当前位置:文档之家› 高中数学第二讲直线与圆的位置关系第五节与圆有关的比例线段2课后导练新人教A版选修4_1(含解析)

高中数学第二讲直线与圆的位置关系第五节与圆有关的比例线段2课后导练新人教A版选修4_1(含解析)

高中数学第二讲直线与圆的位置关系第五节与圆有关的比例线段2课后导练新人教A版选修4_1(含解析)
高中数学第二讲直线与圆的位置关系第五节与圆有关的比例线段2课后导练新人教A版选修4_1(含解析)

第五节与圆有关的比例线段

课后导练

基础达标

1.如图2-6-8,⊙O的两条弦AB、CD相交于点E,AC与DB的延长线交于点P,下列结论中成立的是( )

图2-6-8

A.CE·CD=BE·BA

B.CE·AE=BE·DE

C.PC·CA=PB·BD

D.PC·PA=PB·PD

解析:根据相交弦定理A、B均不正确.

根据割线定理C错误,D正确.

答案:D

2.如图2-6-9,点C为⊙O的弦AB上一点,点P为⊙O上一点,且OC⊥CP,则有( )

图2-6-9

A.OC2=CA·CB

B.OC2=PA·PB

C.PC2=PA·PB

D.PC2=CA·CB

解析:延长PC交⊙O于D,∵OC⊥PC,

∴PC=CD.由相交弦定理,得PC·CD=CA·CB.

∴PC2=CA·CB.

D正确.

若A正确,则OC=PC,条件不充分,而B、C均无法证明.

答案:D

3.如图2-6-10,⊙O的直径AB垂直于弦CD,垂足为H,点P是上一动点(点P不与A、C重合),连结PC、PD、PA、AD,点E在AP的延长线上,PD与AB交于点 F.给出下列四个结论:①CH2=AH·BH;②=;③AD2=DF·DP;④∠EPC=∠APD.

其中正确的个数是( )

图2-6-10

A.1

B.2

C.3

D.4 解析:①CD⊥AB,∴CH=DH.

由相交弦定理,得CH·DH=AH·BH.

∴CH 2

=AH·BH.故①正确. ②由垂径定理得=

,正确.

③若正确,则

AD

DP

DF AD =?△ADF∽△PDA ?∠DAF=∠DPA ?=

,不合题意,故错误.

④四边形ADCP 内接于圆

?∠EPC=∠APD,正确.

答案:C

4.如图2-6-11,PA 、PB 分别切⊙O 于A 、B 、C 是

上任意一点,过C 作⊙O 的切线DE 分别

交PA 、PB 于D 、E,PO 交AB 于H,交⊙O 于F,则下列结论:

①△PDE 周长是定值PA+PB;②AH 2=OH·PH;③PA 2=PO 2-OF 2;④PB 2

=PO·PH. 其中正确的是( )

图2-6-11

A.①②

B.①②③

C.②③④

D.①②③④ 解析:①由切线长定理,得DC=DA,EC=EB. ∴DE=AD+B

E.

∴PD+DE+PE=PD+DA+BE+PE=PA+PB,正确.

②连结OA 、OB,则P 、A 、O 、B 四点共圆,由相交弦定理,得 AH·BH=OH·PH.

∵AH=BH,∴AH 2

=OH·PH.正确.

③延长PO 交⊙O 于G,由切割线定理,得PA 2

=PF·PG =(PO-OF)(PO+OG) =(PO-OF)(PO+OF) =PO 2-OF 2

,正确.

④在Rt△POB 中,BF⊥OP,由射影定理PB 2

=PO·PH,正确. 答案:D

5.如图2-6-12,AB 为⊙O 的直径,CD 、CB 为⊙O 的切线,D 、B 为切点,OC 交⊙O 于E,AE 延长线交BC 于点F,连结AD 、BD.以下结论:①AD∥OC;②E 为△CDB 的内心;③FC=FE;④CE·FB=AB·CF. 其中正确的只有( )

图2-6-12

A.①②

B.②③④

C.①③④

D.①②④ 解析:①由切线长定理CD=BC,∠OCD=∠OCB, ∴OC⊥BD. ∴

.

∴∠BAD=∠BOE.∴AD∥OC.正确. ②连结DE 、BE, ∵

,∴∠DAE=∠BDE.

由弦切角定理∠CDE=∠DAE. ∴∠CDE=∠BDE. 同理,∠DBE=∠CBE,

即E 是△CDB 的三内角平分线交点. ∴E 为△CDB 的内心,正确. ③无法证明.

