滤、洗涤、烘干,制得纳米四氧化三铁。 1.2仪器与试剂 三颈瓶,pH计,高速离心机,恒温水浴箱,真空干燥箱,紫外可见分光光度计,X射线衍射仪等 四水合氯化亚铁,六水合氯化铁,乙醇,十二烷基苯磺酸钠,油酸,氢氧化钠,盐酸等。1.3实验步骤 室温下,将四水合氯化亚铁和六水合氯化铁按物质的量比为1比2的比例混合放入三颈瓶中,加入200mL去离子水,然后加入一定量表面活性剂和油酸。高速搅拌下,向溶液中缓慢滴加0.1mol/L氢氧化钠溶液,至pH>11,继续搅拌1h使反应完全。反应结束后用磁铁进行固液分离,再用去离子水反复冲洗至中性,以除去多余电解质。在60℃下真空干燥24h. 1.5样品检验 相关资料

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

纳米四氧化三铁

纳米四氧化三铁 简介 四氧化三铁是一种常用的磁性材料,又称氧化铁黑,呈黑色或灰蓝色。四氧化三铁是一种铁酸盐,即Fe2+Fe3+(Fe3+O4)(即FeFe(FeO4)前面2+和3+代表铁的价态)。在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO-Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。化学式:Fe3O4,分子量231.54,硬度很大,具有磁性,可以看成是氧化亚铁和氧化铁组成的化合物。逆尖晶石型、立方晶系,密度 5.18g/cm3。熔点1867.5K(1594.5℃)。它不溶于水,也不能与水反应。与酸反应,不溶于碱,也不溶于乙醇、乙醚等有机溶剂。 在外磁场下能够定向移动,粒径在一定范围之内具有超顺磁性,以及在外加交变电磁场作用下能产生热量等特性,其化学性能稳定,因而用途相当广泛。 纳米四氧化三铁置于介质中,采用胶溶化法和添加改性剂及分散剂的方法,通过在颗粒表面形成吸附双电层结构阻止纳米粒子团聚,制备稳定分散的水基和有机基纳米磁性液体。制备的磁性液体2~12个月都能很好的分散着,磁性液体中颗粒平均粒径为16~35nm之间。 通过大量实验,确定了最佳的工艺配方和工艺路线,工艺简单安全,能耗低,并保持了磁性颗粒的粒径在纳米量级,并且经磁性能测试可得磁性颗粒具有超顺磁性,其技术指标达到并超过国内外磁性纳米四氧化三铁性能,为国内各种磁流体的应用提供了基础。 制备方法 1、水热法制备纳米四氧化三铁(2012年) 聚乙二醇6000包被的四氧化三铁颗粒,采用X射线衍射法分析其构,用扫描电镜测量其直径及分布,用振动样品磁强计检测磁学参数。结果所 得样品为四氧化三铁晶体,粒径为200 nm,质量饱和磁场强度为79.8 em u/g Fe。结论:制备的样品粒径均一,分散性好,超顺磁性,水溶性好,可用于物理化学溶栓。 2、卟啉一磁性四氧化三铁纳米粒子的制备(2014年) 直接键合成法:卟啉与四氧化三铁纳米粒子表面直接形成化学键的制备方法。要求卟啉与四氧化三铁纳米粒子成键单元,如中心金属原子、羟基等。 用一锅高温合成法合成了单分散的油胺包覆四氧化三铁纳米粒子,在DMF 溶液中,原卟啉IX与多巴胺的偶联反应制备了连有多巴胺的原卟啉(PPD),然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD,然后与四氧化三铁纳米粒子在甲醇中混合得到卟啉PPD包覆的四氧化三铁纳米粒子 (PPDNP),其中粒度单一(<7nm),具有清晰的晶格和高的结晶度,在室温有明确的超顺磁性行为。

