当前位置:文档之家› 脆性大理岩弹塑性耦合力学模型研究

脆性大理岩弹塑性耦合力学模型研究

脆性大理岩弹塑性耦合力学模型研究
脆性大理岩弹塑性耦合力学模型研究

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

弹塑性力学试题

考试科目:弹塑性力学试题 班号 研 班 姓名 成绩 一、概念题 (1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。 (2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。 (3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。 二、已知轴对称的平面应变问题,应力和位移分量的一般解为: ,)11(2)11(10,2,222 2=?? ????--+-+--==+-=+= θθθμμμμμτσσu Cr r A E u C r A C r A r r r 利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。 解:边界条件为: a r =时:p r -=σ;0=θτr b r =时:0=r u ;0=θu 。 将上述边界条件代入公式得: ??? ? ???=?????--+-+--=-=+=0)11(2)11(122 2μμμμb C b A E u p C a A b r r 解上述方程组得: ()()()??? ? ???+-- =+---=]21[22121222 2222a b pa C a b b pa A μμμ 则该问题的应力和位移分量的解分别为:

()()()()()()??? ???? ? ? ??? ???=?? ???????? ??---+-???? ??-+-+--==+--+--=+--+---=??011)]21([11)]21([)21(10 21121212112121222222 222 22 222222 22 22222θθθμμμμμμμμτμμμσμμμσu b a pra b a r b pa E u a b pa r a b b pa a b pa r a b b pa r r r 三、已知弹性半平面的o 点受集中力 2 2222 222 2 223 )(2)(2)(2y x y x P y x xy P y x x P xy y x +- =+-=+- =πτπσπσ 利用上述解答求在弹性半平面上作用着n 个集中力i p 构成的力系, 这些力到所设原点的距离分别为i y ,试求应力xy y x τσσ,,的一般表达式。 解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: y y

清华大学研究生弹塑性力学讲义 5弹塑性_弹性力学的基本方程与解法

弹塑性力学 第四章 弹性力学的基本方程与解法 一、线性弹性理论适定问题的基本方程和边界条件 对于在空间占有体积域V 的线弹性体在外加恒定载荷和固定几何约束条件下引起 的小变形问题,若以, , u εσ作为求解变量,则可以建立如下偏微分方程边值问题: 几何方程 ()1,,2ij i j j i u u ε= + ()12?+?u u ε= (1a) 广义胡克定律 ij ijkl kl E σε= :E σ=ε (1b) 平衡方程 ,0ij j i f σ+= ??+=f 0σ V ?∈x (1c) 以上方程均要求在域内各点均满足。 边界条件 u u i i = ?∈x S ui (2a) n t j ji i σ= ?∈x S ti (2b)对于适定问题,即不仅要求保证解存在唯一,而且有较好的稳定性。当载荷或边界条件给定值有微小摄动时,应能保证问题解的变化也是微小的。对于边界条件的提法就有严格的要求。即要求: S S S S S ui ti ui ti U I ==? (2c) 对于各向同性材料,其广义胡克定律可具体写成 σλεδεij kk ij ij G =+2 ()tr 2G λ+I σ=εε (3a) ()11ij ij kk ij E ενσνσδ??=+??? ()()1tr E νν=????I ε1+σ?σ (3b)以上就域内方程来说,一共是对于u ,,σ ε的15个独立分量u i ij ij ,, σε的15个方程。对于边界条件来说,三维问题每点有三个边界条件,而且是在三个正交方向上每个方向有一个边界条件,这个边界条件或者给定位移、或者给定面力。这三个正交

弹塑性力学习题题库加答案汇编

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及 30106.768 6.77() 104sin 2cos 2sin 602cos 60 221 32 3.598 3.60() 22 x y xy MPa MPa σστατα= --=----+=?+=?-=-?-?=-- 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 3030( )cos 2sin 22 2 1041041cos 602sin 6073222226.768 6.77()104 sin 2cos 2sin 602cos 60 22132 3.598 3.60() 2 x y x y xy x y xy MPa MPa σσσσσατα σστατα+-= ++---+= ++=--?+?=----+=-?+=-?+=+?= 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: 题图 1-3

c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??= ==?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε= = ; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = =  ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =500300800300 03008003001100-???? +-?? ??--? ? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P 、正应力σn 及剪应力τn 。 题—图 16

应用弹塑性力学习题解答[精选.]

