当前位置:文档之家› 《单片机课程设计报告》-温度控制器-

《单片机课程设计报告》-温度控制器-

《单片机课程设计报告》-温度控制器-
《单片机课程设计报告》-温度控制器-

《微机原理与接口技术》课程设计报告

题目温度控制器的设计

学院电气工程学院

班级电气0802 班

学号0 8 2 9 1 0 5 8

指导老师姜久春

小组成员杨洋、徐国金

2011年1月12日

《微机原理与口技术》课程设计报告

——温度控制器的设计

【题目】

温度控制器

【要求】

1.采用1路模拟输入,电压范围为0——5V,控制温度变化范围为0——99.9。C 。

2.使用2个继电器分别控制加热器和风机,用来加热和降温。

3.目标温度保持在60度。

4.系统中加一个滞环,当温度低于50度,开始加热;当温度高于55度时,关加热器;

当温度高于70度时,开风机;当温度低于65度时,关风机。

5.使用3个数码管作为输出显示电压值或温度值。

【预习及准备】

1.课题背景

电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化。在现代社会中,温度控制不仅应用在工厂生产方面,其作用也体现到了各个方面。

而本次设计就是要通过以MCS-51系列单片机为控制核心,实现温度控制器的设计。

2.系统原理及流程图的初步设计

通过调整继电器,则可将需要设定的温度随所对应的电压值传输给单片机,再由单片机控制显示器,显示出设定的电压值(即对应的温度值),再通过温度传感器和AD转换将采集的温度与设定的温度进行比较,若一致,则不动作,若不一致,则驱动加热或降温设备,从而实现对被控对象的温度控制。

经设计,温度控制器主要由单片机AT89S51、温度采样电路、A/D转换电路、温度显示电路、温度输入电路、驱动电路等组成。我自己绘制的系统框图和主程序流程图如下所示:

图1 温度控制器系统框图

主程序流程图如下所示:

高于55度高于70度

图2 主程序流程图

3.元件资料及管脚图

预习部分:

(1)AT89S51单片机

AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4k bytes的可系统编程的Flash制度程序存储器,器件采用ATMEL公司的高密度、非易失行存储技术生产,兼容标准8051指令系统及引脚。

其主要组成和功能为:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),2个数据指针,2个16位定时器/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作直到下一个复位。

其管脚图及框图如下:

图3 AT89S51管脚图图4 AT89S51功能框图

(2)ADC0809(或ADC0804)

ADC0809是带有8位A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。它是逐次逼近式A/D转换器,可以和单片机直接接口。其内部逻辑结构为:ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

ADC0809对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。地址输入和控制线:4条。

ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。A,B和C 为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择为:当CBA的值由000——111变化时,分别选择IN0——IN7通道。数字量输出及控制线:11条。

ST为转换启动信号。当ST上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。

CLK为时钟输入信号线。因ADC0809的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,

VREF(+),VREF(-)为参考电压输入。

其管脚图及内部结构图如下:

图5 ADC0809管脚图图6 ADC0809内部结构图因本设计只要1路模拟输入,所以用0809比较浪费。可采用ADC0804,ADC0804与ADC0809基本相同,但只将输入模拟值转换为数字值输出到D0。

(3)74LS48译码器

74LS48七段显示译码器输出高电平有效,用以驱动共阴极显示器。该集成显示译码器设有多个辅助控制端,以增强器件的功能。它有3个辅助控制端LT、RBI、BI/RBO,现简要说明如下:

1. 灭灯输入BI/RBO:BI/RBO是特殊控制端,有时作为输入,有时作为输出。当BI/RBO作输入使用且BI=0时,无论其它输入端是什么电平,所有各段输入a~g均为0,所以字形熄灭。

2. 试灯输入LT:当LT=0时,BI/RBO是输出端,且RBO=1,此时无论其它输入端是什么状态,所有各段输出a~g均为1,显示字形8。该输入端常用于检查7488本身及显示器的好坏。

3.动态灭零输入RBI:当LT=1,RBI=0且输入代码DCBA=0000时,各段输出a~g均为低电平,与BCD码相应的字形熄灭,故称“灭零”。利用LT=1与RBI=0可以实现某一位的“消隐”。此时BI/RBO是输出端,且RBO=0。

4. 动态灭零输出RBO:BI/RBO作为输出使用时,受控于LT和RBI。当LT=1且RBI=0,输入代码DCBA=0000时,RBO=0;若LT=0或者LT=1且RBI=1,则RBO=1。该端主要用于显示多位数字时,多个译码器之间的连接。

7448的功能表如下:

图7 74LS48译码器功能表

从功能表可看出,对输入码0000,译码条件是:LT和RBI同时等于1,而对其它输入码则仅要求LT=1,这时候,译码器各段a~g输出的电平是由输入BCD码决定的,并且满足显示字形的要求。

其管脚图及与数码管的连接如下:

图8 74LS48管脚图图9 74LS48与数码管的连接

(4)共阴极LED数码显示管

在单片机系统中,通常用LED数码显示器来显示各种数字或符号。由于它具有显示清晰、亮度高、使用电压低、寿命长的特点,因此使用非常广泛。八段LED显示器由8个发光二极管组成。基中7个长条形的发光管排列成“日”字形,另一个点形的发光管在显示器的右下角作为显示小数点用,它能显示各种数字及部份英文字母。LED显示器有两种不同的形式:一种是8个发光二极管的阳极都连在一起的,称之为共阳极LED显示器;另一种是8个发光二极管的阴极都连在一起的,称之为共阴极LED显示器。共阴极和共阳级结构的LED显示器各笔划段名和安排位置是相同的。当二极管导通时,相应的笔划段发亮,由发亮的笔划段组合而显示的各种字符。8个笔划段hgfedcba对应于一个字节(8位)的D7 D6 D5 D4 D3 D2 D1 D0,于是用8位二进制码就可以表示欲显示字符的字形代码。例如,对于共阴LED显示器,当公共阴极接地(为零电平),而阳极hgfedcba各段为01110011(76H)时,显示器显示"P"字符,即对于共阴极LED显示器,“P”字符的字形码是73H。如果是共阳LED 显示器,公共阳极接高电平,显示“P”字符的字形代码应为10001100(8CH)。