PVP负载钯纳米丝状催化剂的制备及催化加氢性能_于建香

第24卷第12期高分子材料科学与工程 Vol.24,N o.12 2008年12月 POLYMER MAT ERIALS SCIENCE AND ENGINEERING Dec.2008 PVP 负载钯纳米丝状催化剂的制备及催化加氢性能 于建香1,2,刘太奇2 (1.北京化工大学材料科学与工程学院,北京100029;2.北京石油化工学院环境材料研究中心,北京102617) 摘要:用电纺丝技术和加热交联技术制备了聚乙烯吡咯烷酮(PV P)负载纳米钯的纳米丝状催化剂PVP -Pd,并对所制备的催化剂进行了SEM ,T EM ,U V 和T G 的表征。利用P VP -P d 对烯烃和硝基苯的催化氢化反应研究了所制备催化剂的催化性能,结果表明纳米纤维态PV P -Pd 催化剂在室温、氢气条件下催化氢化 -辛烯和环己烯的转化率可以达到100%,对硝基苯也有很好的催化活性。关键词:静电纺丝;催化加氢;烯烃;纳米 中图分类号:T B383 文献标识码:A 文章编号:1000-7555(2008)12-0191-04 收稿日期:2007-10-19;修订日期:2007-11-30 联系人:刘太奇,主要从事纳米材料制备及环境材料的研究, E -mail:liutaiqi@https://www.doczj.com/doc/691079820.html, 近十多年来纳米制备和纳米结构表征的精细化和多元化,使得多相催化剂的研究开发进入了纳米催化剂的新阶段[1]。高分子表面化学环境和结构相对可控,可以制备分散度极高、比表面积很大的纳米粒子催化剂,高分子链的隔离保护作用及粒子与高分子载体间的相互作用则有利于粒子不易聚集、脱落和失活,并且高分子与金属纳米粒子间往往以配位键相结合,相互作用较强,使得金属纳米粒子的寿命延长,易回收,重复使用性好 [2] 。高分子负载的金属 纳米催化剂往往也会表现出独特的高分子效应,使催化剂具有较高的反应活性和选择性。电纺丝技术[3~5] 可以简便高效地制备纳米至亚微米纤维,已被广泛应用于生物、光学、催化、过滤及药物包覆等领域的研究。电纺丝的基本原理是溶液在电场力作用下克服表面张力形成一股带电的喷射流并发生分裂形成类似非织造布的纳米纤维毡。本文以聚乙烯吡咯烷酮为载体,制备出金属钯纳米催化剂,由于PVP 构架的空间阻碍作用以及本身所含有的富电子基团,使钯粒子相互间的聚集受到限制,再利用电纺丝技术把负载钯的PVP 纺制成纳米纤维,从而获得了高度分散和稳定的金属纳米催化剂。1 实验部分 1.1 试剂与仪器 氯化钯、N,N -二甲基甲酰胺(DM F)、烯烃:均为分析纯;聚乙烯吡咯烷酮: M n =3 104 g /mol,北京化学试剂公司产品。 电纺丝实验装置一套;热失重分析仪,法国SETARAM,TG labsys ;JSM -6301F 扫描电子显 微镜,日本电子公司;JEM -100XII 透射电子显微镜,日本电子公司;UV -2401紫外光谱仪,日本岛津;色谱-质谱联用仪6890N(Network GC System),5973(Netw ork Mass selective Detec -tor),美国安捷伦。1.2 PVP 负载钯的制备 0.1g PdCl 2和5mol/L 盐酸溶液2m L 加入到盛有乙醇的100mL 单口烧瓶中,搅拌使PdCl 2充分溶解,然后加入溶有1g PVP 的乙醇溶液,回流48h,溶液由黄色逐渐变为亮棕色。减压蒸馏至20%~25%(质量分数)得到纺丝液。 1.3 PVP/Pd 纳米纤维的制备及交联 注射器内放入(质量分数)20%~25%的PVP -PdCl 2乙醇溶液,在自制的静电纺丝装置上进行纳米无纺布的制备。将高压电源阳极输出端连接在注射器一端,阴极输出端连于铝制的接收板上。纺丝参数为:电压20kV ~25

