当前位置:文档之家› 第1章数学模型和数值方法引论 1

第1章数学模型和数值方法引论 1

第1章数学模型和数值方法引论 1
第1章数学模型和数值方法引论 1

目 录 第1章数学模型和数值方法引论1

1.1数学模型及其建立方法与步骤1

1.1.1数学模型1

1.1.2人口增长模型1

1.1.3建立数学模型的方法与步骤4

1.2数学模型举例5

1.2.1投入产出数学模型5

1.2.2两物种群体竞争系统7

1.2.3矿道中梯子问题8

1.3数值方法的研究对象10

1.4数值计算的误差10

1.4.1误差的来源与分类10

1.4.2误差与有效数字11

1.4.3求函数值和算术运算的误差估计13

1.5病态问题、数值稳定性与避免误差危害14 1.5.1病态问题与条件数14

1.5.2数值方法的稳定性15

1.5.3避免误差危害17

1.6线性代数的一些基础知识19

1.6.1矩阵的特征值问题、相似变换19

1.6.2线性空间和内积空间21

1.6.3范数、线性赋范空间24

1.6.4向量的范数和矩阵的范数26

1.6.5几种常见矩阵的性质30

习题35

第2章线性代数方程组的直接解法39

2.1引论39

2.2 Gauss消去法40

2.2.1顺序消去与回代过程40

2.2.2顺序消去能实现的条件43

2.2.3矩阵的三角分解44

2.2.4列主元素消去法45

2.3直接三角分解方法48

2.3.1 Doolittle分解方法48

2.3.2三对角方程组的追赶法50

2.3.3对称正定矩阵的Cholesky分解、平方根法52 2.4矩阵的条件数与病态方程组57

2.4.1扰动方程组、病态现象57

2.4.2矩阵的条件数与扰动方程组的误差分析58 2.4.3病态方程组的解法61

习题62

计算实习题64

第3章线性代数方程组的迭代解法66

3.1迭代法的基本概念66

3.1.1引言66

3.1.2向量序列和矩阵序列的极限68

3.1.3迭代公式的构造71

3.1.4迭代法的收敛性分析73

3.2 Jacobi迭代法和Gauss Seidel迭代法76 3.2.1 Jacobi迭代法76

3.2.2 Gauss Seidel迭代法76

3.2.3 J法和GS法的收敛性77

3.3超松弛迭代法79

3.3.1逐次超松弛迭代公式79

3.3.2 SOR迭代法的收敛性80

3.3.3最优松弛因子81

3.3.4模型问题几种迭代法的比较83

*3.4共轭梯度法84

3.4.1与方程组等价的变分问题84

3.4.2最速下降法85

3.4.3共轭梯度法86

习题89

计算实习题91

第4章非线性方程和方程组的数值解法93

4.1引言93

4.2二分法和试位法96

4.2.1二分法96

4.2.2试位法97

4.3不动点迭代法98

4.3.1不动点和不动点迭代法98

4.3.2不动点迭代法在区间\[a,b\]的收敛性100 4.3.3局部收敛性102

4.4迭代加速收敛的方法104

4.4.1 Aitken加速方法104

4.4.2 Steffensen迭代方法105

4.5 Newton迭代法和割线法106

4.5.1 Newton迭代法的计算公式和收敛性106

4.5.2 Newton法的进一步讨论107

*4.5.3割线法110

*4.6非线性方程组的数值解法111

4.6.1非线性方程组111

4.6.2非线性方程组的不动点迭代法112

4.6.3非线性方程组的Newton迭代法114

习题115

计算实习题116

*第5章矩阵特征值问题的计算方法118

5.1矩阵特征值问题的性质118

5.1.1矩阵特征值问题118

5.1.2特征值的估计和扰动120

5.2正交变换和矩阵分解121

5.2.1 Householder变换121

5.2.2 Givens变换124

5.2.3矩阵的QR分解和Schur分解125

5.2.4正交相似变换化矩阵为Hessenberg形式129 5.3幂迭代法和逆幂迭代法133

5.3.1幂迭代法133

5.3.2加速技巧135

5.3.3逆幂迭代法135

5.4QR方法的基本原理137

5.4.1基本的QR迭代算法137

5.4.2 Hessenberg矩阵的QR方法139