④设AF 、BD 交于G 点, ∵∠BFG+∠BAG=90°, ∠BGF=∠AGD,

∠AGD+∠DAE=90°, ∴∠BGF+∠DAE=90°.

∵∠DAG=∠BAE,∴∠BFG=∠BGF. ∴BF=BG.

又易证△ABG∽△ECF, ∴

CF

CE

BG AB . ∴AB·CF=BG·CE=BF·CE. 结论正确.

综上所述,选D. 答案:D 综合运用

6.如图2-6-13,已知⊙O 1、⊙O 2外切于点P,过⊙O 1上一点B 作⊙O 1的切线,交⊙O 2于C 、D,直线PB 交⊙O 2于点A.

图2-6-13

求证:AD 2

+BC·BD=AB 2

.

解析:由BC·BD 联想到割线定理BC·BD=BP·AB,又等式右边含AB 2

,考虑移项后和差化积. AD 2=AB 2-BC·BD=AB 2

-BP·AB =AB(AB-BP)=AB·AP.

只需证AD 2

=AB·AP,利用△ABD∽△ADP. 证明:过P 作公切线EF 交BD 于点E,

由切线长定理,得EB=EP.

∴∠B=∠EPB.∵∠EPB=∠APF,∠APF=∠ADP. ∴∠B=∠ADP.

又∠A=∠A,∴△ABD∽△ADP. ∴

AD AB =AP

AD

. ∴AD 2

=AB·AP.

由割线定理,得BC·BD=BP·AB.

∴AD 2+BC·BD=AB·AP+BP·AB=AB(AP+BP)=AB 2

.

∴AD 2+BC·BD=AB 2

.

7.如图2-6-14,已知Rt△ABC 中,∠B=90°,AB 交⊙O 于D,且过圆心O,AC 交⊙O 于E,CF 交⊙O 于D.

求证:AD 2

=AC·AE -DF·CD.

图2-6-14

证明:连结AF 、DE,

∵AD 为直径,∴∠AED=90°,∠AFD=90°. ∴∠CED=90°.∵∠CBD=90°, ∴B、C 、E 、D 四点共圆. ∴AE·AC=AD·AB.

又A 、F 、B 、C 四点共圆, ∴AD·BD=DF·CD.

∴AC·AE -DF·CD=AD·AB -AD·BD=AD(AB -BD)=AD 2

.

∴AD 2

=AC·AE -DF·CD.

8.如图2-6-15,两圆内切于点A,P 是两圆公切线上的点,过P 点作小圆的割线PBC,连结AB 、

AC,并延长分别交大圆于D 、E,求证:2

2

AD AE PB PC .

图2-6-15

证明:连结DE,∵∠PAB=∠ACB,∠P=∠P, ∴△PAB∽△PCA.∴

PC PA =AC

AB

. ∵∠PAD=∠E,∠PAB=∠ACB, ∴∠ACB=∠E.同理,∠ABC=∠D. ∴BC∥DE.∴

AD AB =AE

AC

.

AC AB =AE AD .∴PC PA =AE

AD

. 又由切割线定理,得PA 2

=PB·PC,

∴PB PC PC PB PC PA

PC AD AE =?==22222.∴2

2

AD AE PB PC =. 9.如图2-6-16,已知△ABC 中,∠ACB=90°,CD⊥AB 于D,以BD 为直径的⊙O 交BC 于E,求证:

22AC BC =EC

BE

.

图2-6-16

证明:连结DE,∵BD 是直径, ∴∠DEB=90°.∵∠ACB=90°, ∴DE∥AC.∴

CE BE =AD

BD . 由射影定理得BC 2

=BD·AB,AC 2

=AD·AB.

∴22AC BC =AB AD AB BD ??=AD BD =EC BE . ∴2

2AC BC =EC

BE . 拓展探究

10.如图2-6-17,⊙O 1和⊙O 2都经过A 、B 两点,PQ 切⊙O 1于点P,交⊙O 2于Q 、M,交AB 的延长

线于N,则PN 2

=NM·NQ.(不要求证明)

图2-6-17

问题1:在上图中,将QP 绕Q 旋转至⊙O 1与⊙O 2外切如图2-6-18,结论PN 2

=NM·NQ 还成立吗?若成立,请证明.

图2-6-18

探究1:结论PN 2

=NM·NQ 仍然成立.

证明:由切线长定理,得PN=AN.

由切割线定理,得AN2=NM·NQ,

∴PN2=NM·NQ.

问题2:继续旋转至⊙O1与⊙O2外离,如图2-6-19,若使PN2=NM·NQ,请探究如何确定N的位置.