其管脚图及内部结构图如下:

图10 LED管脚图图11 LED内部结构(共阳极)图12 LED内部结构(共阴极)

实际使用部分:

(1)AT89S51单片机

AT89S51是美国ATMEL公司生产的低功耗,高性能CMOS8位单片机,片内含4k bytes的可系统编程的Flash制度程序存储器,器件采用ATMEL公司的高密度、非易失行存储技术生产,兼容标准8051指令系统及引脚。

其主要组成和功能为:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),2个数据指针,2个16位定时器/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其他所有部件工作直到下一个复位。

其管脚图及框图如下:

图13 AT89S51管脚图图14 AT89S51功能框图

(2)ADC0832

ADC0832 是美国国家半导体公司生产的一种8 位分辨率、双通道A/D转换芯片。由于它体积小,兼容性强,性价比高而深受单片机爱好者及企业欢迎,其目前已经有很高的普及率。学习并使用ADC0832 可是使我们了解A/D转换器的原理,有助于我们单片机技术水平的提高。

ADC0832 具有以下特点:

·8位分辨率;

·双通道A/D转换;

·输入输出电平与TTL/CMOS相兼容;

·5V电源供电时输入电压在0~5V之间;

·工作频率为250KHZ,转换时间为32μS;

·一般功耗仅为15mW;

·8P、14P—DIP(双列直插)、PICC 多种封装;

·商用级芯片温宽为0°C to +70°C,工业级芯片温宽为?40°C to +85°C;

芯片如下所示:

图15 ADC0832管脚图

芯片接口说明:

·CS_ 片选使能,低电平芯片使能。

·CH0 模拟输入通道0,或作为IN+/-使用。

·CH1 模拟输入通道1,或作为IN+/-使用。

·GND 芯片参考0 电位(地)。

·DI 数据信号输入,选择通道控制。

·DO 数据信号输出,转换数据输出。

·CLK 芯片时钟输入。

·Vcc/REF 电源输入及参考电压输入(复用)。

ADC0832 为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在0~5V之间。芯片转换时间仅为32μS,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI 数据输入端,可以轻易的实现通道功能的选择。

单片机对ADC0832 的控制原理:正常情况下ADC0832 与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI 并联在一根数据线上使用。

当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D转换时,须先将CS使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1 个时钟脉冲的下沉之前DI端必须是高电平,表示启始信号。在第2、3个脉冲下沉之前DI端应输入2 位数据用于选择通道功能。

其功能项如下图所示:

图16 ADC0832功能项表

如上表所示,当此2 位数据为“1”、“0”时,只对CH0 进行单通道转换。当2位数据为“1”、“1”时,只对CH1进行单通道转换。当2 位数据为“0”、“0”时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。当2 位数据为“0”、“1”时,将CH0作为负输入端IN-,CH1 作为正输入端IN+进行输入。到第3 个脉冲的下沉之后DI端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。从第4个脉冲下沉开始由DO端输出转换数据最高位DA TA7,随后每一个脉冲下沉DO端输出下一位数据。直到第11个脉冲时发出最低位数据DATA0,一个字节的数据输出完成。也正是从此位开始输出下一个相反字节的数据,即从第11个字节的下沉输出DATD0。随后输出8位数据,到第19 个脉冲时数据输出完成,也标志着一次A/D转换的结束。最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了。

其时序说明图如下所示:

图17 ADC0832时序说明图

作为单通道模拟信号输入时ADC0832的输入电压是0~5V且8位分辨率时的电压精度为19.53mV。如果作为由IN+与IN-输入的输入时,可是将电压值设定在某一个较大范围之内,从而提高转换的宽度。但值得注意的是,在进行IN+与IN-的输入时,如果IN-的电压大于IN+的电压则转换后的数据结果始终为00H。

ADC0832 芯片接口程序的编写:为了高速有效的实现通信,我们采用汇编语言编写接口程序。由于ADC0832 的数据转换时间仅为32μS,所以A/D转换的数据采样频率可以很快,从而也保证的某些场合对A/D转换数据实时性的要求。数据读取程序以子程序调用的形式出现,方便了程序的移植。程序占用资源有累加器A,工作寄存器R7,通用寄存器B 和特殊寄存器CY。通道功能寄存器和转换值共用寄存器B。在使用转换子程序之前必须确定通道功能寄存器B 的值,其赋值语句为“MOV B,#data”(00H~03H)。运行转换子程序后的转换数据值被放入B 中。子程序退出后即可以对B 中数据处理。

ADC0832 芯片接口程序[汇编]:

/*-------------------------------------------

子程序名:ADC0832子程序

程序功能:将模拟电压量转换成数字量

实现方法:串行通信。

CPU说明:MCS-51

植入说明:占用A、B、CY、R7

-------------------------------------------*/

;以下接口定义根据硬件连线更改

ADCS BIT P3.5 ;使能接口

ADCLK BIT P3.4 ;时钟接口

ADDO BIT P3.3 ;数据输出接口(复用)ADDI BIT P3.3 ;数据输入接口

;以下语句在调用转换程序前设定

MOV B,#00H ;装入通道功能选择数据值;以下为ADC0832读取数据子程序

;==== ADC0832读数据子程序==== ADCONV:

SETB ADDI ;初始化通道选择

NOP

NOP

CLR ADCS ;拉低/CS端

NOP

NOP

SETB ADCLK ;拉高CLK端

NOP

NOP

CLR ADCLK ;拉低CLK端,形成下降沿MOV A,B

MOV C,ACC.1 ;确定取值通道选择

MOV ADDI,C

NOP

NOP

SETB ADCLK ;拉高CLK端

NOP

NOP

CLR ADCLK ;拉低CLK端,形成下降沿2 MOV A,B

MOV C,ACC.0 ;确定取值通道选择

MOV ADDI,C

NOP

NOP

SETB ADCLK ;拉高CLK端

NOP

NOP

CLR ADCLK ;拉低CLK端,形成下降沿3 SETB ADDI

NOP

NOP

MOV R7,#8 ;准备送下后8个时钟脉冲AD_1:

MOV C,ADDO ;接收数据

MOV ACC.0,C

RL A ;左移一次

SETB ADCLK

NOP

NOP

CLR ADCLK ;形成一次时钟脉冲

NOP

NOP

DJNZ R7,AD_1 ;循环8次

MOV C,ADDO ;接收数据

MOV ACC.0,C

MOV B,A

MOV R7,#8

AD_13:

MOV C,ADDO ;接收数据

MOV ACC.0,C

RR A ;左移一次

SETB ADCLK

NOP

NOP

CLR ADCLK ;形成一次时钟脉冲

NOP

NOP

DJNZ R7,AD_13 ;循环8次

CJNE A,B,ADCONV ;数据校验

SETB ADCS ;拉高/CS端

CLR ADCLK ;拉低CLK端

SETB ADDO ;拉高数据端,回到初始状态

RET

;====子程序结束====

(3)74HC573

74HC573是八进制 3 态非反转透明锁存器。属于高性能硅门CMOS 器件,SL74HC573 跟LS/AL573 的管脚一样。器件的输入是和标准CMOS 输出兼容的;加上拉电阻,他们能和LS/ALSTTL 输出兼容。当锁存使能端LE为高时,这些器件的锁存对于数据是透明的(也就是说输出同步)。当锁存使能变低时,符合建立时间和保持时间的数据会被锁存。LE为锁存控制端。

图17 74HC573管脚图图18 74HC573与LED的连接

(4)74HC245

74HC245是总线驱动器,典型的TTL型三态缓冲门电路。由于单片机等CPU的数据/地址/控制总线端口都有一定的负载能力,如果负载超过其负载能力,一般应加驱动器。另外,也可以使用74HC244等其他电路,74HC244比74HC245多了锁存器。

图19 74HC245内部电路及管脚图

引脚定义如下:

第1脚DIR:输入输出端口转换用,DIR=“1”高电平时信号由“A”端输入“B”端输出,DIR=“0”低电平时信号由“B”端输入“A”端输出。

第2~9脚“A”信号输入输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”OE=“0”则A1输入B1输出,其它类同。如果DIR=“0”OE=“0”则B1输入A1输出,其它类同。

第11~18脚“B”信号输入输出端,功能与“A”端一样,不再描述。

第19脚OE,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B端才被启用,该脚也就是起到开关的作用。

第10脚GND,电源地。

第20脚VCC,电源正极。

(5)共阴极LED数码显示管

在单片机系统中,通常用LED数码显示器来显示各种数字或符号。由于它具有显示清晰、亮度高、使用电压低、寿命长的特点,因此使用非常广泛。八段LED显示器由8个发光二极管组成。基中7个长条形的发光管排列成“日”字形,另一个点形的发光管在显示器的右下角作为显示小数点用,它能显示各种数字及部份英文字母。LED显示器有两种不同的形式:一种是8个发光二极管的阳极都连在一起的,称之为共阳极LED显示器;另一种是8个发光二极管的阴极都连在一起的,称之为共阴极LED显示器。共阴极和共阳级结构的LED显示器各笔划段名和安排位置是相同的。当二极管导通时,相应的笔划段发亮,由发亮的笔划段组合而显示的各种字符。8个笔划段hgfedcba对应于一个字节(8位)的D7 D6 D5 D4 D3 D2 D1 D0,于是用8位二进制码就可以表示欲显示字符的字形代码。例如,对于共阴LED显示器,当公共阴极接地(为零电平),而阳极hgfedcba各段为01110011(76H)时,显示器显示"P"字符,即对于共阴极LED显示器,“P”字符的字形码是73H。如果是共阳LED

显示器,公共阳极接高电平,显示“P”字符的字形代码应为10001100(8CH)。

其管脚图及内部结构图如下:

图20 LED管脚图图21 LED内部结构(共阳极)图22 LED内部结构(共阴极)

(6)运放OP07CP

OP07CP是运算放大器。其特点为:高质量数字音频放大102分贝动态范围(OP07CP设备)的THD + N <0.06%的电源效率为90%到8 -Ω负载16 - ,20 - ,或24位输入32千赫,44.1 kHz的,48千赫,88.2千赫兹,96赫兹,1.764 -千赫,192千赫采样率经济48引脚TQFP封装下抖动内部PLL OP07CP(绝对)最大额定值:除了终止和EMC兼容性的要求,计算设备都必须为公共服务电子化敏感性测试。这个测试是在IEC 61000-4-2描述,并在已有的欧洲。这个测试需要的设备,并继续容忍ESD 事件,而无需用户干预的业务。对于4比4英寸的敏感性前vious索尼由民政事务总署的超级CCD 技术饱和信号电平通过产品分贝比以前增加了2 4英寸CCD的与以前的1 / 4的兼容性分贝增加光学系统的使用英寸CCD的水平保持寄存器和复位栅极驱动电压降低至3.0 V(最小)。