5.4.3带有原点位移的QR方法140

5.5对称矩阵特征值问题的计算142

5.5.1对称矩阵特征值问题的性质142

5.5.2 Rayleigh商的应用143

5.5.3 Jacobi方法144

习题148

计算实习题150

第6章插值法151

6.1 Lagrange插值152

6.1.1 Lagrange插值多项式152

6.1.2插值多项式的余项156

6.2均差与Newton插值多项式161

6.2.1均差及其性质161

6.2.2 Newton插值公式163

*6.2.3差分及其性质167

*6.2.4等距节点的Newton插值公式168

6.3 Hermite插值170

6.3.1 Hermite插值多项式171

6.3.2重节点均差174

6.3.3 Newton形式的Hermite插值多项式175 6.4分段低次插值方法178

6.4.1 Runge现象178

6.4.2分段线性插值179

6.4.3分段三次Hermite插值180

6.5三次样条插值函数181

6.5.1三次样条插值函数182

6.5.2三次样条插值函数的计算方法183

6.5.3三次样条插值函数的误差187

习题188

计算实习题189

第7章函数逼近191

7.1正交多项式192

7.1.1正交多项式的概念及性质192

7.1.2 Legendre多项式194

7.1.3 Chebyshev多项式195

7.1.4 Chebyshev多项式零点插值196

7.1.5 Laguerre多项式199

7.1.6 Hermite多项式199

*7.2最佳平方逼近200

7.2.1最佳平方逼近的概念及计算200

7.2.2用正交函数组作最佳平方逼近203

7.2.3用Legendre正交多项式作最佳平方逼近205 *7.3有理函数逼近206

7.3.1有理分式207

7.3.2 Padé逼近207

7.3.3连分式211

7.4曲线拟合的最小二乘法212

7.4.1最小二乘法及其计算212

7.4.2线性化方法216

7.4.3用正交多项式作最小二乘曲线拟合219

习题222

计算实习题223

第8章数值积分与数值微分225

8.1 Newton Cotes求积公式226

8.1.1梯形公式和Simpson公式226

8.1.2插值型求积公式230

8.1.3代数精度231

8.1.4 Newton Cotes求积公式232

8.1.5开型 Newton Cotes求积公式234

8.1.6 Newton Cotes求积公式的数值稳定性236 8.2复合求积公式237

8.2.1复合梯形求积公式237

8.2.2复合Simpson求积公式239

8.3 Romberg求积公式241

8.3.1外推技巧241

8.3.2 Romberg求积公式243

*8.4自适应积分法245

8.5 Gauss型求积公式247

8.5.1 Gauss型求积公式249

8.5.2 Gauss型求积公式的稳定性与收敛性254 8.5.3 Gauss Legendre求积公式256

8.5.4 Gauss Chebyshev求积公式259

*8.5.5 Gauss Laguerre求积公式260

*8.5.6 Gauss Hermite求积公式261

*8.6数值微分262

8.6.1 Taylor展开构造数值微分263

8.6.2插值型求导公式265

8.6.3数值微分的外推算法268

8.6.4高阶数值微分270

习题273

计算实习题275

第9章常微分方程初值问题的数值解法276

9.1引言276

9.2简单数值方法278

9.2.1显式Euler方法278

9.2.2隐式Euler方法279

9.2.3梯形方法280

9.2.4预估 校正方法281

9.2.5单步方法的截断误差283

9.3 Runge Kutta方法286

9.3.1用Taylor展开构造高阶数值方法286 9.3.2 Runge Kutta方法288

9.3.3高阶方法与隐式Runge Kutta方法292 9.4单步法的相容性、收敛性和绝对稳定性294

9.4.1相容性294

9.4.2收敛性295

9.4.3绝对稳定性296

9.5线性多步法300

9.5.1线性多步法的基本概念300