图2-6-19

探究2:作两圆内公切线交O1O2于点A,过A作AN⊥PQ于N,则PN2=NM·NQ.

备选习题

11.如图2-6-20,C是⊙O的直径AB延长线上一点,过点C作⊙O的切线CD,D为切点,连结AD、OD、BD,请根据图中所给出的已知条件,写出你认为正确的结论______________.

图2-6-20

解析:本题属于开放题,答案较多,如:

(1)CD2=CB·CA,切割线定理.

(2)DC⊥OD,切线性质.

(3)∠ADB=90°,圆周角性质.

(4)∠BDC=∠A,弦切角定理.

(5)△ACD∽△DCB等等.

12.如图2-6-21,已知AB是圆的直径,D是AB上一点,CD⊥AB,CD交圆于点E,CT是圆的切线,T 是切点.求证:BE2+CT2=BC2.

图2-6-21

证明:延长CD交⊙O于G,则DE=DG.

由切割线定理CT2=CE·CG

=CE·(CD+DG)

=CE·(CD+DE)

=CE·CD+CE·DE,

∴BE2+CT2=DE2+BD2+CE·CD+CE·DE

=CE·CD+DE(DE+CE)+BD2

=CE·CD+DE·CD+BD2

=CD(CE+DE)+BD2

高中数学-圆与圆的位置关系教案

圆与圆的位置关系教案 【教学目标】 1.能根据给定圆的方程,判断圆与圆的位置关系. 2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想. 3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯. 【教学重难点】 教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系. 【教学过程】 ㈠复习导入、展示目标 问题:如何利用代数与几何方法判别直线与圆的位置关系? 前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系. ㈡检查预习、交流展示 1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢? ㈢合作探究、精讲精练 探究一:用圆的方程怎样判断圆与圆之间的位置关系? 例1.已知圆 C 1:01322 2 =++++y x y x ,圆C 2 : 02342 2 =++++y x y x ,是 判断圆C 1 与圆C 2 的位置关系. 解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一) 圆C 1 的方程配方,得4 923)1(2 2 = +?? ? ??++y x . 圆心的坐标是??? ??- -23,1,半径长2 3 1 =r . 圆C 2 的方程配方,得4 1723)2(2 2 = +? ? ? ??++y x .

圆心的坐标是?? ? ??--23,2,半径长 2 172= r . 连心线的距离为1, 217321+= +r r ,2 3 1721-=-r r . 因为 2 17 312317+<<-, 所以两圆相交. (法二) 方程 01322 2 =++++y x y x 与02342 2 =++++ y x y x 相减,得 2 1 = x 把2 1= x 代入01322 2=++++y x y x ,得 011242 =++y y 因为根的判别式016144>-=?,所以方程011242 =++y y 有两个实数根,因此两 圆相交. 点评:巩固用方程判断圆与圆位置关系的两种方法. 变式2 2 2 2 (1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系 解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距 5.d == 因为 12d r r =+,所以两圆外切. ㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高 判断两圆的位置关系的方法: (1)由两圆的方程组成的方程组有几组实数解确定; (2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系. 【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;

高中数学必修二直线与直线方程题型归纳总结

知识点归纳概括 题型归纳分析 题型1:直线的倾斜角与斜率

考点1:直线的倾斜角 例1、过点),2(a M -和)4,(a N 的直线的斜率等于1, 则a 的值为( ) A 、1 B 、4 C 、1或3 D 、1或4 变式1:已知点)3,1(A 、)33,1(-B ,则直线AB 的倾斜角是( ) A 、?60 B 、?30 C 、?120 D 、?150 变式2:已知两点()2,3A ,()1,4-B ,求过点()1,0-C 的直线l 与线段AB 有公共点求直线l 的斜率k 的取值范围 考点2:直线的斜率及应用 斜率公式1 21 2x x y y k --= 与两点顺序无关,即两点的横纵坐标在公式中的前后次序相同; 斜率变化分两段, 2 π 是分界线,遇到斜率要特别谨慎 例1、三点共线——若三点()2,2A 、()0,a B 、()b C ,0,()0≠ab 共线,则b a 1 1+的值等于 变式1:若()3,2-A 、()2,3-B 、?? ? ??m C ,21三点在同一直线上,则m 的值为( ) A 、2- B 、2 C 、2 1 - D 、 2 1 考点3:两条直线的平行和垂直 对于斜率都存在且不重合的两条直线21l l 、,2121//k k l l =?,12121-=??⊥k k l l 。若有一条直线的斜率不存在,那么另一条直线的斜率是多少要特别注意 例、已知点()2,2M ,()2,5-N ,点P 在x 轴上,分别求满足下列条件的P 点坐标。 (1)OPN MOP ∠=∠(O 是坐标原点);(2) MPN ∠是直角