其管脚图如下所示:

图23运放OP07CP管脚图

(7)继电器

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。

继电器的继电特性:继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。释放值xf与动作值xx的比值叫做反馈系数,即Kf= xf /xx 。触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P0。其示意图如下所示:

图24 继电器示意图

当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。其实质是一种传递信号的电器,它根据输入的信号达到不同的控制目的。

电磁继电器的工作原理和特性:电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。

继电器的作用:作为控制元件,概括起来,继电器有如下几种作用。

1) 扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。

2) 放大。例如,灵敏型继电器、中间继电器等,用一个很微小的控制量,可以控制很大功率的电路。

3) 综合信号。例如,当多个控制信号按规定的形式输入多绕组继电器时,经过比较综合,达到预定的控制效果。

4) 自动、遥控、监测。例如,自动装置上的继电器与其他电器一起,可以组成程序控制线路,从而实现自动化运行。

【电路板分析及原理图】

经过自己使用万用表对PCB电路板的测量和观察,我了解到了温度控制器的电路原理和结构。使用Proteus软件导出位图,得到其各部分电路及电路原理图如下所示:

图25 AT89C52单片机及接线图26复位及中断

图27 晶振部分图28 ADC0832及接线

图29电位器及运放部分图30 RC滤波部分

图31 字形控制部分—74HC245 图32 字位控制部分—74HC245

图33 锁存器74HC573 图34 数码管显示部分及接线

(可不接,也可SETB P1.4实现)

图35 报警灯显示部分及接线图36 排阻部分及接线

图37 继电器1部分及接线(控制加热)图38 继电器2部分及接线(控制降温)

图39 整个PCB电路板电路连接及原理图

【汇编程序的编写与调试】

考虑到本次设计的要求:

○1采用1路模拟输入,电压范围为0——5V,控制温度变化范围为0——99.9。C 。

○2使用2个继电器分别控制加热器和风机,用来加热和降温。

○3目标温度保持在60度。

○4系统中加一个滞环,当温度低于50度,开始加热;当温度高于55度时,关加热器;

当温度高于70度时,开风机;当温度低于65度时,关风机。

○5使用3个数码管作为输出显示电压值或温度值。

所以程序主要分为以下几个部分:

1.主程序部分

2.AD采样及转换部分

3.数码显示部分

4.报警灯及继电器控制部分。

全部程序如下:

ADCS BIT P3.3 ;使能接口

ADCLK BIT P3.2 ;时钟接口

ADDO BIT P3.1 ;数据输出接口

ADDI BIT P3.0 ;数据输入接口

ORG 0000H

LJMP TEST

ORG 1000H

TEST:

MOV SP,#60H

SETB P1.4

LCALL DELAY

LCALL DELAY

LCALL ADC0832

LCALL GUOLV

LCALL DONGZUO

SJMP TEST

ADC0832: NOP ;在被调用程序之前填充nop指令,这样即使跳转到稍前或者稍后

的位置,也不会造成影响

MOV A,#00H

MOV 40H,A ;ADC0832初始化

SETB ADCS ;CS置高,一个转换周期开始

CLR ADCLK ;CLK

CLR ADCS ;CS置0,片选有效

SETB ADDI ;DI置1,起始位

SETB ADCLK ;第一个脉冲开始

NOP

NOP

CLR ADCLK ;第一个脉冲

NOP

NOP

SETB ADDI ;DI置1,设为单通道

SETB ADCLK ;第二个脉冲开始

NOP

NOP

CLR ADCLK ;第二个脉冲

NOP

CLR ADDI ;DI置0,选择通道0

SETB ADCLK ;第三个脉冲开始

NOP

NOP

CLR ADCLK ;第三个脉冲通道选择完毕

NOP

SETB ADDI ;DI=1

NOP

NOP

MOV R1,#08H ;计数器初值,读取8位数据

AD_1: MOV C, ADDO ;接收数据

MOV ACC.0,C

RL A ;左移一次

SETB ADCLK

NOP

NOP

CLR ADCLK ;形成一次时钟脉冲

NOP

NOP

DJNZ R1,AD_1 ;循环8次

SETB ADCS ;拉高/CS端

CLR ADCLK ;拉低CLK端

SETB ADDO ;拉高数据端,回到初始状态

MOV 40H,A ;将转换结果送至40H单元

RET

GUOLV: MOV R7,#10

MOV 45H,#0 ;45H存低八位

CLR C

MOV 46H,#0 ;46H存高八位

MOV R0,#10H

LV1: LCALL ADC0832

MOV A,40H

MOV @R0,A

INC R0

MOV A,45H

ADD A,40H

MOV 45H,A

CLR A

ADDC A,46H

MOV 46H,A

LCALL BCD

LCALL DISPLAY

DJNZ R7,LV1 ; R0存放采样值,循环10次,高8位的和放在46H,

低8位的和放在45H MOV 20H,#00H

MOV R0,#10H

MOV R3,#10

LOOP: MOV A,@R0

CJNE A,20H,NEXT01

NEXT01: JC NEXT00

MOV 20H,A ;小于0的数给20H

NEXT00: INC R0

DJNZ R3,LOOP

MOV R3,#10

MOV R0,#10H

MOV 21H,#0FFH

LOOP1: MOV A,@R0

CJNE A,21H,NEXT02

NEXT02: JNC NEXT03

MOV 21H,A ;大于255的数给21H

NEXT03: INC R0

DJNZ R3,LOOP1

CLR C

MOV A,21H

ADD A,20H

MOV 22H,A ;20H、21H的和存在22H里

MOV A,45H

JC SEAT ;低8位有溢出跳SEAT

MOV 23H,#00H

AJMP SUB

温度控制器使用说明书

XMT-6000 智能型数字显示温度控制器使用说明书 此产品使用前,请仔细阅读说明书,以便正确使用,并妥善保存,以便随时参考。 !警告 接线警告 —如果仪表失效或发生错误,可能引起系统故障,安装外部保护电路以防止此类事故。 —为防止仪表损坏或失效,选用适当的保险丝保护电源线及输入/输出线以防电流冲击。 仪表供电 —为防止触电或仪表失效,所有接线工作完成后方能接通电源。 禁止在易燃气体附近使用 —为防火、防爆或仪表损坏,禁止在易燃、易爆气体,排放蒸汽的场所使用。 严禁触及仪表内部 —为防止触电或燃烧,严禁触及仪表内部。发生质量问题请与上海亚泰仪表厂营销部联系,只有 “亚泰”服务工程师可以检查内部线路或更换部件,仪表内部有高电压,高温部件,非常危险! 严禁改动仪表 —为防止事故或仪表失效,严禁改动仪表。 保养 —为防止触电,仪表报废或失效,只有“亚泰”服务工程师可以更换部件。 —为保证仪表长期安全使用,应定期保养。仪表内部某些部件可能随使用时间的延长而损坏。 操作注意 断电后方可清洗仪表。 清除显示器上污渍请用软布或棉纸。 显示器易被划伤,禁止用硬物擦拭或触及。 禁止用螺丝刀或书写笔等硬物体操作面板按键,否则会损坏或划伤按键。 1.产品确认 本产品适用于注塑、挤出、吹瓶、食品、包装、印刷等机械设备;恒温干澡、金属热处理等设备的温度控制。 本产品的PID参数可以自动整定,是一种智能化的仪表,使用十分方便,是指针式电子调节器、模拟式数显温控仪的最佳更新换代产品。 本产品符合Q/SQG01-1999智能型数字显示调节仪标准的要求。 请参照下列代码表确认送达产品是否和您选定的型号完全一致。 XMT□-□□□□□□□—□ ①②③④⑤⑥⑦⑧⑨ ①面板尺寸mm⑤输入类型 D:96×96 1:热电偶信号 E:72×72 2:热电阻信号 F:96×48(竖式);F(H):48×96(横式) ⑥输出类型 G:48×48 空:继电器(最大1A) ②显示方式V:逻辑电平输出用于SSR 6:双排显示(经济型)B: 继电器(最大10A) ③控制类型G: 可控硅输出(直接带300W以下负载) 0:位式动作⑦分度号 3:时间比例动作⑧量程下限 4:两位PID动作及自动整定⑨量程上限 7:单相过零脉冲PID及自动整定<附件> ④限位报警安装支架2套,说明书一份 0:无报警 1:上限报警(XMTD、XMTF过零脉冲输出、逻辑

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

空调温度自动控制器最终版

空调温度控制器 课程设计报告

目录 引言 (1) 第一章设计目的 (1) 第二章设计任务与要求 (2) 第三章方案设计与论证 (2) 1 方案一 (2) 2 方案二 (2) 3 方案比较 (3) 4 方案详细介绍 (3) 第四章电路工作原理及说明 (4) 1 温度信号采集模块工作原理 (4) 2温度信号处理与控制模块工作原理 (4) 1 LM324运算放大器功能介绍 (4) 2 LM324功能测试及信号处理 (5) 4 CD4011 芯片功能介绍 (7) 3 电机控制模块工作原理 (8) 第五章电路性能指标的测试 (9) 1 温度信号采集模块性能测试 (9) 2 双限比较器输出信号性能测试 (9) 第六章结论与体会 (10) 结论 (10) 体会 (11) 展望 (11) 第八章参考文献 (12) 附录Ⅰ元器件清单 (12) 附录Ⅱ整体电路原理图 (1)

引言 十九世纪末、二十世纪初,电子技术开始逐渐发展起来,并成为一项新兴技术。它在二十世纪发展最为迅速,应用最为广泛,并且成为了近代科学技术发展的一个重要标志。第一代电子产品以电子管为核心。四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。 随着科学技术的迅猛发展,电子控制电路在日常生活中有了更为广泛的应用,各种报警专用集成电路、语音/音效集成电路、传感器的不断推出,一些新颖实用的报警器、警示器电路已广泛应用于家庭生活、工农业生产、交通、机动车、通信和防盗、防灾等领域。 目前空调机已经广泛地应用于生产、生活中。而此类家电越来越趋于轻巧型。微型单片机系统以其体积小、性能价格比高,指令丰富、提供多种外围接口部件、控制灵活等优点,广泛应用于各种家电产品和工业控制系统中,在温度控制领域的应用也十分广泛。 随着能源的日趋减少,大气污染愈加严重,节能已是一个不容忽视的问题。众所周知,空调正朝着节能、舒适、静噪于一体的方向发展。鉴于这些方面的综合考虑,设计一种可以实现温度自动控的空调机,将会在节能方面有有新的突破,也必将会取代传统的靠人工实现的温度控制的空调机。通过巧妙的设计和安装可实现美观典雅和舒适卫生的和谐统一,是国际和国内的发展潮流。可以预料,下个世纪的节能空调将会以更快的步伐向前发展。其应用的范围将极为广阔,极大地方便了人们的工作和生活。可以说节能空调将是未来一种新的发展趋势。 电子控制设备中的电路都是由基本功能电路构成的。该课题涉及到模拟电子线路、Multisim软件仿真,数字电子应用等。方案实行中应用电阻分压、运算放大器、三极管控制开关以及继电器电路等。该课题目的是要设计空调温度控制电路,能够控制负温度系数的热敏电阻所在环境内的温度,当空调运行时和空调停止工作时分别由LED1和LED2指示。所设计的电路结构简单、成本低、易于操作、使用寿命较长;采用LED作指示灯,并且控制空调在设定的温度范围之外工作,LED指示灯具有结构简单、寿命长、耗电省、美观鲜艳、易于识别等特点。 第一章设计目的 1 了解并掌握运算放大器的工作原理和使用方法及其注意事项 2 学会查阅元器件资料,辨别元器件,检查并测试元器件 3学会绘制电路图并组装电路,调试电路. 4 熟练掌握各种基本仪器的使用 5 学会并熟练掌握电路仿真软件的使用(Multisim等)