9.5.2 Adams方法302

9.5.3待定系数方法306

9.5.4预估 校正方法307

*9.6线性多步法的相容性、收敛性和绝对稳定性310 9.6.1相容性310

9.6.2收敛性310

9.6.3绝对稳定性313

*9.7误差控制与变步长316

9.7.1单步法316

9.7.2线性多步法318

9.8一阶方程组与刚性方程组320

9.8.1一阶方程组320

9.8.2高阶微分方程初值问题324

9.8.3刚性微分方程组324

习题326

计算实习题327

附录AMATLAB简介329

A.1常数329

A.2矩阵329

A.2.1矩阵的形成329

A.2.2矩阵运算331

A.2.3数组运算331

A.3函数332

A.3.1内部函数332

A.3.2用户定义的函数333

A.4绘图333

A.5编程335

部分习题的答案或提示337

参考文献353

第一章数学模型

数学模型主讲:林健良

第一章 数学模型导言 §1.1数学与数学模型 1.1.1何谓数学模型 先让我们来看一个简单的例子. 例1.1 现要用100×50厘米的板料裁剪出规格分别为 40×40 厘米与50×20厘米的零件,前者需要25件,后者需 要30件.问如何裁剪,才能最省料? 解:先设计几个裁剪方案. 方案1,如图,在100×50的板料上可裁剪出两块40×40 的零件和一块50×20的零件(图中分别用A 、B 表示). A A ////////////////////////////// B 同样,求出方案2 A ////////////// B B B 方案3 B B B B B 卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备电力保护装置调中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自

显然,若只用其中一个方案,都不是最省料的方法.最佳方 法应是三个方案的优化组合.设方案i 使用原材料x i 件(i =1,2,3).共 用原材料f 件.则根据题意,可用如下数学式子表示: ??? ??=≥≥++≥+++=),,j (x x x x x x .t .s x x x f min j 321030 53252321213 21,整数最优解有四个: x 1 121110 9 x 213 5 7 x 3 32 1 0f 的最小值为16. 这是一个整数线性规划模型. 数学模型-------描述实际问题数量规律的、由数学符号组成的、 抽象的、简化的数学命题、数学公式或图表及算法. 1.1.2 数学建模的方法与步骤 建模的步骤一般分为下列几步. (1)模型准备.首先要了解问题的实际背景,明确题目的要求,搜 集各种必要的信息. 方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

数值分析第1章习题

一 选择题(55分=25分) (A)1. 3.142和3.141分别作为π的近似数具有()和()为有效数字(有效数字) A. 4和3 B. 3和2 C. 3和4 D. 4和4 解,时,, m-n= -3,所以n=4,即有4位有效数字。当时,, ,m-n= -2,所以n=3,即有3位有效数字。 (A)2. 为了减少误差,在计算表达式时,应该改为计算,是属于()来避免误差。(避免误差危害原则) A.避免两相近数相减; B.化简步骤,减少运算次数; C.避免绝对值很小的数做除数; D.防止大数吃小数 解:由于和相近,两数相减会使误差大,因此化加法为减法,用的方法是避免误差危害原则。 (B)3.下列算式中哪一个没有违背避免误差危害原则(避免误差危害原则) A.计算 B.计算 C.计算 D.计算 解:A会有大数吃掉小数的情况C中两个相近的数相减,D中两个相近的数相减也会增大误差 (D)4.若误差限为,那么近似数0.003400有()位有效数字。(有效数字) A. 5 B. 4 C. 7 D. 3 解:即m-n= -5,,m= -2,所以n=3,即有3位有效数字 (A)5.设的近似数为,如果具有3位有效数字,则的相对误差限为()(有效数字与相对误差的关系) A. B. C. D. 解:因为所以,因为有3位有效数字,所以n=3,由相对误差和有效数字的关系可得a的相对误差限为 二 填空题:(75分=35分)

