当前位置:文档之家› 碳纤维复合材料汽车零部件开发及前景探讨

碳纤维复合材料汽车零部件开发及前景探讨

碳纤维复合材料汽车零部件开发及前景探讨
碳纤维复合材料汽车零部件开发及前景探讨

碳纤维复合材料汽车零部件开发与前景探讨

张王根

上海耀华大中新材料有限公司

摘要:本文介绍了国内外碳纤维复合材料汽车零部件的开发情况,阐述了开发碳纤维复合材料汽车零部件面临的问题,并对碳纤维复合材料汽车零部件发展前景进行了探讨。

关键词:碳纤维、复合材料、汽车、零部件

1、概述

汽车工业的快速发展,给人们带来交通便利的同时,也面临着环境污染和能源紧缺等问题,为了应对这些问题,使汽车工业的可持续发展,节能减排已经成为汽车工业的重要研究课题。研究显示,若汽车整车重量降低10%,燃油效率可提高6%-8%;汽车整备质量每减少100公斤,百公里油耗可降低0.3-0.6升,二氧化碳排放可减少约10克/公里。因此,汽车轻量化是节能减排的重要手段,在保证汽车的强度和安全性能的前提下,尽可能地减轻汽车的整备质量,从而提高汽车的动力性,减少燃料消耗,降放排气污染。目前汽车轻量化主要有2种途径,一是结构设计优化,提供对车身的结构及骨架进行优化设计,优化结构形式,以达到减重目的。二是通过轻质高强材料替换传统材料,从而达到减重目标。自从1953年世界上第一台FRP汽车—GM Corvette制造成功以后,随着复合材料技术的不断进步,复合材料作为汽车轻量化中应用得到了快速发展,欧美日等汽车发达国家,都已在汽车中大量采用复合材料,碳纤维复合材料也在逐步进入汽车领域,必将成为汽车复合材料的发展趋势。

2、碳纤维复合材料特点

(1)比强度、比模量高,与传统金属材料比,碳纤维复合材料强度、模量相差不多,但碳纤维复合材料的密度比金属材料低得多,碳纤维复合材料的比强度是传统金属材料的2.4~5.8倍,比模量也达到1.6倍以上(见表1),所以它能够以同样的单位质量获得更高的承载能力,或者说以较小的质量达到同样的承载能力。

表1 比强度、比模量对比表

注:碳纤维复合材料数据为上海耀华大中公司采用T300碳纤维200g/m2平纹布和环氧树脂,通过真空导入工艺制作的试样测试的数据,金属材料为销售商提供的数据。

(2)抗疲劳性能好,在疲劳载荷作用下的断裂是材料内部裂纹扩展的结果,而疲劳破坏就

是裂纹不断扩展所产生的突然断裂。碳纤维复合材料中的碳纤维与基体间的界面能够有效地

阻止疲劳裂纹的扩展。大多数金属材料的疲劳强度极限是其拉伸强度的30%~50%,而碳纤

维复合材料则可达到70%~80%左右。

(3)破损安全性高,碳纤维复合材料破坏不像传统材料那样突然发生,而是经过基体损伤、

开裂、界面脱粘、碳纤维断裂等一系列过程,而当少数纤维断裂时,载荷又会通过基体传递

重新分布到其他纤维,其过程是一个不断吸收能量的过程,提高了破损的安全性。

(4)减震性好,受力结构的自震频率除与形状有关外,还与结构材料的比模量平方根成正

比,所以碳纤维复合材料有较高的自震频率。同时碳纤维复合材料的界面有较大的吸收震动

能量的能力,致使材料的震动阻尼较高。

(5)各向异性,碳纤维复合材料有着复合材料的共同特点,能根据产品的受力情况合理布

置碳纤维分布,实现各方向具有不同的力学性能,充分利用材料。

(6)易于成型,复合材料可以成型各种复杂形状。

(7)耐腐蚀性好,碳纤维复合材料基体树脂具有良好的耐化学腐蚀性能,不会像金属材料

那样容易生锈。

3、碳纤维复合材料零部件开发情况

碳纤维复合材料具有高强度、高模量、低密度。是汽车轻量化最理想的材料。在发达国

家,碳纤维复合材料在汽车上的应用技术已经成熟,宝马I3电动车车身(见图1)可以说是

碳纤维复合材料在汽车中应用的最为成功的案例,是碳纤维应用到汽车大型结构件的一个重

要的里程碑。碳纤维复合材料在宝马I3电动车上成功的应用得益于宝马突破了2项关键技

术:一是宝马公司和SGL通过十多年的研究和试制,开发和生产了用于汽车的碳纤维和碳纤

维布,大大地降低了碳纤维的成本,二是他们开发的新的树脂体系以及高压RTM成型工艺,

提高了生产效率、降低了生产成本。满足了汽车批量生产的要求。碳纤维复合材料在i3上

的应用也使汽车的设计理念发生了改变,I3采用了“LifeDrive”模块架构,它由“Life”和“Drive”

两个独立的模块组成,life模块与drive模块的拼合,就像拼积木一样简单。这将为今后的汽

车设计带来一场重要变革。

图1 宝马I3电动汽车及碳纤维车身

东丽与丰田合作开发的碳纤维增强热塑性复合材料,开发制造了燃料电池反应堆框架,应用于丰田燃料电池汽车Mirai中,碳纤维增强热塑性复合材料具有成型时间短的特点,与热固性相比,生产效率更高,适合大规模生产,这也是世界上第一次CFRTP用于汽车结构件而大批量生产的汽车(见图2)。