题型2:直线方程 考点1:直线方程的求法 例1、若()() 013442 2 =+?+-+?-y m m x m 表示直线,则( ) A 、2±≠m 且1≠m ,3≠m B 、2±≠m C 、1≠m 且3≠m D 、m 可取任意实数 变式1:直线0632=--y x 在x 轴上的截距为a ,在y 轴上的截距为b ,则( ) A 、2,3==b a B 、2,3-==b a C 、2,3=-=b a D 、2,3-=-=b a 变式2:过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 ; 在两轴上的截距相等的直线方程 变式3:过点)1,2(-P ,在x 轴和y 轴上的截距分别为b a 、,且满足b a 3=的直线方程是 考点2:用一般式方程判定直线的位置关系 两条直线位置关系的判定,已知直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,则 (1) 0//122121=-?B A B A l l 且01221≠-C A C A (2) 0212121=+?⊥B B A A l l

九年级数学教案数学教案-和圆有关的比例线段_0172文档

2020 九年级数学教案数学教案-和圆有关的比例线段_0172文档 EDUCATION WORD

九年级数学教案数学教案-和圆有关的比例线段 _0172文档 前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、 系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰 富自己的人生体验,也支撑整个社会的运作和发展。 本文内容如下:【下载该文档后使用Word打开】 教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆. 2、教学建议 本节内容需要三个课时.第1课时介绍相交弦定理及其推论,

做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3. (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习学习 (2)在教学中,引导学生“观察――猜想――证明――应用”等学习,教师组织下,以学生为主体开展教学活动. 第1课时:相交弦定理 : 1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算; 2.学会作两条已知线段的比例中项; 3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神; 4.通过推论的推导,向学生渗透由一般到特殊的思想方法.: 正确理解相交弦定理及其推论. : 在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理. 教学活动设计 (一)设置学习情境(一)设置情境

人教版高中数学必修二直线与方程题库

(数学2必修)第三章 直线与方程 [基础训练A 组] 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( ) A .0 45,1 B .0 135,1- C .090,不存在 D .0 180,不存在 6.若方程014)()32(2 2 =+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .2 3 - ≠m C .1≠m D .1≠m ,2 3 - ≠m ,0≠m 二、填空题 1.点(1,1)P - 到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;

小班数学教案数学教案-和圆有关的比例线段

小班数学教案|数学教案-和圆有关的比例线段教学建议 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的 重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主 要应用与圆有关的计算和证明. 难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆. 2、教学建议 本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课 时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3. (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生 研究性学习意识,激发学生的学习热情; (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动. 第1课时:相交弦定理 教学目标: 1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算; 2.学会作两条已知线段的比例中项; 3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和 探索精神; 4.通过推论的推导,向学生渗透由一般到特殊的思想方法. 教学重点: 正确理解相交弦定理及其推论. 教学难点:

在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明 中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从 而就可以用对应边成比例的结论直接写出定理. 教学活动设计 (一)设置学习情境 1、图形变换:(利用电脑使AB与CD弦变动) ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B. ②进一步得出:△APC∽△DPB. . ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发 生变化吗?为什么? 组织学生观察,并回答. 2、证明: 已知:弦AB和CD交于⊙O内一点P. 求证:PA·PB=PC·PD. (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成) (证明略) (二)定理及推论 1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD. 2、从一般到特殊,发现结论. 对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直如图,AB是直径,并且AB⊥CD于P. 提问:根据相交弦定理,能得到什么结论? 指出:PC2=PA·PB.

高中数学人教版必修2 4.2.2圆与圆的位置关系 教案(系列二)

4.2.2 圆与圆的位置关系 整体设计 教学分析 本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.根据学生的基础,学习的自觉性和主动性,自主学习和探究学习能力,平时的学习养成的善于观察、分析和思考的习惯,同时由于本节课从内容结构与思维方法上与直线与圆的位置关系相似,学生对上节课内容掌握较好,从而本节课从学生学习的角度来看不会存在太多的障碍,因而教学方法可以是引导学生从类比直线与圆位置关系来自主研究圆与圆的位置关系. 三维目标 使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想. 重点难点 教学重点:求弦长问题,判断圆和圆的位置关系. 教学难点:判断圆和圆的位置关系. 课时安排 1课时 教学过程 导入新课 思路1.平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系. 1 两圆的位置关系:

新课标高中数学必修2直线与方程

3.1知识表 直线方程的概念及直线的倾斜角和斜率 (1)直线的方程:如果以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解,这时,这个方程就叫做这条直线的方程,这条直线叫做这个方程的直线. (2)直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫这条直线的倾斜角.倾斜角的取值范围是0°≤α<180°. (3)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切值叫做这条直线的斜率.倾斜角是90°的直线的斜率不存在.过P 1(x 1,y 1),P 2(x 2, y 2)(x 2≠x 1)两点的直线的斜率特别地是,当12x x =, 12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0. 注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当 090α?<,随着α的增大,斜率k 也增大;当90180α?<

和圆有关的比例线段

和圆有关的比例线段 【同步达纲练习】(时间:45分钟,满分:100分) 一、填空题(8分×5=40分) (1)⊙O 内弦CD 垂直于直径AB ,E 为垂足,且AE=4cm ,BE=9cm ,CD=_4 _. (2)圆内两相交弦,一弦长3cm 被交点平分,另一弦被交点分成1:4,则此弦长为______. (3)已知圆的切线PT 的长是6cm ,割线PAB 的长是9cm ,则弦AB 的长是______. (4)在直径为2的圆外有一点P 到圆的最近点的距离为3,则过这点的切线长是______. (5)⊙O 的割线PAB 交⊙O 于A 、B 两点,已知:PA=6cm,AB=731 cm,PO=12cm,则⊙O 的半径 为______. 二、选择题(8分×5=40分) (1)圆的两弦相交,一弦被分为12cm 和8cm 两段,另一弦被分为3:8,则另一弦长是( ) A .11cm B.9 cm C.22cm D.33cm (2)圆内接正方形ABCD 的边长为2,弦AK 平分边BC,则AK 的长为( ) A.556 B.554 C.5 D.221 (3)从圆外一点向半径为9的圆作切线,已知切线长为18,则从这一点到圆的最短距离是 ( ) A.93 B.93-9 C.95-9 D.9 (4)已知⊙O 外一定点P,P 与O 的距离为4cm,从P 点向圆作切线,切线长与圆的半径之差 为2cm,则圆的半径为( ) A.(1+7)cm B.(7-1)cm 或(1+7)cm C.(7-1)cm 或(1+7)cm D.(7-1)cm (5)已知PA 是圆的切线,A 为切点,PBC 是圆的割线,与圆相交于B 、C 两点,若PB=3,BC=6, 则PA 的长为( )

高中数学必修二教案-空间中直线与直线之间的位置关系示范

2.1.2 空间中直线与直线之间的位置关系 整体设计 教学分析 空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念. 三维目标 1.正确理解空间中直线与直线的位置关系,特别是两直线的异面关系. 2.以公理4和等角定理为基础,正确理解两异面直线所成角的概念以及它们的应用. 3.进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质. 重点难点 两直线异面的判定方法,以及两异面直线所成角的求法. 课时安排 1课时 教学过程 导入新课 思路1.(情境导入) 在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样. 教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系. 思路2.(事例导入) 观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?

图1 推进新课 新知探究 提出问题 ①什么叫做异面直线? ②总结空间中直线与直线的位置关系. ③两异面直线的画法. ④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗? ⑤什么是空间等角定理? ⑥什么叫做两异面直线所成的角? ⑦什么叫做两条直线互相垂直? 活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路. 讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明. ②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系: ????????.,:; ,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图 2. 图2 ④组织学生思考: 长方体ABCD —A′B′C′D′中,如图1, BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4. 公理4:平行于同一条直线的两条直线互相平行.

高中数学必修二直线与圆方面的知识点

高中数学必修2知识点——直线与圆 整理 徐福扬 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

高中数学-圆与圆的位置关系练习

高中数学-圆与圆的位置关系练习 课后训练 1.已知01r <<,则两圆x 2+y 2=r 2与(x -1)2+(y +1)2=2的位置关系是( ). A .外切 B .相交 C .外离 D .内含 2.内切两圆的半径长是方程x 2+px +q =0的两根,已知两圆的圆心距为1,其中一圆 的半径为3,则p +q 等于( ). A .1 B .5 C .1或5 D .以上都不对 3.已知圆C 1:x 2+y 2-4x +6y =0和圆C 2:x 2+y 2-6x =0交于A ,B 两点,则线段AB 的垂直平分线方程为( ). A .x +y +3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y +7=0 4.若集合A ={(x ,y )|x 2+y 2≤16},B ={(x ,y )|x 2+(y -2)2≤a -1}且A ∩B =B ,则a 的取值范围是( ). A .a ≤1 B.a ≥5 C .1≤a ≤5 D.a ≤5 5.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a ,b 应 满足的关系式是( ). A .a 2-2a -2b -3=0 B .a 2+2a +2b +5=0 C .a 2+2b 2+2a +2b +1=0 D .3a 2+2b 2+2a +2b +1=0 6.两圆x 2+y 2=4和x 2+y 2-2x +4y +1=0关于直线l 对称,则直线l 的方程为__________. 7.两圆相交于两点(1,3),(m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值为__________. 8.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若 A ∩ B 中有且仅有一个元素,则r 的值是__________. 9.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为 直径的圆的方程. 10.已知动圆M 与y 轴相切且与定圆A :(x -3)2+y 2=9外切,求动圆的圆心M 的轨迹 方程.