1.设则有2位有效数字,若则a有3位有效数字。(有效数字) 解:,时,,,m-n= -4,所以n=2,即有2位有效数字。当时, ,m-n= -5,所以n=3,即有3位有效数字。 2.设 =2.3149541...,取5位有效数字,则所得的近似值x=2.3150(有效数字)解:一般四舍五入后得到的近似数,从第一位非零数开始直到最末位,有几位就称该近似数有几位有效数字,所以要取5位有效数字有效数字的话,第6位是5,所以要进位,得到近似数为2.3150. 3.设数据的绝对误差分别为0.0005和0.0002,那么的绝对误差约为 0.0007 。(误差的四则运算) 解:因为,, 4.算法的计算代价是由 时间复杂度 和 空间复杂度 来衡量的。(算法的复杂度) 5.设的相对误差为2%,则的相对误差为 2n% 。(函数的相对误差) 解:, 6.设>0,的相对误差为δ,则的绝对误差为 δ 。(函数的绝对误差) 解:,, 7.设,则=2时的条件数为 3/2 。(条件数) 解:, 三 计算题(220分=40分) 1.要使的近似值的相对误差限小于0.1%,要取几位有效数字?(有效数字和相对误差的关系) 解:设取n位有效数字,由定理由于知=4所以要使相对误差限小于0.1%,则,只要取n-1=3即n=4。所以的近似值取4位有效数字,其相对误差限小于0.1%。 2.已测得某场地长的值为,宽d的值为,已知试求面积的绝对误差限和

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

数值分析 第一章 学习小结

数值分析 第1章绪论 --------学习小结 一、本章学习体会 通过本章的学习,让我初窥数学的又一个新领域。数值分析这门课,与我之前所学联系紧密,区别却也很大。在本章中,我学到的是对数据误差计算,对误差的分析,以及关于向量和矩阵的范数的相关内容。 误差的计算方法很多,对于不同的数据需要使用不同的方法,或直接计算,或用泰勒公式。而对于二元函数的误差计算亦有其独自的方法。无论是什么方法,其目的都是为了能够通过误差的计算,发现有效数字、计算方法等对误差的影响。 而对误差的分析,则是通过对大量数据进行分析,从而选择出相对适合的算法,尽可能减少误差。如果能够找到一个好的算法,不仅能够减少计算误差,同时也可以减少计算次数,提高计算效率。 对于向量和矩阵的范数,我是第一次接触,而且其概念略微抽象。因此学起来较为吃力,仅仅知道它是向量与矩阵“大小”的度量。故对这部分内容的困惑也相对较多。 本章的困惑主要有两方面。一方面是如何能够寻找一个可靠而高效的算法。虽然知道算法选择的原则,但对于很多未接触的问题,真正寻找一个好的算法还是很困难。另一方面困惑来源于范数,不明白范数的意义和用途究竟算什么。希望通过以后的学习能够渐渐解开自己的疑惑。 二、本章知识梳理

2.1 数值分析的研究对象 数值分析是计算数学的一个重要分支,研究各种数学问题的数值解法,包括方法的构造和求解过程的理论分析。它致力于研究如何用数值计算的方法求解各种基本数学问题以及在求解过程中出现的收敛性,数值稳定性和误差估计等内容。 2.2误差知识与算法知识 2.2.1误差来源 误差按来源分为模型误差、观测误差、截断误差、舍入误差与传播误差五种。其中模型误差与观测误差属于建模过程中产生的误差,而截断误差、舍入误差与传播误差属于研究数值方法过程中产生的误差。 2.2.2绝对误差、相对误差与有效数字 1.(1)绝对误差e指的是精确值与近似值的差值。 绝对误差:

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

10424-数学建模-第一章 线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数)2134max x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为