图2 碳纤维增强热塑性复合材料反应堆框架

大众、奔驰、PSA等多家集团公司也都在开发汽车用碳纤维复合材料,应用于车身、轮毂、座椅、氢气瓶、前舱盖、底盘结构件、传动轴等部件。碳纤维在不久的将来必将成为汽车轻量化的主流材料。

与发达国家相比,国内碳纤维复合材料汽车零部件应用相对比较落后,目前正处在研究开发阶段,有部分企业研究并开发了一些碳纤维产品。上海耀华大中新材料有限公司在上海汽车集团乘用车公司牵头下,与交通大学、同济大学合作共同开发了碳纤维复合材料后尾门、电池盒上盖、前保险杠、翼子板。这几种产品属于研制产品,不是批量产品,为了节约成本,均采用了真空导入工艺进行制作。后尾门有尾门内板、扰流板、下饰板三个零件,分别成型后进行粘接而成,与SMC模压相比,减重36.03%(见图3);前防撞梁采用了三明治结构,外部采用碳纤维复合材料,内部采用泡沫芯材,防止失稳破坏,与铝合金挤压成型的前防撞

梁相比,减重25%(见图5);翼子板与钢板冷冲压相比,减重38.71%(见图6);电池盒上盖SMC模压相比,减重达44%(见图7)。

图3 碳纤维复合材料后尾门

图4 碳纤维复合材料前防撞梁

图5 碳纤维复合材料左右翼子板

图6 碳纤维复合材料电池盒上盖

奇瑞汽车股份有限公司与中国科学院宁波材料技术与工程研究所开发的碳纤维汽车车身,这是一款插电式混合动力汽车。碳纤维复合材料218Kg,相对于金属车身418Kg碳纤维车身减重200Kg,,减重48%(本组数据来源于2014年上海工博会)。

4、我国开发碳纤维复合材料汽车零部件面临的问题

碳纤维复合材料具有轻质高强等一系列特点,轻量化领域尤其是航空航天领域得到广泛应用,也是汽车轻量化最为理想的材料。但要在汽车上大批量应用,还需解决下面各方面问题:

(1)成本高,是制约碳纤维复合材料在汽车中批量应用的一个重要因素,碳纤维复合材料成本高主要表现在两个方面,一是碳纤维复合材料生产成本较高。二是碳纤维复合材料的原材料成本较高,主要是碳纤维价格太高,目前市场每公斤价格在120元人民币以上,是玻璃纤维价格10倍以上。另外与碳纤维配套的树脂体系主要是环氧类树脂,价格也较高。因此,要想使碳纤维复合材料在汽车轻量化中大量应用必须首先要降低碳纤维的生产成本,通过改进原丝生产工艺,降低原丝成本;发展新的预氧化、碳化和石墨化技术,缩短预氧化时间,降低碳化、石墨化成本,从而达到降低碳纤维成本的目的。其次要加强碳纤维表面处理技术的研究,以及与碳纤维配套的树脂体系研究,拓展碳纤维复合材料根据产品需要设计树脂体系的范围,以达到降低碳纤维复合材料成本的目标。

(2)成型方面,生产效率有待提高

目前碳纤维复合材料尤其是中国主要应用于军工和体育休闲产品,其生产工艺相对于汽车的产量来说,成型效率偏低,成型成本偏高。宝马公司采用了高压RTM工艺生产碳纤维复合材料车身,产品生产周期能达到10分钟左右。目前在国内也有单位在进行这方面的技术研究,但未见批量生产的报道。因此,应加强适合汽车零部件的碳纤维复合材料成型技术研究,只有解决了碳纤维复合材料汽车产品的生产效率问题、生产成本问题、质量稳定性问

题,才能满足汽车大批量、质量稳定的生产要求。

(3)设计问题

碳纤维复合材料不同于传统的金属材料,碳纤维复合材料具有自身的材料特性,复合材料产品的设计应根据复合材料的特点进行设计,充分发挥材料性能,如宝马i3采用了模块化结构设计,而一个模块中采用若干个零件分开成型然后进行连接整合成一个模块。中国汽车设计一直是一个瓶颈,据说,自主品牌的汽车设计中模仿设计占40~70%,有些厂家甚至是整车复制。对复合材料来说,主机厂更是没有经验积累,也没有数据积累,没有设计规范、验证标准。在这种情况下,宝马的模式值得我们学习,主机厂应该牵头,联合原材料厂家、复合材料生产厂家以及高校、院所进行合作设计开发。

(4)维修问题

汽车在使用过程中避免不了会有磕磕碰碰,一旦发生碰撞就会遇到修复问题,对传统金属材料而言,4s店维修人员已经是轻车熟路,而对碳纤维复合材料汽车而言,其修复工艺与传统材料还是存在较大差异,碳纤维复合材料的修复专业性较强,修复人员必须具备一定的专业基础。为了便于修复,使修理人员快速掌握修复技能,应加强修复专用材料的研究与开发,开发出使用方便,容易操作的修补材料。

5、我国碳纤维复合材料在汽车中应用需求与前景

中国是汽车产销大国,2014年产销量达2000多万辆,同时也是复合材料产销大国,但复合材料在汽车中的应用还相当落后,随着汽车工业的快速发展以及大众环保意识和节能意识的不断增强,尤其是在世界能源危机和石油涨价而使得汽车工业向轻量化方向发展的大背景下,具有轻质高强的碳纤维复合材料比将成为汽车轻量化主流轻质材料而会得到快速发展,碳纤维复合材料技术将会不断进步,成本会逐步降低,生产效率会不断提高。所以碳纤维复合材料在汽车中的应用将是必然趋势,其前景非常广阔。