高中数学必修二直线与圆方面的知识点

高中数学必修2知识点——直线与圆 整理 徐福扬 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

切线长定理 弦切角和圆有关的比例线段 通用版

切线长定理 弦切角和圆有关的比例线段 一. 本周教学内容: 切线长定理、弦切角和圆有关的比例线段 1. 切线长的概念:在经过圆外一点的切线上这点和切点之间的线段的长,叫做这点到圆的切线长。 2. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,且圆心和这一点的连线平分这两条切线的夹角。 3. 弦切角的概念:顶点在圆上,一边和圆相交,一边和圆相切的角叫做弦切角。 4. 弦切角定理:弦切角等于它所夹弧所对的圆周角。 5. 弦切角定理的推论:如果两个弦切角所夹的弧相等,那么这两个弦切角相等。 6. 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 7. 相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。 8. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 9. 切割线定理的推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。 二. 重点、难点: 重点是和圆有关的比例线段,难点是运用和圆有关的比例线段分析问题和解决问题。 易错点分析: 1. 要注意切线和切线长,这是两个不同的概念,前者是直线,后者是线段的长。 2. 注意弦切角与圆心角、圆周角的区别与联系,它们的空间位置不同,但在度数上有很密切的联系。另外弦切角的三个条件缺一不可。弦切角与切线有着密切的联系,做题时,遇到弦切角找到切点要连结半径,这样就有垂直的关系。 3. 相交弦定理、切割线定理及它们的推论,它们的结论都是线段的等积式,而不是比例式,它们可用来解关于计算和证明的题目。等积式中的各线段要记牢,不要记混。 【例题分析】 例1. 求证:圆外切四边形的两组对边的和相等。 A F B G E D H C 已知:四边形ABCD 为⊙O 的外切四边形,E 、F 、G 、H 分别为切点。求证:AB +CD =AD +BC 证明: AE AF O E F 、为⊙的切线,且切点为、 ∴====∴+++=++++=+AE AF BF BG DE DH CH CG AF FB DH CH AE BG DE CG AB CD AD BC ,同理,,即 例2. 如图所示,AB 是⊙O 的直径,AC 、BF 为⊙O 的切线,CF 切⊙O 于D ,DE AB ⊥于E ,交BC 于G ,求证:DG =EG

(word完整版)高中数学必修二直线与圆、圆与圆的位置关系练习题.doc

1.已知直线和圆有两个交点,则的取值范围是()A.B.C. D. 2.圆 x2+y2-2acos x-2bsin y-a2sin=0 在 x 轴上截得的弦长是() A .2a B. 2|a| C.|a| D. 4|a| 3.过圆x2+y2-2x+4y- 4=0 内一点M(3,0)作圆的割线,使它被该圆截得的 线段最短,则直线的方程是() A .x+y-3=0 B .x-y-3=0 C.x+4y-3=0 D. x-4y-3=0 4.若直线 (1+a)x+y+1=0 与圆x2+y2-2x=0 相切,则 a 的值为()A.1 或-1 B.2 或 -2 C.1 D.-1 5.若直线3x+4y+c=0 与圆 (x+1)2+y2=4 相切,则 c 的值为() A.17 或-23 B.23 或-17 C.7 或 -13 D.-7 或13 6.若 P(x,y) 在圆 (x+3)2+(y-3)2=6上运动,则的最大值等于() A .-3+2 B .-3+ C. -3-2 D.3-2 7.圆 x2+y2+6x-7=0 A.相切和圆 x2+y2+6y-27=0 B . 的位置关系是 (相交 ) C.相 离 D .内含 8.若圆x2+y2=4 和圆x2+y2+4x-4y+4=0 关于直线对称,则直线的方程是()