数值分析第一章绪论习题答案

第一章绪论 1.设,得相对误差为,求得误差。 解:近似值得相对误差为 而得误差为 进而有 2.设得相对误差为2%,求得相对误差。 解:设,则函数得条件数为 又, 又 且为2 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指出它们就是几位有效数字:,, , , 解:就是五位有效数字; 就是二位有效数字; 就是四位有效数字; 就是五位有效数字; 就是二位有效数字。 4.利用公式(2、3)求下列各近似值得误差限:(1) ,(2) ,(3) 、 其中均为第3题所给得数。 解: *4 1*3 2*13*3 4*1 51 ()102 1()102 1()102 1()102 1()102x x x x x εεεεε-----=?=?=?=?=? ***123*********123231132143 (2)() ()()() 1111.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ 5计算球体积要使相对误差限为1,问度量半径R 时允许得相对误差限就是多少? 解:球体体积为 则何种函数得条件数为

又 故度量半径R 时允许得相对误差限为 6.设,按递推公式 (n=1,2,…) 计算到。若取(5位有效数字),试问计算将有多大误差? 解: …… 依次代入后,有 即, 若取, 得误差限为。 7.求方程得两个根,使它至少具有4位有效数字()。 解:, 故方程得根应为 故 具有5位有效数字 211280.0178632827.98255.982 x =-=≈=≈+ 具有5位有效数字 8.当N 充分大时,怎样求? 解 设。 则 1 2211arctan(tan()) tan tan arctan 1tan tan 1arctan 1(1)1arctan 1 N N dx x N N N N N N αβαβαβαβ ++=-=--=++-=++=++?g 9.正方形得边长大约为了100cm,应怎样测量才能使其面积误差不超过? 解:正方形得面积函数为 、

第一章 数学模型

第一章 数学模型 一. 模 型 为了一定的目的,人们对原型的一个抽象 例如: 航空模型对飞机的一个抽象, 城市交通图对交通系统的一个抽象 二. 数 学 模 型 用数学语言,对实际问题的一个近似描述,以便于人们用数学方法研究实际问题。 例1:牛顿定律 物体受外力作用时,物体所获加速度大小与合外力的大小成正比,并与物体质量成反比,加速度方向与合外力方向相同。 引入变量 x(t)表示在t 时刻物体的位置,F 表示合外力大小,m 表示物体质量。则受力物体满 足如下运动规律,数学模型 例2:哥尼斯堡七桥问题 问题:能否从某地出发, 通过每座桥恰好一次,回到原地? 由4个结点7条边组成的图构成解决这个问题的数学模型。 三. 数学模型的特征 1. 实践性:有实际背景,有针对性。接受实践的检验。 2. 应用性:注意实际问题的要求。强调模型的实用价值。 3. 综合性:数学与其他学科知识的综合。 第二章 数学建模举例数学建模(Mathematical modelling) 是一种数学的思考方法,用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的强有力的数学工具。 下面给出几个数学建模的例子,重点说明: 如何做出合理的、简化的假设; 如何选择参数、变量,用数学语言确切的表述实际问题; 如何分析模型的结果,解决或解释实际问题,或根据实际情况改进模型。 例 1. 管道包扎 问题:用带子包扎管道,使带子全部包住管道,且用料最省。 假设: 1. 直圆管,粗细一致。 2. 带子等宽,无弹性。 3. 带宽小于圆管截面周长。 4. 为省工, 用缠绕的方法包扎管道. 参量、变量: W :带宽,C :圆管截面周长,θ:倾斜角 (倾斜角)包扎模型 θsin C W = (截口)包扎模型 22||W C OB -= 进一步问, 如果知道直圆管道的长度,用缠绕的方法包扎管道,需用多长的带子? 设管道长 L, 圆管截面周长 C, 带子宽 W, 带子长 M. 带长模型 22/W C W LC M -+= 问题: 1. 若 L = 30m, C = 50cm, W = 30cm , 则最少要用多长的带子才能将管道缠绕包扎上? 2 2dt x d m F = D A C B