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

温控器论文

浅析温控器复位不同步对终端产品的影响 来源: 亮群电子发布时间: 2014-04-01 14:08 247 次浏览大小: 16px14px12px 双金属片温控器采用机械式的结构,具有分断灵敏、不易拉弧、不产生电磁干扰而得到广泛的应用。然而由于在制造中的误差而引发温控器复位不同步的现象越来越多,给温控器的终端产品带来了一些不利的影响。本文从双金属片温控器复位不同步的定义、动作过程来说明复位不同步对终端产品的影响,并以实际的案例做分析说明。 本文由我司工程师张海滨发表于《电器附件》2013年第二期,通过对双金属片温控器复位不同步的过程和原理分析来说明其对终端产品的影响。 1定义 在温控器制造行业,通常将双金属片受热后翻转的瞬间与触点开关状态改变瞬间的时间差定义为温控器的同步性。而复位不同步是指双金属片温控器在达到动作温度后,双金属片已经翻转,同时开关触点已经断开,其控制的发热体也开始降温,在随后的过程中,双金属片会再一次翻转,开关触点并再一次闭合时,两个状态点的时间差有明显的滞后性。这个状况则被称做为温控器复位不同步。 2温控器复位不同步原因分析 从温控器基本结构和原理分析,我们发现双金属片由于受热变形翻转后有一个最高的弧高点到下一次再翻转前有一个行程A,开关的触点从断开到闭合的过程也有一个行程B;示意图1和示意图2分别指示出这种变化所产生的行程A、B。如果A=B时,则理论上该温控器为完全同步的温控器。实际生产中,由于各温控器厂家使用零件的误差以及制造工艺的误差,会导致A≠B;多数情况下是A>B,从而就比较容易产生温控器复位不同步的现象。

3影响终端产品的过程分析 温控器一般用于终端产品中做温度的控制,我们将电路简化为图3的电路。 在该电路中,先通电之后,常闭型的温控器触点是闭合的,加热体发热后温度持续上升,温度达到温控器的动作温度后,温控器内部开关触点断开,加热体由于热惯性温度会上升,到一定程度后开始降温。如果此时温控器的两个行程A=B,则电路接通和感温的双金属翻转是同时进行的。

一种高精度的温控电路

一种高精度的温控电路 阅览次数:423 作者:陈天平单位: 【摘要】本文重点讲述一种利用电阻电桥实现的高精度温度控制电路,采用不间断电 流方式,可以将温度控制在±0.1℃范围之内,从而实现动态的温度平衡。 【关键字】电阻电桥运算放大器功率放大铂电阻开关电源 现在的军事、工业、商业中,温度控制是一种最常见、最普通的应用。但是在控温精度要求不高的地方大多末级采用继电器来控制,靠继电器的吸合来实现的,其控制精度大约在±10℃范围之内。即使随着单片机的发展出现的PID调节,也只是对前一部分放大部分作一些处理,而末级仍旧采用继电器实现的,但控温精度有所提高,一般在±0.1℃~±5℃范围之内,这在某些对温度要求较高的方面是很难实现的。当然,也有利用可控硅和电磁阀等来控制的,其精度稍高。 随着军事、工业的发展,对许多高端产品的调试环境都有进一步的要求,其环境温度变化很小,有±1℃、±0.5℃、±0.3℃、±0.2℃、±0.1℃等,有的甚至要求更高。例如,石英挠性加速度计调试环境要求55±0.1℃,捷联惯组的调试温度要求70±0.1℃。显然,靠继电器来实现温度控制是远不能满足要求的。于是经过多方面的搜集资料,并通过多方面的试验,我设计出一种利用大进大出原理(即可以实现频繁的热交换)实现的一种不间断电流的温度控制系统。此种设计思想可以保证被加热体的内外保持良好的热交换,从而起到更好的控温效果。 整体系统框图如下: 由图可知,由加热器和控温铂电阻构成的热-电微型电路构成了闭环控制回路。控制过程

可以通过调整控温电阻的大小来设定控制的温度点。测温铂电阻用来测量被加热环境的温度。其中的微调是用来做微小的调整用的,在加温过程中可能由于外界环境温度的变化会引起控制温度点的偏差,此时可以通过调整微调来实现控温的准确性,此时若不做微调能会使温度控制在非设定的温度点,但控温精度不会改变,只是控温点有所变化。 在电路图中Vcc0是一个要求有高的稳定性的电源,它在某一时期的稳定性应要求比较高。Vcc1是T1、T2工作所需用的工作电压。电路由R2、R3、Rc、Rt构成电阻电桥,其中Rc为控制控温点的电阻,Rt为控温铂电阻,T3是大功率调整管。其中R2、R3、R6、R7、R8应选用精度较高的金膜电阻,其精度要求0.1~0.01%,在调试中定。T1、T2应选则放大倍数匹配的晶体管以便构成功率符合管。控制部分电路图 控温原理:其中 当调试环境温度与设置的温度点相差较大时(一般时由低温到高温的升温),Uab输出的就较大,此时通过运放放大后输出的Ue较大,然后在通过由T1和T2组成的复合功率