A .x+y=0 B .x+y-2=0 C. x-y-2=0 D.x-y+2=01 . 9.圆的方程 x2+y2+2kx+k2-1=0 与 x2+y2+2(k+1)y+k2+2k=0 的圆心之间的最短距离是() A. B .2 C.1D. 10.已知圆 x2+y2+x+2y= 圆的位置关系是(和圆 (x- sin ) )2+(y-1)2= , 其中0 900, 则两 A .相交B.外切 C .内 切D.相交或外切 11.与圆 (x-2)2+(y+1)2=1 关于直线x-y+3=0 成轴对称的曲线的方程是() A .(x-4)2+(y+5)2=1 C.(x+4)2+(y+5)2=1 B .(x-4)2+(y-5)2=1 D. (x+4)2+(y-5)2=1 12.圆x2+y2-ax+2y+1=0 关于直线x-y=1 对称的圆的方程为x2+y2=1, 则实数 a 的值为() A .0 B .1 C. 2 D.2 13.已知圆方程C1:f(x,y)=0 ,点P1(x1,y1) 在圆C1 上,点P2(x2,y2) 不在圆 C1上,则方程: f(x,y)- f(x1,y1)-f(x2,y2)=0 表示的圆C2与 圆 C1的关系是() A.与圆C1 重 合B.与圆C1 同心圆 C.过 P1 且与圆 C1同心相同的 圆 C1同心相同的圆D.过P2 且与圆 14.自直线 y=x 上一点向圆 x2+y2-6x+7=0 作切线,则切线的最小值为 ___________. 15.如果把直线 x2+y2+2x-4y=0 x-2y+ =0 向左平移 1 个单 位,再向下平移

数学必修2直线与方程典型例题

第三章 直线与方程 【典型例题】 题型 一 求直线的倾斜角与斜率 设直线 l 斜率为 k 且 11<

3.1.2 两条直线平行与垂直的判定 【 【典型例题】 题型 一 两条直线平行关系 例 1 已知直线1l 经过点M (-3,0)、N (-15,-6),2l 经过点R (-2, 32)、S (0,52 ),试判断1l 与2l 是否平行? 变式训练:经过点(2,)P m -和(,4)Q m 的直线平行于斜率等于1的直线,则m 的值是( ). A .4 B .1 C .1或3 D .1或4 题型 二 两条直线垂直关系 例 2 已知ABC ?的顶点(2,1),(6,3)B C -,其垂心为(3,2)H -,求顶点A 的坐标. 变式训练:(1)1l 的倾斜角为45°,2l 经过点P (-2,-1)、Q (3,-6),问1l 与2l 是否垂直? (2)直线12,l l 的斜率是方程2310x x --=的两根,则12l l 与的位置关系是 . 题型 三 根据直线的位置关系求参数 例 3 已知直线1l 经过点A(3,a)、B (a-2,-3),直线2l 经过点C (2,3)、D (-1,a-2), (1)如果1l //2l ,则求a 的值;(2)如果1l ⊥2l ,则求a 的值

第二节 直线和园的位置关系、和圆有关的比例线段

第二节 直线和圆的位置关系、 和圆有关的比例线段 知识网络 一、直线和圆的位置关系 1.()()()d r d r d r d r ? ???? ?>?

2.【05连云港】如图,⊙O 的直径AB 与弦AC 的夹角为?30,切线CD 与AB 的延长线交于 点D ,若⊙O 的半径为3,则CD 的长为 (A )6 (B )36 (C )3 (D )33 3.【05南通海门】 如图,已知AD 是△ABC 的外接圆的直径,AD =13 cm ,5 cos 13 B = ,则AC 的长等于 A .5 cm B .6 cm C .10 cm D .12 cm 4.【05北京】如图,PA 、PB 是⊙O 的两条切线,切点是A 、B 。如果OP =4,PA =23,那么∠AOB 等于( ) A. 90° B. 100° C. 110° D. 120° 5.【05河北】已知⊙O 的半径为r ,圆心O 到直线l 的距离为d 。若直线l 与⊙O 有交点, 则下列结论正确的是 A .d =r B .d ≤r C .d ≥r D .d <r 6.【05武汉】已知圆的半径为6.5cm ,如果一条直线和圆心的距离为9cm ,那么这条直线和 这个圆的位置关系是( ). (A )相交 (B )相切 (C )相离 (D )相交或相离 7.【05梅山】如图, 点C 是O 上一点,M 、N 分别是CA 、CB 上的点,满足 CM CN CA CB =若点C 在⊙O 上运动,当C 运动到优弧上(不含点A 、点B)时,MN 的长 A.变大 B.变小 C.不变 D.有可能变大,也有可能变小 8.【05重庆课改】如图,AB 与⊙O 相切于点B ,AO =6㎝ ,AB =4㎝,则⊙O 的半径为 A .45㎝ B .25㎝ C .213㎝ D .13㎝ 二、填空题 (第 9题) D