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维复合材料在汽车工业中的应用

《能源工程材料》 课外拓展阅读报告 《碳纤维复合材料在汽车工业中的应用》 姓名:XX 指导教师:XX 学号:XXXXXXXX 专业班级:XXXXXXXX 2016年6月 碳纤维复合材料在汽车工业中的应用 摘要:节能减排是当前汽车工业可持续发展迫切需要解决的问题,采用碳纤维复合材料等轻质材料使汽车轻量化是一个有效的解决办法。介绍了碳纤维复合材料的性能特点和在汽车上的应用现状,从材料、设计和成型工艺3个方面分析了其在国内汽车工业应用中的问题,提出了促进碳纤维复合材料广泛应用的发展建议,并展望了其在汽车工业中的应用前景。 进入21世纪以来,能源危机日趋严重,世界各国的排放法规日益严格,如何在保证安全性和动力性的前提下降低油耗和减少排放是目前汽车工业迫切需要解决的问题。采用各种轻质材料取代金属等传统材料,使汽车轻量化是实现节能减排的重要途径。碳纤维复合材料凭借轻质、高强度、高刚度、抗振性能好、抗疲劳、耐腐蚀等众多优点[1]越来越受到汽车工业的重视,在汽车中的应 用也越来越多。碳纤维及其复合材料是支撑国家高科技产业发展的关键材料,经过40多年的积累与发展,我国碳纤维及其复合材料研发拥有众多突破性进展,但在汽车领

域的应用还远落后于航空航天和其他工业领域[2]。因此有必要分析碳纤维复合材料在我国汽车工业应用中存在的问题,提出合理的发展对策,以适应汽车工业对材料发展的迫切需求。 1.碳纤维复合材料的性能特点和使用优势 与金属材料相比,碳纤维复合材料具有许多优良性能,应用于汽车上有明显的优势,主要表现在:1)密度小,强度高,CFRP在常用材料中比强度和比模量最高,用于车身及底盘能在减轻车重的同时不损失强度或刚度,汽车安全系数不降低。2)韧性好,具有良好的抗冲击性和能量吸收能力,用于车身及其结构件具有良好的碰撞安全性。3)阻尼高,抗振性能好,用于车身、传动系统及发动机部件具有良好的减振、隔音效果,提高了乘坐舒适性。4)抗疲劳性能极佳,用于承受疲劳载荷的汽车零部件能有效延长其使用寿命。 5)优秀的耐热性、抗腐蚀与抗辐射性能,在电动汽车和其他新能源汽车领域应用具有很强的竞争力。6)成型工艺多,可设计性好,易于实现零部件一体化生产,极大缩短开发周期,节约成本。 2.碳纤维复合材料在汽车上的应用 碳纤维复合材料用于汽车部件上不仅可以实现汽车轻量化,而且在安全性与乘用舒适性等方面也有很大提高,因此越来越受到汽车工业的重视,很多汽车制造商生产的高档、豪华轿车(如通用、宝马、大众、奔驰、福特、奥迪、本田、日产等)几乎都开始试用或已经采用了各种碳纤维复合材料。 1)碳纤维复合材料应用于汽车车身、底盘及承力部件,在保证安全性的同时具有十分明显的减重效果。在各种材料制造的车身中碳纤维复合材料是最轻的,尤其是与钢制车身相比,轻量化效果达53%以上。 美国通用汽车公司1992年展出了由碳纤维复合材料制造车身的超轻概念车,车身质量为 kg,整车质量降低68%,节油40%。兰博基尼汽车2011年推出了Mucilage替代车型,该车采用了全碳纤维复合材料单壳体车身,质量仅有kg。目前,碳纤维复合材料制成的车身结构件已在德国宝马公司开发的Z-9和Z-22系列中大量采用。德国大众汽车公司的“2L车”CC1 研究项目,碳纤维复合材料用于车身的比例高达