应用弹塑性力学习题解答 目录 第二章习题答案 (2) 第三章习题答案 (6) 第四章习题答案 (9) 第五章习题答案 (26) 第六章习题答案 (37) 第七章习题答案 (49) 第八章习题答案 (54) 第九章习题答案 (57) 第十章习题答案 (59) 第十一章习题答案 (62)

第二章习题答案 2.6设某点应力张量的分量值已知,求作用在过此点平面上的应力矢量,并求该应力矢量的法向分量。 解该平面的法线方向的方向余弦为 而应力矢量的三个分量满足关系 而法向分量满足关系最后结果为 2.7利用上题结果求应力分量为时,过平面处的应力矢量,及该矢量的法向分量及切向分量。 解求出后,可求出及,再利用关系 可求得。 最终的结果为

2.8已知应力分量为,其特征方程为三次多项式,求。如设法作变换,把该方程变为形式,求以及与的关系。 解求主方向的应力特征方程为 式中:是三个应力不变量,并有公式 代入已知量得 为了使方程变为形式,可令代入,正好项被抵消,并可得关系 代入数据得,, 2.9已知应力分量中,求三个主应力。 解在时容易求得三个应力不变量为, ,特征方程变为 求出三个根,如记,则三个主应力为 记

2.10已知应力分量 ,是材料的屈服极限,求及主应力。 解先求平均应力,再求应力偏张量,, ,,,。由此求得 然后求得,,解出 然后按大小次序排列得到 ,, 2.11已知应力分量中,求三个主应力,以及每个主应力所对应的方向余弦。 解特征方程为记,则其解为,,。对应于的方向余弦,,应满足下列关系 (a) (b) (c) 由(a),(b)式,得,,代入(c)式,得 ,由此求得

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。

弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程[式(2-1-22)],或用脚标形式简写为 (2)6个变形几何方程[式(2-1-29)],或简写为 (3)6个物性方程[式(3-5)或式(3-6)],简写为 或 2.边界条件 弹性力学一般问题的解,在物体内部满足上述线性方程组,在边界上必须满足给定的边界条件。弹性力学问题按边界条件分为三类。 a 应力边界问题在边界Sσ表面上作用的表面力分量为F x、F y、F z.。面力与该点在物体内的应力分量之间的关系,即力的边界条件为 式中,l nj=cos(n,j)为边界上一点的外法线n对j轴的方向余弦。 这一类问题中体积力和表面力是已知的,求解体内各点的位移、应变和应力。 b 位移边界问题在边界S x上给定的几何边界条件为

弹塑性力学讲义简答题

研究生弹塑性考试试题 1. 简答题:(每小题2分) (1) 弹性本构关系和塑性本构关系的各自主要特点是什么? (2) 偏应力第二不变量J 2的物理意义是什么? (3) 虚位移原理是否适用于塑性力学问题?为什么? (4) 塑性内变量是否可以减小?为什么? (5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么? (6) 解释:在应力空间中为什么应力状态不能位于加载面之外? (7) π平面上的点所代表的应力状态有何特点? (8) 举例说明屈服条件为各向同性的物理含义? 2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分) 3. 试确定下面的平面应变状态是否存在?(6分) εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数 4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin 0,如图所示,设位移函数为 0=u b y b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。(15分) y x a b A B C O (第4题图) (第5题图) 5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。试证,为了将薄