铂钯双金属纳米催化剂的催化活性

第25卷第1期 中南民族大学学报(自然科学版) Vol.25No.1 2006年3月 Jour nal of South-Central U nivers ity for Nationalities(Nat.Sci.Edition) Mar.2006 a铂钯双金属纳米催化剂的催化活性 王 然 何宝林* [马来]刘光荣 盘荣俊 (中南民族大学化学与材料科学学院催化材料科学湖北省重点实验室,武汉430074) 摘 要 由聚合物稳定的铂纳米催化剂对环己烯催化加氢反应具有较高的催化活性,在铂纳米催化剂中引入第二金属元素钯,即在纳米铂颗粒上包裹一层钯,形成具有球壳结构Pt-Pd双金属催化剂,随引入钯的量不同,其催化能力的大小发生了变化,而且调节反应溶液的pH值,催化能力也发生变化. 关键词 钯铂催化剂;环己烯;催化氢化;pH值 中图分类号 TB383 文献标识码 A 文章编号 1672-4321(2006)01-0001-04 Investigation of Catalytic Activity of Pt/Pd Nanobimetallic Catalyst Wang Ran H e Ba olin [Malaysia]Liew Kongrong Pa n Rongjun Abstr act P olymer stabilized platinum nano-size cat alyst has relatively high hydr ogenation activit y.Intr oduction of a second metal,palladium,to for m a cor e shell str ucture with P d as the shell and Pt as the cor e,enhances the catalytic activit y substantially.The enhancement var ies with t he amount of Pd introduced.Changes in pH was also found t o have significant effects on t he cata lytic activity. Keywor ds P d/Pt bim et al cata lyst;cyclohexene;catalytichydr ogenation;pH Wa ng Ran Master′s Candidate,Key laborat or y for Cat alysis and Mater ial Science of Hubei Pr ovince,College of Chemistr y and M aterial Science,SCUF N,Wuhan430074,China 在室温常压条件下铂族贵金属纳米催化剂对各种小分子底物的催化氢化具有很高的催化能力和选择性[1~4],所以铂族贵金属在催化领域引起了科学界浓厚的研究兴趣.近年来,聚合物稳定的2种或2种以上金属元素组成均相多金属催化剂的研究引起了很多关注,可能是双金属催化剂具有一些比单金属催化剂优异的性能,例如,提高反应速率、选择性以及新的反应类型[5,6],还可以为研究不同合金的形成提供模型,而且其本身有特殊的组成结构[7].在本文中,主要探索了在有PVP稳定的单金属催化剂Pt 纳米颗粒表面引入第二元素Pd形成Pt-Pd双金属纳米催化剂后,催化性能的变化、催化活性与pH值的关系. 1 实验部分 1.1 催化剂的制备 1.1.1 单金属铂纳米催化剂的制备 本文催化剂采用化学醇还原来制备,甲醇为还原剂,聚乙烯吡咯烷酮PVP(K30)为稳定剂[8].过程如下:在250mL的圆底烧瓶里,将0.555g(即5 mmol单体)PV P和0.065g0.125mmol H2PtCl6?H2O溶于由65mL甲醇、75mL H2O组成的混合溶剂中,在磁力搅拌下回流180min得到清澈色泽棕黑的Pt纳米胶体,在反应过程中滴加10mL0.1 mol/L氢氧化钠甲醇溶液. 1.1.2 Pt/Pd双金属纳米催化剂的制备 双金属纳米催化剂的制备方法与单金属制备方法类似,本文以Pt纳米颗粒为晶种再还原Pd,以PVP-Pt0.5sPd0.5为例(0.5表示晶种纳米Pt用量为1.1.1中Pt的用量的0.5倍,即用量为0.625mmol, n Pt/n Pd=1/1),制备过程为:将75mL PVP-Pt纳米胶体、0.287g PVP(即2.5mmol单体)和6.5mL 9.6mmol/L H2PdCl4?n H2O溶于由32.5mL甲醇31.0mL水组成的溶剂中,在磁力搅拌下回流180 a收稿日期 2005-10-31 *通讯联系人hebl@https://www.doczj.com/doc/691079820.html, 作者简介 王 然(1980-),女,硕士研究生,研究方向:贵金属纳米催化剂的制备和催化性能,E-mail:wengdyzhongnan @https://www.doczj.com/doc/691079820.html, 基金项目 国家民委重点基金资助项目(MZY02019)

相关主题
文本预览
相关文档 最新文档