汽车用碳纤维复合材料产业现状和对策_仝建峰

中国航空报/2015年/7月/18日/第S02版 工程 汽车用碳纤维复合材料产业现状和对策 中航复合材料有限责任公司仝建峰 碳纤维复合材料的材料性能及发展趋势顺应了汽车工业的发展需求,特别是随着新能源汽车的发展,碳纤维复合材料在汽车上将得到越来越广泛的应用。在欧美国家,车辆中复合材料的用量约占本国复合材料总产量的三分之一,主要应用在汽车覆盖件(四门两盖等)、次承力构件、车身等部位,其用量呈逐年上升趋势。 碳纤维复合材料在国内外汽车领域的应用现状 碳纤维复合材料由于其独具的强度和刚度特性,可以取代钢用于汽车的主承力结构。世界知名汽车制造商纷纷采用碳纤维复合材料零部件制造车型。 2014年,宝马i3和i8的上市不仅开创了碳纤维复合材料在量产车型大规模应用的新纪元。宝马i3和i8作为一款零排放电动车,正是由于采用了碳纤维复合材料打造的车身,使整车质量仅为1255千克,完美解决了由于电池质量而带来的车辆质量大增,车辆驾控敏捷度降低的问题,并创造了百公里7.2秒的加速时间。 随着我国汽车工业的发展,复合材料在我国汽车工业中的应用广度有了突破,汽车复合材料的年用量为10万吨左右,但主要是应用于非承力结构的玻璃钢复合材料,汽车复合材料厂家普遍规模较小。碳纤增强环氧树脂复合材料在大型商用飞机和高性能汽车(如特斯拉、宝马i3和i8)及F1赛车主承力结构件上的成功应用表明,复合材料完全可以取代金属被用于汽车车身结构中。目前,国内整车企业也纷纷开始尝试采用碳纤维复合材料零部件替换传统金属零件。 国内整车厂纷纷开始着手调研国内复合材料研发和制造企业,着手启动面向量产的复合材料零部件的设计和研制,逐步开始为量产做充分准备。由于有承力要求,汽车用复合材料零部件(尤其是承力件,如传动轴等)需要对材料以及部件进行重新设计。近年来,中航复材充分发挥自身在设计、材料、制造等方面的优势,先后为整车厂研发了汽车前舱盖、后备厢盖、尾翼、重载汽车板簧、客车板簧、重载汽车传动轴、全复材承载式大巴车身、全复合材料油罐等产品,部分产品已经通过了测试验证。 国内汽车复合材料产业现状与差距分析 “十一五”、“十二五”期间,国内车企与科研单位联合先后研发出四代碳纤维复合材料示范电动车。前两代通过逆向工程设计技术,采用碳纤维复合材料对已有车型的覆盖件以等代设计法进行替代,验证了碳纤维复合材料的减重效果,以及碳纤维复合材料覆盖件的制备与装配技术;在前两代车的设计制造基础上,后两代车通过正向设计制造,对整车进行结构设计,验证了全碳纤维复合材料主结构部件的设计、制备和装配连接技术,进一步探索了碳纤维复合材料整车的设计、制造、装备和性能测试技术。这四代车的研发为碳纤维复合材料在汽车工业的产业化应用积累了宝贵的经验,开启了国内碳纤维复合材料汽车应用的新起点。 近期,中航复材在国内率先采用快速固化预浸料结合快速模压工艺、真空辅助成型工艺制备了承载式全复合材料纯电动客车车身,在兼顾复合材料构件的整体化制造、成本控制和制造效率等方面取得了较好的效果。目前国内各汽车主机厂以及零部件供应商都在进行碳纤维复合材料研究,主要集中在零部件的轻量化上,采用非连续性纤维成型工艺,制备的汽车零部件已实现了量产及规模化应用。然而,由于自动化生产装备的缺乏,连续纤维复合材料尚未形成量产水平,尤其是车身量产技术。虽然有企业推出了碳纤维复合材料车身电动车样车,但部件、整车的设计、验证以及量产技术,自动化装配技术,质量控制等均尚处于探索中,离碳纤维复合材料在汽车工

碳纤维助力汽车轻量化

碳纤维助力汽车轻量化 C H I N A F A W,T H E F I R S T C A R 2018/8

目录 C o n t e n t 一、轻量化背景与碳纤维复合材料性能特点 二、碳纤维复合材料的行业应用与新技术 三、一汽在碳纤维复合材料方面的技术开发工作 四、汽车行业对碳纤维的需求和展望

?我国汽车行业飞速发展,能源安全、节能减排成为汽车产业可持续发展面临的重要问题。 6.9 5 20162020 四阶段油耗法规:5L/100Km ?2020年四阶段油耗达到5.0L/100km ?2025年五阶段油耗预计4.0L/100km ?预计减少CO 2排放约1.13亿吨 ?动力电池模块比能量达到300瓦时/公斤以上 《节能与新能源汽车产业发展规划》 《乘用车企业平均燃料消耗量》 2015年12月12日,各国在巴黎气候大会上通过《巴黎协定》,联合治理CO2排放问题。我国承诺将于2030年左右,使二氧化碳排放达到峰值,并尽早实现。 中国CO 2排放量居世界首位,已经占到CO 2排放总量的20%以上,远高于其他国家。 各国全球CO 2排放量 汽车排放占全球CO2排放量25%,已经成为温室效应和环境污染重要来源之一。 全球CO 2排放量行业占比 《乘用车企业平均燃料消耗量与新能源汽车积分并行管理办法》 ?“双积分”制度将加速汽车业向低油耗低碳排放发展 ?按照政策要求,国内所有年销量3万辆以上的汽车制造企业和汽车进口商都要满足平均燃料值积分和新能源汽车积分这两项积分政策 国家法规政策 环境压力与政策背景

?汽车轻量化对整车性能提升和为用户创造价值,都有着重要的意义。 ?汽车轻量化,是汽车节能减排的关键手段,是企业满足国家法规的重要途径。 整车降重10% 油耗减少6-8% 排放减少6-7% 制动距离减少3-4% 加速时间减少6-8% 提高轮胎寿命7% 提高耐久性能提高操控性能 降低电池成本 ?降重100kg 后,可实现降油耗6-8% ?底盘、传动系的旋转零件每降重1kg 的效果是其他零部件的5~10倍 乘用车: 降低油耗,增加CAFC 积分 新能源汽车: 提高续航,增加新能源积分 ?降重100kg ,相当于续航里程提升6-8%左右 ?降重100kg 后,可增加用户利润5000元 商用车: 降低油耗,增加经济效益 轻量化的现实意义

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维及其复合材料在汽车上的应用_严成平

?3? 2015年10月30日 第10期 严成平 (重庆理工大学 400054) 碳纤维及其复合材料在 汽车上的应用 0 引言 碳纤维是在20世纪60年代开始迅速发展起来的一种高科技新材料,是由有机纤维或低分子烃气体原料加热至1500℃形成的纤维状碳材料,碳含量在90%以上。碳纤维具 摘 要:在汽车行业,碳纤维及其复合材料运用越来越广泛,正逐步取代金属材料,极大的提高了汽车的性能。介绍了碳纤维及其复合材料在国内外研发进展,例举了碳纤维复合材料在汽车行业的运用现状。 关键词:碳纤维 复合材料 汽车 运用 有低密度、高强度、高模量、耐高温、抗化学腐蚀、低电阻、高热导、低热膨胀、耐化学辐射等一系列优异性能,在2000℃以上的高温惰性环境中,是唯一能保持强度不下降的材料,而且还同时具备了纤维的柔曲 【试验?研究】