板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。并求挠度和反力。(15分) 6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数 ?=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy 能否成立。若能成立求出应力分量。(15分) (第6题图) 7. 8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可 忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明 σz =2 1(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。(10分)

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

弹塑性力学习题及问题详解

实用标准文案 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

第二章应力状态 弹塑性力学基本理论及应用_刘土光

第二章 应力状态理论 2.1 应力和应力张量 在外力作用下,物体将产生应力和变形,即物体中诸元素之间的相对位置发生变化,由于这种变化,便产生了企图恢复其初始状态的附加相互作用力。用以描述物体在受力后任何部位的内力和变形的力学量是应力和应变。本章将讨论应力矢量和某一点处的应力状态。 为了说明应力的概念,假想把受—组平衡力系作用的物体用一平面A 分成A 和B 两部分(图2.1)。如将B 部分移去,则B 对A 的作用应代之以B 部分对A 部分的作用力。这种力在B 移去以前是物体内A 与B 之间在截面C 的内力,且为分布力。如从C 面上点P 处取出一包括P 点在内的微小面积元素S ?,而S ?上的内力矢量为F ?,则内力的平均集度为F ?/S ?,如令S ?无限缩小而趋于点P ,则在内力连续分布的条件下F ?/S ?趋于一定的极限σ,即 σ=??→?S F S 0lim 这个极限矢量σ就是物体在过c 面上点P 处 的应力。由于S ?为标量,故,σ的方向与F ?的 极限方向一致。内力矢量F ?可分解为所在平面 的外法线方向和切线方向两个分量n F ?和s F ?。 同样,应力σ可分解为所在平面的外法线方向 和切线方向两个分量。沿应力所在平面 的外法线方向n 的应力分量称为正应力,记为n σ,沿切线方向的应力分量称为切应力,记为 n τ。此处脚注n 标明其所在面的外法线方向,由此, S ?面上的正应力和切应力分别为n σ和n τ。 在上面的讨论中,过点P 的平面C 是任选的。显然,过点P 可以做无穷多个这样的平面C ,也就是说,过点P 有无穷多个连续变化的n 方向。不同面上的应力是不同的。这样,就产生了如何描绘一点处的应力状态的问题。为了研究点P 处的应力状态,在点P 处沿坐标轴x ,y ,z 方向取一个微小的平行六面体(图2.2),其六个面的外法线方向分别与三个坐标轴的正负方向重合,其边长分别为x ?,Δy ,Δz 。假定应力在各面上均匀分布,于是各面上的应力便可用作用在各面中心点的一个应力矢量来表示,每个面上的应力矢量又可分解关一个正应力和两个切应力分量,如图2.2所示。以后,对正应力只用一个字母的下标标记,对切应力则用两个字母标记*其中第一个字母表示应力所在面的外法线方向;第二个字母表示应力分量的指向。正应力的正负号规定为:拉应力为正,压应力为负。切应力的正负号规定分为两种情况:当其所在面的外法线与坐标轴的正方向一致时,则以沿坐标轴正方向的切应力为正,反之为负;当所在面的外法线与坐标袖的负方向一致时,则以沿坐标轴负方向的切应力为正,反之为负。图2.2中的各应力分量均 图2.1 应力矢量