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值*x 的相对误差为* **** r e x x e x x δ-=== 而ln x 的误差为()1ln *ln *ln **e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'()||() p xf x C f x = 又1'()n f x nx -=, 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, *456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) ***124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234,,,x x x x 均为第3题所给的数。 解: 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为343 V R π= 则何种函数的条件数为 又(*)1r V ε=

故度量半径R 时允许的相对误差限为1(*)10.333r R ε= ?≈ 6.设028Y =,按递推公式1n n Y Y -= (n=1,2,…) 计算到100Y 27.982≈(5位有效数字),试问计算100Y 将有多大误差? 解:1n n Y Y -= …… 依次代入后,有1000100Y Y =- 即1000Y Y =, 27.982≈, 100027.982Y Y ∴=- 100Y ∴的误差限为31102 -?。 7.求方程25610x x -+=的两个根,使它至少具有427.982=)。 解:2 5610x x -+=, 故方程的根应为1,228x = 故 1282827.98255.982x =≈+= 1x ∴具有5位有效数字 2x 具有5位有效数字 8.当N 充分大时,怎样求 1211N N dx x ++?? 解 1 21arctan(1)arctan 1N N dx N N x +=+-+? 设arctan(1),arctan N N αβ=+=。 则tan 1,tan .N N αβ=+= 9.正方形的边长大约为了100cm ,应怎样测量才能使其面积误差不超过2 1cm ? 解:正方形的面积函数为2()A x x = (*)2*(*)A A x εε∴=. 当*100x =时,若(*)1A ε≤,

数值分析第一章绪论习题答案

第一章绪论 e In X* =In X * -Inx :丄e* X* 进而有;(In X *): 2. 设X 的相对误差为2% ,求X n 的相对误差。 解:设f(χZ ,则函数的条件数为Cp=l fX+ n _1 X nχ I Xn n 又;r ((X*) n) C P 7(X *) 且 e r (χ*)为 2 .7((χ*)n ) 0.02 n 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 * * * * * 出它们是几位有效数字: X 1 =1.1021, χ2 =0.031, χ3 =385.6, χ4 = 56.430,x 5 = 7".0. . * 解:X I -1.1021是五位有效数字; X 2 = 0.031是二位有效数字; X 3 =385.6是四位有效数字; X 4 =56.430是五位有效数字; X 5 =7 1.0.是二位有效数字。 4. 利用公式(2.3)求下列各近似值的误差限: (1) X 1 X 2 X 4,(2) X 1 X 2X 3 ,(3) X 2 /X 4 . 其中χl ,x 2,x 3,X 4均为第3题所给的数。 1设X 0, x 的相对误差为 解:近似值X*的相对误差为 、:,求InX 的误差。 e* X* -X 而InX 的误差为 又 f '(χ) =nx n 」 C P

解:

* 1 4 ;(x 1) 10 2 * 1 3 ;(x 2) 10 2 * 1 1 ;(x 3) 10 * 1 3 ;(x 4) 10 2 * 1 1 ;(x 5) 10 2 (1) ;(x ; x ; x *) * * * =;(%) ;(x 2) *x 4) 1 A 1 2 1 j3 10 10 10 2 2 2 -1.05 10J 3 * * * (2) S(X I X 2X 3) * * * * * * ** * =X1X 2 £(X 3)+ X 2X 3 ^(X J + X 1X 3 E (X 2) :0.215 ⑶;(x 2/x ;) * Il * * I * X 2 E(X 4) + X 4 &(X 2) 全 Γ"2 X 4 1-3 1 3 0.031 10 56.430 10 = ______________________ 2 56.430X56.430 -10 5 4 3 解:球体体积为V R 3 则何种函数的条件数为 1.1021 0.031 1 1θ' 2 + 0.031X385.6 x 1><10* 2 +∣ 1.1021 X 385.6 卜 -×1^3 5计算球体积要使相对误差限为 1 ,问度量半径R 时允许的相对误差限是多少? C P 愕'