?4?  2015年10月30日 第10期 性和可编性。 作为在在国际上备受称誉为“黑色黄金”, 碳纤维从原丝到成品需要经过预氧化、高温碳化、石墨化、表面处理等诸多工艺。以碳纤维为增强体,树脂、陶瓷、金属等为基体,经过特殊复合成型工艺制得性能优异的碳纤维复合材料,既可作为承载负荷用的结构材料又可作为功能材料满足一些功能性要求,已经成为一种军民两用的高科技纤维材料,在汽车领域也在随着成型工艺的完善和成本的压缩而不断提高市场占有率。碳纤维复合材料应用在车身结构件中,减轻质量效果明显,比钢铁材料轻50%,比铝材轻30%,油耗下降40%,在动力系统不变的前提下,减重的车身会带来更出色的加速感受,相对于扔掉空调、音响等配置的减重方法,碳纤维材料的应用在保留舒适配置的同时达到了更好的效。围绕“碳纤维汽车”,全世界的汽车企业展开了激战,国际碳纤维巨头也纷纷扩能,抢占这一具有巨大潜力的市场,碳纤维复合材料需求增长最快的也将是汽车工业[1]。 1 成型工艺及开发现状 碳纤维复合材料的成型工艺主要有手糊成型、缠绕成型、拉挤成型和树脂传递模塑成型。树脂传递模塑工艺(RTM)是复合材料较为常用的一种成型工艺,该工艺是将纤维增强材料或预成坯铺放到闭模模腔内,用压力将树脂液注入模腔,浸透纤维或预成型 坯,然后固化,脱模成型制品[2]。日本新能源产业技术综合开发机构(NEDO)在“汽车轻量化碳纤维强化复合材料开发”项目(2003-2007)中,对超高速树脂传递模塑成型(RTM)进行了深入的研究,主要指超高速硬化成型树脂、立体成型造型技术、高速树脂含浸成型技术等。宝马i3使用的碳纤维增强树脂基复合材料(CFRP)通过RTM可在10分钟以内成型。各汽车厂商针对自己的车型及车身各部位需求不同,也在对CFRP的成型工艺进行不断优化和细致筛选。如兰博基尼Aventador LP700-4采用单体构造车身(图1),这种结构是构成车身的核心部件,整个单体车身仅147kg,车舱完全用碳纤维复合材料制造而成,并配以硬壳式结构。设计过程中,兰博基尼团队根据各个元件的外形、功能及要求,分别对以下三种成型方法进行了细致筛选,这些方法在生产工艺、碳纤维及其织物类型以及树脂化学成分都各不相同。 树脂传递模塑法(RTM):该方法经兰博基尼完善后,实现了重大突破,发展成 为 图 1 兰博基尼Aventador LP700-4单体构造式车身 【试验?研究】

碳纤维复合材料结构设计要点

强度与刚度 既然是结构部件,那么设计者首先要考虑的是强度和刚度。部件在外力载荷的作用下,有抵 抗变形与破坏的能力,但是这个能力又是有限度的。 如何4定部件的使用载荷,不会超出部件的能力极限,是通过材料力学计算得出。而部件的 这个能力极限,就是碳纤维复合材料结构设计者需要考虑的问题。 通过合理的搭配纤维和树脂,优化纤维排布,用最少的材料,满足设计需求,体现了复合材 料设计者精湛的技巧。不过决定复合材料强度与刚度的因素,不但与纤维和树脂的种类有关,还与碳纤维的铺层方向以及层与层之间结合搭配有关。 所以,设计者在设计碳纤维复合材料结构部件时,需要考虑三个层级结构的力学性能。 由基体和增强材料复合而成的单层材料,其力学性能决定于组分材料的力学性能、相几何(各 相材料的形状、分布、含量)和界面区的性能。 由单层材料层合而成的层合体,其力学性能决定于单层材料的力学性能和铺层几何(各单层的 厚度、铺设方向、铺层序列) 。 最顶层结构是指通常所说的工程结构或产品结构,其力学性能决定于层合体的力学性能和结 构几何。 稳定性 除了强度与刚度要求,设计者还需考虑复合材料部件的失稳,尤其是对一些细长杆结构,在 受压时,应该能够保证其原有的直线平衡状态。对于一些框架结构部件,如果铺层不均匀, 也会产生翘曲失稳,所以在制造过程中尤其注意。最好采用对称铺层,以防变形不均匀。 一般情况下,在部件没有达到极限载荷之下,不允许产生失稳现象。但是如果对于一些特殊 要求,可以产生失稳现象,那么设计过程中,要考虑失稳过程不会因此影响极限载荷。 铺层结构 铺层结构是碳纤维复合材料结构设计的关键,如何把单层结构的优异性能传递到复合材料结 构部件上,铺层结构起到承上启下的作用。关于复合材料铺层应注意以下几点: 1. 树脂是碳纤维复合材料力学性能的短板,所以尽量避免将载荷直接加到层间或者树脂之间。也就是说,0°、±45°、90°的纤维都要有,否则载荷会将部件从没有纤维排布的方向撕裂。 2. 为了防止层合板边缘开裂,尽量避免重复单一方向的铺层,设计时最多不超过5层。 3. 为了防止最外层铺层的剥离,在部件的主载荷方向,应铺放±45°纤维,而不能铺放0°和90°纤维。另外,避免最外层铺层间断或不完整。 4. 若使用非对称铺层,每层因同方向上热膨胀系数不同会出现翘曲,因此,一般要采用对称 铺层。 5. 当增加补强铺层时,每层阶梯最少要3.8- 6.4mm,附加铺层也应尽量采用对称铺层。