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

简易温度控制器的设计(DOC)

" 简易温度控制器的设计 摘要 简易温度控制器是采用热敏电阻作为温度传感器,由于温度的变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或低电平从而对控制对象即加热器进行控制。其电路可分为三大部分:测温电路,比较/显示电路,控制电路。 关键词:测温,显示,加热 ! }

目录 一、设计任务和要求 0 设计内容 0 设计要求 0 二、系统设计 0 系统要求 0 系统工作原理 0 方案设计 0 三.单元电路设计 (1) 温度检测电路 (1) 电路结构及工作原理 (1) 电路仿真 (2) 、元器件的选择及参数的确定 (3) 比较/显示电路 (3) 电路结构及工作原理 (3) 电路仿真 (4) 元件的选择及参数的确定 (5) 、温度控制单元电路 (5) 电路结构及工作原理 (5) 温度控制单元仿真电路 (6) 电源部分 (7) 四.系统仿真 (9) 结论 (9) 致谢 (9) 参考文献 (9)

一、设计任务和要求 设计内容 采用热敏电阻作为温度传感器,由于温度变化而引起电压的变化,再利用比较运算放大器与设置的温度值对应的电压进行比较,从而通过输出电平对加热器进行控制。 设计要求 首先通过电源变压器把220V的交流电变成所需要的5V电压;当水温小于40℃时,H1、H2两个加热器同时打开,将容器内的水加热;当水温大于50℃,但小于70℃时,H1加热器打开,H2加热器关闭;当水温大于50℃时,H1、H2两个加热器同时关闭;当水温小于30℃,或者大于80℃时,红色发光二极管报警;当水温在30℃~80℃之间时,用绿色发光二极管指示水温正常[2]。 二、系统设计 系统要求 系统主要要求将温度模拟量转化为数字量,再将其转化为控制信号,从而对显示电路和控制电路进行控制,从而自动的调节水温, 系统工作原理 通过对水温进行测量,将所测量的温度值与给定值进行比较,利用比较后的输出信号至加热部分,让加热部分调控水温,从而实现对水温控制的目的。同时也反应到显示部分,让其正确的表示温度的状态。温度值的变化引起电阻值的变化,从而最终引起测温电路输出的电压值的变化,经过后边比较电路进行比较,从而控制显示电路和加热电路。 方案设计 为了使信号输出误差很小,选用桥式测压电路,这样可以得出较为准确的与温度相对应的电压值,关于比较部分可以选用比较器LM339构成窗口比较器,再利用滑动变阻

关于温度控制系统论文

前言 随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。信号经取样、放大后通过模数转换,再交由单片机处理。被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论 随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。 温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。 单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。 由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素[2]。传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用[3]。另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。温度传感器是其中重要的一类传感器。其发展速度之快,以及其应用之广,并且还有很大潜力。

简易温度控制系统

目录 摘要 (2) 第1章系统综述 (3) 第2章开发平台及模块介绍 (3) 2.1开发工具 (3) 2.2处理器AT89C51简介 (5) 2.3芯片DS18B20的介绍 (6) 第3章系统的软硬件设计 (7) 3.1设计框图 (7) 3.2硬件电路设计 (8) 3.2软件设计 (9) 第4章调试及结果 (13) 4.1调试中所遇问题以及解决方法 (13) 4.2仿真结果 (13) 结束语 (14) 致谢 (15) 参考文献 (15)

简易温度控制系统 摘要 单片机在日用电子产品中的应用越来越广泛,温度则是人们日常生活中常常需要测量和控制的一个量。本文采用AT89C51单片机和温度传感器DS18B20,从硬件和软件两方面介绍一款简易温度控制器的设计过程,并对硬件原理图和流程图做了简要的描述。 本系统要求能够实时可靠监控温度变化,指示准确,要实现温度的自动控制,首先,要准确的检测环境温度;其次,要把检测到信号转换成控制器件可识别的数字信号;再次,用单片机完成控制加热,保证温度不低于设定值。如果温度将高于设定值,关闭加热器件,使其自行冷却。保持温度在设定值,误差不高于1℃。 关键字:单片机;AT89C51 ;温度传感器;DS18B20