数学建模--杨桂元--第一章习题答案

数学建模--杨桂元--第一章习题答案

第一章 1-1习题 1.设用原料A 生产甲、乙、丙的数量分别为 13 1211,,x x x ,用原料B 生产甲、乙、丙的数量分别为232221,,x x x ,原料C 生产甲、乙、丙的数量分别为33 3231,,x x x ,则可以建立线性规划问题的数学模型: ?? ??? ??? ?? ?????=≥≤+--≤+--≥--≤+--≥--≤++≤++≤++++++++-+=) 3,2,1,(,00 5.05.05.004.0 6.06.00 15.015.085.008.02.02.006.06.04.012002500 2000..8.38.56.78.18.36.52.08.16.3max 33231332221232 22123121113121113332312322 21131211333231232221131211j i x x x x x x x x x x x x x x x x x x x x x x x x x t s x x x x x x x x x S ij LINDO 求解程序见程序XT1-1-1。 求解结果: 1200,22.1482,33.473,0,78.1017,66.1526322212312111======x x x x x x 0 ,0,0332313===x x x ,24640max =S (元)。 2.设用设备,,,,,3 2 1 2 1 B B B A A 加工产品Ⅰ的数量分别为5 4 3 2 1 ,,,,x x x x x ,设备1 2 1 ,,B A A 加工产品Ⅱ的数量分别为 8 76,,x x x ,设备2 2 ,B A 加工产品Ⅲ的数量分别为10 9 ,x x ,则目 标函数为: 9 76321)5.08.2())(35.02())(25.025.1(max x x x x x x S -++-+++-= 4000 7200700011478340008625010000129731260001053005 1048397261x x x x x x x x x x ?-+?-+?-++?-+? -整理后得到:

数值分析习题

页脚内容1 第一章 绪论 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算) 2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算) 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-, cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差限与相对误差限。(误差限的计算) 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大?(函数误差的计算) 8 设?-=1 1 dx e x e I x n n ,求证: (1))2,1,0(11 =-=-n nI I n n (2)利用(1)中的公式正向递推计算时误差逐步增大;反向递推计算时误差逐步减小。(计算方法的比较选择)

页脚内容2 第二章 插值法 习题主要考察点:拉格朗日插值法的构造,均差的计算,牛顿插值和埃尔米特插值构造,插值余项的计算和应用。 1 已知1)2(,1)1(,2)1(===-f f f ,求)(x f 的拉氏插值多项式。(拉格朗日插值) 2 已知9,4,10===x x x y ,用线性插值求7的近似值。(拉格朗日线性插值) 3 若),...1,0(n j x j =为互异节点,且有 ) ())(())(()())(())(()(11101110n j j j j j j j n j j j x x x x x x x x x x x x x x x x x x x x x l ----------= +-+- 试证明),...1,0()(0 n k x x l x n j k j k j =≡∑=。(拉格朗日插值基函数的性质) 4 已知352274.036.0sin ,333487.034.0sin ,314567.032.0sin ===,用抛物线插值计算3367.0sin 的值并估计截断误差。(拉格朗日二次插值) 5 用余弦函数x cos 在00=x ,4 1π =x ,2 2π = x 三个节点处的值,写出二次拉格朗日插值多项式, 并 近似计算6 cos π 及其绝对误差与相对误差,且与误差余项估计值比较。(拉格朗日二次插值) 6 已知函数值212)6(,82)4(,46)3(,10)1(,6)0(=====f f f f f ,求函数的四阶均差]6,4,3,1,0[f 和二阶均差]3,1,4[f 。(均差的计算) 7 设)())(()(10n x x x x x x x f ---= 求][1,0p x x x f 之值,其中1+≤n p ,而节点)1,1,0(+=n i x i 互异。(均差的计算) 8 如下函数值表