汽车迎来碳纤维复合材料时代

汽车迎来碳纤维复合材料时代 2011/11/08 【日中环保生态网】碳纤维复合材料(CFRP)——帝人利用热可塑性树脂技术突破“1分钟屏障”。东丽也发布试制车。各原材料厂商促动汽车厂商采用碳纤维复合材料。 今年10月,日本国土交通省及经济产业省制定了以2020年度为目标的更加严格的轿车新燃效标准。欧洲也将于明年大幅度强化汽车的二氧化碳排放规制。 随着规制的强化,电动汽车(EV)、混合动力车(HV)等环保车的普及已进入人们的视野。想改善燃效,延长行驶距离的车体轻量化必不可少。 在钢铁企业及化学企业致力于原料开发的背景下,碳纤维复合材料(CFRP)被寄予厚望。碳纤维复合材料的重量是铁的四分之一,强度却是10倍。东丽以及三菱丽阳、帝人这3家日本企业掌握着7成的世界市场份额。 碳纤维复合材料虽被采用于丰田高档车“雷克萨斯LFA”的骨架等,但其成型时间长成为瓶颈,一直被认为不适用于量产车。但是今年,碳纤维复合材料企业相继发布了着眼于实现量产的试制车。 车体骨架的重量为铁制骨架的五分之一 车体骨架的重量为铁制骨架的五分之一 今年3月,帝人公司公布已成功掌握以世界最快速度——在1分钟之内成型的量产技术。使用的是加热即融化、冷却即凝固的“热可塑性树脂”。做法是对树脂中含有碳纤维的中间材料进行冲压成型。 以往的碳纤维复合材料主要是使用加热即凝固的“热硬化性树脂”。热硬化性碳纤维复合材料一般必须有烧结工序,成型过程最短也要花费5分钟。通过采用热可塑性树脂便可省去烧结工序,从而缩短成型时间。由此突破了决定能否进入量产车生产线的“1分钟屏障”。 此次试制的电动汽车的车体骨架为47公斤。两个成年人就能抬起来。既保持了可与铁制骨架匹敌的强度,而重量又只有铁制骨架的五分之一。 为了提高强度,帝人开发出了3种中间材料。对限定方向具有高强度的材料、对所有方向强度均等的材料等,根据使用部位的需要区分使用,由此实现了全部热可塑性碳纤维复合材料的车体骨架。

2016-2020中国碳纤维复合材料行业发展前景预测分析报告

深圳中企智业投资咨询有限公司

2016-2020年中国碳纤维复合材料行业发展前景 预测分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.doczj.com/doc/6a828190.html, 1

目录 2016-2020年中国碳纤维复合材料行业发展前景预测分析 (3) 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 (3) 一、未来碳纤维复合材料发展分析 (3) 二、未来碳纤维复合材料行业技术开发方向 (3) 2、自动化生产 (3) 3、大规模生产 (3) 4、碳纤维复合材料废旧部件的再生回用技术 (4) 三、总体行业“十三五”整体规划及预测 (4) 第二节2016-2020年中国碳纤维复合材料行业市场前景分析 (4) 一、产品差异化是企业发展的方向 (4) 二、渠道重心下沉 (5) 2

2016-2020年中国碳纤维复合材料行业发展前景预测分析 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 一、未来碳纤维复合材料发展分析 碳纤维复合材料作为新兴的非金属材料具有广阔的应用前景。首先其广泛的应用于航空、航天等军事领域,并随着在军事领域应用的不断深入,相关的制造及使用技术日臻成熟,从而带动了碳纤维复合材料在民用领域应用的极大发展,主要应用在机械电子、建筑材料、文体、化工、医疗等方面,并正在快速的取代传统金属材料成为结构用材的首选。 二、未来碳纤维复合材料行业技术开发方向 1、3D打印成型技术 3D打印技术技术是有望成为高效低成本制备各种碳纤维复合材料结构部件的创新工艺,为此近年来企业界、大学、科研院所、政府机构等,都在安排研发和改进3D打印技术,并取得了产业化成果。以往制备塑料和金属的3D打印机部件,能耗较高,尺寸有限,而应用于碳纤维复合材料时,不仅部件强度与刚性可提高,还可提高导热性和降低热膨胀系数,因此无需使用炉子,可消除所有尺寸限制。 2、自动化生产 汽车生产厂家现都采用机器人组装相对小和固定形状的部件,但这些机器人并不能加工大型碳纤维复合材料部件,因为这些部件缺乏形状固定性,因而多采用手铺制造和热压罐固化。如何加工大型碳纤维复合材料是未来重要的技术开发方向之一。 3、大规模生产 5年前日本公司在市场上导入了“Sereebo”长碳纤维增强热塑性树脂(CFRTP),并与GM汽车公司等合作开发其潜在市场。其中碳纤维的分布和取向是可控的,基材的各向同性可保持到最终部件,成型时间只有60s,它比铝合金轻20%~30%,并具有更好的耐疲劳性和抗冲击性而价格略高些,适用于汽车结 3