高中数学-圆与圆的位置关系测试题

高中数学-圆与圆的位置关系测试题 自我小测 1.已知0<r+1,则两圆x2+y2=r2与(x-1)2+(y+1)2=2的位置关系是( ) A.外切B.相交C.外离D.内含 2.内切两圆的半径长是方程x2+px+q=0的两个根,已知两圆的圆心距为1,其中一圆的半径为3,则p+q等于( ) A.1 B.5 C.1或5 D.以上都不对 3.已知圆C1:x2+y2-4x+6y=0和圆C2:x2+y2-6x=0交于A,B两点,则线段AB 的垂直平分线的方程为( ) A.x+y+3=0 B.2x-y-5=0 C.3x-y-9=0 D.4x-3y+7=0 4.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=( ) A.4 B. C.8 D. 5.若集合A={(x,y)|x2+y2≤16},B={(x,y)|x2+(y-2)2≤a-1},且A∩B=B,则a的取值范围是( ) A.a≤1 B.a≥5C.1≤a≤5 D.a≤5 6.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b应满足的关系式是( ) A.a2-2a-2b-3=0 B.a2+2a+2b+5=0 C.a2+2b2+2a+2b+1=0 D.3a2+2b2+2a+2b+1=0 7.若a2+b2=1,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系为__________.8.与圆C1:(x-1)2+y2=1,圆C2:(x-4)2+(y+4)2=4均外切的圆中,面积最小的圆的方程是__________. 9.已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时,(1)圆C1与圆C2外切;(2)圆C1与圆C2内含? 10.已知一个圆和圆C1:x2+y2-2x=0相外切,并与直线l:x y=0相切于点M(3, ,求该圆的方程. 11.如图所示,圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1,圆O2的 切线PM,PN(M,N分别为切点),使得|PM||PN|.试建立适当的坐标系,求动点P的轨迹方程.

高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)

直线与圆的方程综合复习(含答案) 一. 选择题 1.已知点则直线AB 的倾斜角是( C ) A 3 p B 6 p C 23 p D 56 p 2.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 10 3.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2 a -1)=0平行但不重合,则a 等于( D ) A -1或2 B 2 3 C 2 D -1 4.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=0 5.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D ) A.[)π,0 B.? ? ? ???ππ43,4 C.?? ? ? ??-4,4ππ D.?? ? ????? ????πππ,4 34,0 6.“m= 1 2 ”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B ) A 充分必要条件 B 充分而不必要条件 C 必要而不充分条件 D 既不充分也不必要条件 7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且 1l ^ 2l ,则直线2l 的方程为( B ) A x+3y-5=0 B x+3y-15=0 C x-3y+5=0 D x-3y+15=0 9. 过坐标原点且与圆2 x +2 y -4x+2y+52 =0相切的直线方程为( A ) A y=-3x 或y= 13x B y=3x 或y= -13x C y=-3x 或y= -13x D y=3x 或y= 1 3 x 10.直线x+y=1与圆2 x +2 y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )

最新4-1:和圆有关的比例线段-教案

高二数学选修4-1 五和圆有关的比例线段 教学目标: 1.理解相交弦定理及其推论;掌握切割线定理及其推论,并初步学会运用它们进行计算和证明; 2.掌握切线长定理及构造相似三角形证明切割线定理的方法与技巧,培养学生从几何图形归纳出几何性质的能力 3.能够用运动的观点学习切割线定理及其推论,培养学生辩证唯物主义的观点.教学重点:正确理解相交弦定理及其推论.切割线定理及其推论,它是以后学习中经常用到的重要定理. 教学难点:定理的灵活运用以及定理与推论问的内在联系 教学活动: 一.复习导入: 1. 证明:已知:弦AB和CD交于O O内一点P. 求证:PA?PB= PC PD . 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.从一般到特殊,发现结论.对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互相垂直思 考: (1)若AB是直径,并且AB丄CD于P.根据相交弦定理,能得到什么结论? 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. (2)若再连结AC , BC,则在图中又出现了射影定理的基本图形,于是有: 2 2 2 PC2= PA-PB ; AC2= AP-AB ; CB2= BP-AB 二.范例讲解一 例1:已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为 32 厘米,求第二条弦被交点分成的两段的长. 根据题意列出方程并求出相应的解. 例2 :已知:线段a, b. 求作:线段c,使c2= ab. 分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可作出以线段a十b为直 径的半圆,仿照推论即可作出要求作的线段. 作法:口述作法.

相关主题
文本预览
相关文档 最新文档