第1章系统综述 随着单片机技术的不断发展,单片机在日常电子产品中的应用越来越广泛,温度传感器DS18B20具有线性优良、性能稳定、灵敏度高、抗干扰能力强、使用方便等特点,广泛应用于冰箱、空调器、饮水机等日常生活中温度的测量和控制。传统的温度控制器反应速度慢,读数麻烦,测量精度不高,误差大等缺点,本文利用集成温度传感器DS18B20设计制作了一款基于AT89C51的1位数码管显示的温度控制器,其电路简单,软硬件结构模块化易于实现。 该温度控制器利用DS18B20集成温度传感器及其接口电路完成温度的测量,最后将温度值显示在2位数码管上。 数码管实时显示温度值,温度测量值与温度设定值送入由AT89C51组成的控制主板后,由处理器AT89C51对数据进行处理和比较分析。若测量温度值低于设定温度界限,根据系统程序控制,由单片机发出控制信号,经过驱动电路使加热器工作。当加热后的温度达到设定的温度界限,则停止加热,单片机发出一个控制信号,关闭加热器。 整个控制系统的组成可以分成以下几个部分:控制主板,电源,复位电路,时钟电路,温度采集电路、键盘和显示。控制主板,本测控系统采用Atmel系列的AT89C51单片机作为核心处理器,采用ADS18B20作为温度传感器,处理器通过一个I/O口输出高低电平信号来控制加热器的开关。电源部分采用了抗干扰技术,为整个系统提供电源。复位电路采用常用的电容加电阻的形式。处理器通过一个并口与两位数码管相连,实现数据的显示。 第2章开发平台及模块介绍 2.1 开发工具 本系统采用了Proteus软件做仿真:Proteus软件是一种低投资的电子设计自动化软件,提供可仿真数字和模拟、交流和直流等数千种元器件和多达30多个元件库。Proteus软件提供多种现实存在的虚拟仪器仪表。此外,Proteus还提供图形显示功能,可以将线路上变化的信号,以图形的方式实时地显示出来。这些虚拟仪器仪表具有理想的参数指标,例如极高的输入阻抗、极低的输出阻抗,尽可能减少仪器对测量结果的影响,Proteus软件提供丰富的测试信号用于电路的测试。这些测试信号包括模拟信号和数字信号。提供Schematic Drawing、SPICE仿真与PCB设计功能,同时可以仿真单片机和周边设备,可以仿真51

单片机温度控制器设计毕业论文

摘要 随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计论述了一种以STC89C52单片机为主控制单元。该控制系统可以实时存储相关的温度数据。系统设计了相关的硬件电路和相关应用程序。硬件电路主要包括STC89C51单片机最小系统,测温电路、实时时钟电路、LED显示以及通讯模块电路等。系统程序主要包括主程序,读出温度子程序,计算温度子程序、按键处理程序、LCD显示程序以及数据存储程序等。 关键词: STC89C52单片机;DS18B20;显示电路

Abstract Along with the computer measurement and control technology of the rapid development and wide application, based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind of mainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and record related to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperature detection circuit smallest system, and real-time clock circuit, LCD display circuit, communication module circuit, etc. System programming mainly include main program, read temperature subroutine, the calculation of temperature subroutines, key processing procedures, LCD display procedures and data storage procedures, etc. Keywords :STC89C52 microcontroller;DS18B20;display circuit

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

武汉理工大学模电课设温度控制系统设计

课程设计任务书 学生姓名:张亚男专业班级:通信1104班 指导教师:李政颖 工作单位:信息工程学院 题目: 温度控制系统的设计 初始条件:TEC半导体制冷器、UA741 运算放大器、LM339N电压比较器、稳压管、LM35温度传感器、继电器 要求完成的主要任务: 一、设计任务:利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler, 即半导体致冷器)等设计一个温度控制器。 二、设计要求:(1)控制密闭容器内空气温度 (2)控制容器容积>5cm*5cm*5cm (3)测温和控温范围0℃~室温 (4)控温精度±1℃ 三、发挥部分:测温和控温范围:0℃~(室温+10℃) 时间安排:19周准备课设所需资料,弄清各元件的原理并设计电路。 20周在仿真软件multisim上画出电路图并进行仿真。 21周周五前进行电路的焊接与调试,周五答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统的设计 1.温度控制系统原理电路的设计 (3) 1.1 温度控制系统工作原理总述 (3) 1.2 方案设计 (3) 2.单元电路设计 (4) 2.1 温度信号的采集与转化单元——温度传感器 (4) 2.2 电压信号的处理单元——运算放大器 (5) 2.3 电压值表征温度单元——万用表 (7) 2.4 电压控制单元——迟滞比较器 (8) 2.5 驱动单元——继电器 (10) 2.6 TEC装置 (11) 2.7 整体电路图 (12) 3.电路仿真 (12) 3.1 multisim仿真 (12) 3.2 仿真分析 (14) 4.实物焊接 (15) 5.总结及体会 (16) 6.元件清单 (18) 7.参考文献 (19)

简易温度控制器制作

电子技术综合训练 设计报告 题目:简易温度控制器制作 姓名: 学号: 班级: 同组成员: 指导教师: 日期:

摘要 本设计是为了做一个简易温度控制器,其可分为三大部分:测温电路,比较/显示电路,控制电路。测温电路将温度信号转换成电压信号,采用热敏电阻根据温度的变化来引起电压的变化。比较/显示电路将转换后的电压信号利用比较运算放大器与设置的温度值对应的电压进行比较,输出高或输出高或低电平通过LED灯显示温度状态。控制电路也是将转换后的电压信号过比较运算放大器与设置的温度值对应的电压进行比较,输出高或输出高或低电平控制加热装置,从而控制温度。 关键词:温度检测,信号转换,比较,显示,控制。

目录 一、设计任务和要求............................... - 4 - 1.1设计内容............................... - 4 - 1.2技术要求:............................. - 4 - 二、系统设计..................................... - 5 - 2.1系统要求............................... - 5 - 2.2设计方案.. (5) 2.3系统工作原理........................... - 6 - 三、单元电路设计................................. - 7 - 3.1温度检测单元电路 (7) 3.2比较显示电路........................... - 9 - 3.3温度控制单元电路...................... - 11 -3.4电源单元电路......................... - 11 - 四、系统仿真.................................... - 14 - 五、电路的安装、调试与测试...................... - 17 - 5.1电路安装............................. - 17 - 5.2电路的调试........................... - 17 - 5.2系统功能及性能测试................... - 17 - 六、结论........................................ - 19 - 七、参考文献.................................... - 20 - 八、总结体会和建议.............................. - 21 - 附录

相关主题
文本预览
相关文档 最新文档