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维复合材料在新能源汽车行业中的应用

近几年来,随着低碳环保意识、高新技术的不断发展,尤其是当前汽车轻量化的发展环境中,碳纤维复合材料(CFRP)凭借其超强韧性、能量吸收性能、轻柔性、结构稳定、耐腐蚀与耐高温等特性,成为了当下汽车产业的原材料首选,在汽车上的应用日渐普及。本文将对碳纤 维复合材料(CFRP)所具有的特性、及其在汽车行业的运用情况进行了深入探讨,力求为碳纤维复合材料(CFRP)的未来运用提供一定的参考。 0 引言 随着社会经济的快速发展,低碳节能、高效低成本已经成为各个行业市场竞争的必然选择,低碳环保、节能减排也是当前政府非常重视与强调的,尤其是工业生产与汽车产业。在政府、社会相关宣传与个人环保意识不断提升的推动下,汽车等相关领域不断创新与发展,为新型 低成本三维复合材料带来发展契机。碳纤维复合材料不仅具有良好的性能,诸如:超强韧性、能量吸收性能、轻柔性、结构稳定、耐腐蚀与耐高温等,在提升性能方面具有不可替代作用,还能降低车身的总体成本,非常有利于汽车赢得消费者的青睐并抢占更多的市场份额。碳纤 维复合材料在汽车车身中的运用已经成为世界各国争相发展的一门关键技术,尤其是具有成 熟汽车产业市场的欧美国家与日本,这些国家各大车厂在进行汽车生产的过程中都大量选用 了碳纤维材料,实现优化车体结构、降低汽车车身生产成本以及提高汽车性能的目标。 本文将深入探讨碳纤维复合材料的特性及其在汽车行业运用现状,结合碳纤维复合材料在 汽车行业中的运用实例,分析碳纤维复合材料所具有的优势,展望碳纤维复合材料在汽车行 业中的运用前景。 1 碳纤维复合材料《CFRP)介绍 1.1碳纤维复合材料概念 碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新 型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处 理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且 具有耐腐蚀、高模量的特性。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可 加工性,是新一代增强纤维。碳纤维与树脂、金属、陶瓷等基体复合,制成的结构材料简称 碳纤维复合材料。 1.2碳纤维复合材料的特征 (1)超强抗拉弹性 碳纤维复合材料具有超强抗拉弹性,通常情况下高于3 500 MPa、这种强度是钢铁的7倍。另外,不但抗拉弹性远远高于钢,其比模量也远远高于钢。 (2)耐高温、耐腐蚀 相较于其他的材料而言,CFRP具有轻量化、刚强、柔韧性外,还具有耐高温、耐腐蚀、 耐疲劳等超强性能。除此之外,独特的碳结构让其拥有大面积的整体成型特征,同时,它还 拥有良好的稳定性与设计可塑造性,正是这些独有的特征让其可以在车轻量化实现线性增长。 (3)能量吸收性能优越 优越的能量吸收性能是CFRP材料在汽车中被广泛运用的主要原因。CFRP材料是同类的 钢质零部件质量的一半不到,是同类铝制零部件质量的70%左右,质量轻,还能抵抗更大的 冲击,足见CFRP材料的优越性。 1.3碳纤维复合材料发展历史与发展现状 从20世纪70年代开始,CFRP材料开始受到世界各国相关研究人员的关注。在国内的发

碳纤维复合材料LY模板演示教学

复合材料基础 姓名:梁雨 专业:化学 学号:2014122

碳纤维复合材料 碳纤维是由碳元素组成的一种高性能增强纤维。不仅强度高,密度小,并且具有低热膨胀、高导热、耐磨、耐高位等优异性能,是一种很有发展前景的高性 能纤。这些优异的性能使得人们对它的重视到了一个很高的高度。那么接下来我就来介绍一下有关碳纤维复合材料在各方面的的一些知识。 一、碳纤维复合材料发展史 碳纤维复合材料的发展史应包含碳纤维的发展史何其复合材料应用史。碳纤维是碳材料的一种新形式。我们已经知道碳材料结构由四种类型,一是无定形碳、而是石墨、三是金刚石、四是白碳。碳纤维含碳99%以上,主要是石墨和无定形碳,纤维形状是一种新的应用形式。1880年人类制造了第一批电灯泡,那是电 灯泡的灯丝就是当时人类研制的第一批碳纤维,直到1901年发明钨丝后才不用它做灯丝了。到1950年美国空军材料研究所由于军工的需求,加紧对碳纤维研究,1959年由联合碳化合物公司实现了高强碳纤维的生产工艺。与此同时,1962年日本旭炭公司在远藤教授研究的基础上实现以聚丙腈纤维为原料,经过预氧化(不熔化)、1300℃以上高温炭化而得到有实用价值的通用碳纤维的工业生产线。1970年以后东丽公司、东邦公司相继参加聚丙烯腈基碳纤维的生产开发,形成2吨╱年的规模。1978年产量达1000t。20世纪80年代后期批量生产的M30、M60、T1000等石墨化程度更高的碳纤维。随后碳纤维在全世界需求量随年逐增 中国碳纤维的发展 我国从1968年开始研究碳纤维,很快研究出碳纤维1#,相当于T200的水平,1976年建成中试线,那是与日本东丽公司的差距为5年。后来碳纤维2#的研究久攻不下。差距已拉大20多年,无竞争可言。同时由于发达国家对我国几 十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长时 间依赖进口,严重影响了我国高技术的发展,尤其制约了航天及国防军工事业的 发展,与我国经济社会发展的进程极不相称。所以,研究生产高性能、高质量的 碳纤维,以满足军工和民用产品的需求,扭转大量口的局面,是当前我国碳纤维工业发展的迫切任务。

我的玩车经历以及对碳纤维车架的使用心得(转载)