数值分析第一章绪论习题答案

第一章绪论 1设x 0, x的相对误差为「.,求In x的误差。 * * e* x * _x 解:近似值x*的相对误差为:.=e* x* x* 1 而In x 的误差为e In x* =lnx*「lnx e* x* 进而有;(ln x*)::. 2?设x的相对误差为2%求x n的相对误差。 解:设f(x—,则函数的条件数为Cp^胡1 n A. x nx . 又7 f '(x)= nx n」C p |=n n 又;;r((x*) n) : C p ;,x*) 且e r (x*)为2 .;r((x*)n) 0.02 n 3 ?下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:X; h.1021 , x;=0.031 , x3 =385.6 x;=56.430, x5 =7 1.0. 解:x;=1.1021是五位有效数字; X2 =0.031是二位有效数字; X3 =385.6是四位有效数字; x4 = 56.430是五位有效数字; x5 -7 1.0.是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:⑴ 为+X2+X4,(2) x-i x2x3,(3) x2/ x4. * * * * 其中X1,X2,X3,x4均为第3题所给的数。

解:

* 1 4 ;(x-| ) 10 2 * 1 3 ;(x 2) 10 2 * 1 1 ;(x 3) 10 * 1 3 ;(x 4) 10 2 * 1 1 ;(x 5) 10 2 (1);(为 X 2 X 4) =;(为)亠:(x 2)亠:(x 4) =1 10 4 1 10 J 丄 10^ 2 2 2 = 1.05 10” * * * (2)(X 1X 2X 3) * * * ** * ** * X 1X 2 8(X 3) + X 2X 3 g(xj + X 1X 3 名(X 2) 1 1 0.031 汉 385.6 汉?汉10鼻 + 1.1021 域 385.6 汉?汉10 (3) XX 2/X 4) X 4 0.031 1 10” 56.430 丄 10’ 2 2 56.430 56.430 =10° 5计算球体积要使相对误差限为 1,问度量半径R 时允许的相对误差限是多少? 4 3 解:球体体积为V R 3 则何种函数的条件数为 =1.1021汉 0.031 汉 * 汉 10」+ 0.215

数值分析第一章作业

数值分析第一章作业 1.数值计算方法设计的基本手段是( ). (A) 近似 (B) 插值 (C) 拟合 (D) 迭代 2.为了在有限时间内得到结果,用有限过程取代无限过程所产生的近似解与精确解之间的误差称为( ). (A) 舍入误差 (B) 截断误差 (C) 测量误差 (D) 绝对误差 3.由于计算机的字长有限,原始数据在机器内的表示以及进行算术运算所产生的误差统称为( ). (A) 舍入误差 (B) 截断误差 (C) 相对误差 (D) 绝对误差 4.数值计算方法研究的核心问题可以概括为( )对计算结果的影响. (A) 算法的稳定性 (B) 算法的收敛性 (C) 算法的复杂性 (D) 近似 5.当N 充分大时,利用下列各式计算121N N dx I x +=+?,等式( )得到的结果最好. (A) arctan(1)arctan()I N N =+- (B) 2arctan(1)I N N =++ (C) 21arctan()1I N N =++ (D) 211I N =+ 6. 计算61), 1.4≈,利用下列哪个公式得到的结果最好?为什么? (B) 3(3- (D) 99-7.计算球体的体积,已知半径的相对误差限不超过3310-?,则计算所得体积的相对误差限如何估计? 8.设0x >,近似值*x 的相对误差限为δ,试估计*ln x 的误差限. 9.计算圆柱体的体积,已知底面半径r 及圆柱高h 的相对误差限均不超过δ,则计算所得体积的相对误差限如何估计?. 10.用秦九韶算法求32()431f x x x x =-+-在2x =处的值. 11.已知近似值 1.0000x *=的误差限4()110x ε*-=?,21()16 f x x = ,求(())f x ε*,并说明x *及()f x *的各有几位有效数字. 12. 分析算法011111,,32,1,2,,k k k y y y y y k +-?==???=-=?的数值稳定性.

相关主题
文本预览
相关文档 最新文档