我的玩车经历以及对碳纤维车架的使用心得 字数比较多,希望有兴趣的车友耐心看完。 一、玩车经历篇 转眼间,上大学已经3年多了,从一开始上大学就开始接触真正的“玩车”!从开始的几百块的攀爬,接着开始烧MONTY,ECHO TEAM,然后转型到山地,从开始MERIDA超级重的组装山地,到万把块左右的兰色MERIDA迈阿密。由于武汉的比赛绝大多数都是公路比赛,自己也想通过比赛提高自己。然后又转型的公路,06年4月,等了4个月以后终于把心爱的全碳CKT装起来(具体配置下面再说)!幸运的成为武汉第一批用碳架的人。然后俱乐部帮我搞到了我3年一直的梦想--MERIDA队版的全碳山地整车,再加上已经有的 DA BOMB街车,我已经玩过大部分的自行车车种和目前手头的3台车!我不是专业车手,也没有经过专业训练,我只是一个很普通的大学生,一个自行车爱好者,发烧友,也受到过前国家队队员的指点!在湖北的联赛上,也就总是第6名左右的成绩,在湖北的大学生比赛上比较光彩,也小有点名气。 这里说说我车的配置: 1:CKT-168全碳公路。台湾国家队(我绝对支持祖国统一,但是台湾省他们自己称为“国家队”)用的架子。CKT-168全碳坐管前叉,全套SHIMANO UT套件UT6610脚踏,台湾六毅全碳肌肉把,SHIMANO R550轮组,SLR 坐板,所以车子在装的时候大大超出预算,本来想买套好点的轮组,但是搞到这个样子花了2XXXX,我已经没有能力再继

续搞好轮组了。装起来不包括脚踏整车7。7公斤。但是R550轮组用它的实力告诉我,除了重量,这队轮子也不差,而且性价比非常之高,平时骑行和训练比赛,多少会拿来飞一下,1万多公里了还是非常好! 2。MERIDA全碳车队版山地。MERIDA硬山地车架里最高档次,奥运会冠军用的架子。从一开始玩山地就非常喜欢那个架子的造型,颜色,尤其是MERIDA标志性的绿色火焰。06年8月,湖北永光极限单车俱乐部汉口旗舰店开业,老板费了好大力气把这个车的整车搞来一台。3年的追寻,我当然不会放过。整车当初是9。4公斤,到目前被我乱七八糟的换,已经减肥到8。7公斤了!全套V刹版XTR,DT240花鼓,DT革命钢丝,MAVIC517车圈,MAXXIS 310外胎,KCNC超轻把立把横坐管,SLR 135克坐板! 3。DA BOMB街车。DB的16寸土腾架,其他零件是由以前山地升级换下来的乱七八糟拼起来的,平时小飞一下还是没问题的。配置不多说。 二。对碳纤维的一些使用心得 我不是个有钱人,但是我爱车,我也喜欢去烧装备,去玩技术。一个学生,2台全碳,中国也没几个吧!使用CKT已经有一年的时间了,MERIDA也有6个月了。虽然我不像专业队那样可以去更大的发挥碳纤维车架的极限工作状态,但是我也有我作为一个爱好者一个使用很长时间的心得!碳纤维的优点很多,重量轻,强度高(特别是纵向强度),美观大方。缺点就是怕尖利的物体碰撞,这样车架整体强度没了,基本就可以放到家里当摆设了~~~

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

国内外碳纤维企业大汇总

国内外碳纤维企业大汇总 分享到:0分享到微信朋友圈打开微信。点击“发现”, 使用“扫一扫”即可将网页分享至朋友圈。 发布日期:2016-08-09 17:59 来源:碳纤维资讯世界碳纤维的生产主要集中在日本、英国、美国等少数发达国家和我国的台湾省。 碳纤维原丝原料主要有三种:粘胶丝、聚丙烯腈、沥青。 其中,以聚丙烯腈为原料的碳纤维占市场份额75%,技术主要集中在日本的东丽、东邦人造丝、三菱人造丝,美国的ZOLTEK、阿克苏、ALDILI 等手中。 国际上,碳纤维最大生产商东丽、东邦人造丝、三菱人造丝的产量合计占全球产量的一半。 今天为大家盘点一下国内外的碳纤维企业。 1. 日本东丽工业株式会社 日本东丽株式会社设立在日本东京中央区日本桥,创立于1926年1月,是一家以合成纤维,合成树脂起家,现设计涵盖各种化学制品,信息相关素材的大型化学企业。 公司主要生产尼龙、聚氨酯、长丝纱丙烯酸纤维、短纤维、聚酯纤维、丙烯酸纤维、人造纤维与塑料产品原材料、碳纤维、碳纤维合成材料以及注塑产品等。 2. 日本东邦人造丝公司 东邦人造丝公司成立于1950年7月,本部位于东京都中央区日本桥3-3-9西川大厦,主产丙烯酸、人造丝,PAN系碳纤维等。 3. 日本三菱丽阳株式会社 三菱丽阳株式会社是日本最大的腈纶纤维生产商,该公司主要生产化学品,塑料和纤维。除了主要acryrilic纤维外,三菱人造丝也是一种高尔夫球杆顶部材料。 4. 美国卓尔泰克公司 美国卓尔泰克公司(Zoltek)是世界领先的碳纤维生产厂家,年产13000吨碳纤维,及4000吨予氧丝。 碳纤维广泛应用于风力发电,基础设施等。公司还生产碳纤维予浸料,多轴布,符合各种工程塑料用的短切碳纤维,预氧丝。 5. 台湾塑料工业股份有限公司 公司成立于1954年,在纤维制品方面,包括亚克力棉、碳素纤维,其中亚克力棉年产能

相关主题
文本预览
相关文档 最新文档