弹塑性力学习题及答案

1 本教材习题和参考答案及部分习题解答 第二章 2.1计算:(1)pi iq qj jk δδδδ,(2)pqi ijk jk e e A ,(3)ijp klp ki lj e e B B 。 答案 (1)pi iq qj jk pk δδδδδ=; 答案 (2)pqi ijk jk pq qp e e A A A =-; 解:(3)()ijp klp ki lj ik jl il jk ki lj ii jj ji ij e e B B B B B B B B δδδδ=-=-。 2.2证明:若ij ji a a =,则0ijk jk e a =。 (需证明) 2.3设a 、b 和c 是三个矢量,试证明: 2[,,]??????=???a a a b a c b a b b b c a b c c a c b c c 证:因为1 231 111232221 2 33 3 3i i i i i i i i i i i i i i i i i i a a a b a c b a b b b c c a c b c c a a a a b c b b b a b c c c c a b c ?? ???? ??????=?????????????????? , 所以 1 231111232221 2 33 3 3 1 231 1112322212 333 3det det()i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c a a a a b c b b b a b c c c c a b c ?? ??????????==??? ??????????????? 即得 123111 2 123222123333 [,,]i i i i i i i i i i i i i i i i i i a a a b a c a a a a b c b a b b b c b b b a b c c a c b c c c c c a b c ??????=???==a a a b a c b a b b b c a b c c a c b c c 。 2.4设a 、b 、c 和d 是四个矢量,证明: ()()()()()()???=??-??a b c d a c b d a d b c 证明:()()??=a b c d ?

(完整版)弹塑性力学公式

应力应变关系: 弹性模量 || 广义虎克定律 1.弹性模量 a 弹性模量 单向拉伸或压缩时正应力与线应变之比,即 E σε = b 切变模量 切应力与相应的切应变 之比,即 G τγ= c 体积弹性模量 三向平均应力 0() 3 x y z σσσσ++= 与体积应变θ(=εx +εy +εz )之比, 即 K σθ= d 泊松比 单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 1 ε νε= 2.广义虎克定律 a.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即 (1)3个平衡方程(或用脚标形式简)写 为: 22()0 j ij i i x u f t σρ??++-=?? (,,,)i j x y z = (2)6个变形几何方程,或简写为: 1()2j i ij j i u u E x x ??= +?? (,,,)i j x y z = (3)6个物性方程简写为: 0132ij ij E G E ν σσδ= - 2ij ij ij G σελθδ=+ (,,,)i j x y z = { 1() 0() () i j ij i j δ=≠= 2.边界条件 x x xx xy xy xz xz F l l l σττ=++ y yz xx y xy yz xz F l l l τσσ=++ z zz xx xy xy z xz F l l l ττσ=++ 式中,l nj =cos(n,j)为边界上一点的外 法线n 对j 轴的方向余弦 b 位移边界问题 在边界S x 上给定的几何边界条件为 *x x u u = * y y u u = *z z u u = 式中,u i 为表面上给定的位移分量 Cauchy 公式: T x = σ x l + τ xy m +τ zx n T y = τ xy l+σ y m +τ zy n T y =τ xz l+τ y z m +σ z n (n z n T n T στ= 边界条件: ()()()x xy xz s x xy y yz s y xz yz z s z l m n T l m n T l m n T στττστττσ++=++=++= 平衡微分方程: 000yx x zx x xy y zy y yz xz z z F x y z F x y z F x y z τσττστττσ???+++=??????+++=??????+++=??? 主应力、不变量,偏应力不变量 321231230 x y z x xy y z zx yz yx y zy xz x z x xy xz yx y yz zx zy z I I I I I I σσσσσσστσστττσττσσστττστττσ-+-==++=++ = 1231 ();3 m i i m s σσσσσσ=++=- ()()()1123222222230 16()6x y y z z x xy yz zx J s s s J J σσσσσστττ=++=??=-+-+-+++????=偏应力张量行列式的秩 八面体 812381 () 3σσσστ=++ 等效应力σ=体积应变x y z θεεε=++ 12312()E v v εσσσ-= ++ 几何方程: ;;;x xy y yz z xy u u v x y x v v w y z y w u w z z x εγεγεγ???= =+??????==+ ??????==+ ??? 1 2 ij ij εγ= 变形协调方程22 222y xy x xy y x ετε???+=??? 物理方程 ()()()12(1) ;12(1) ;12(1) ;x x y z xy xy y y x z yz yz z z y x zx zx v v E E v v E E v v E E εσσσγτεσσσγτεσσσγτ+??=-+=??+??=-+=??+??=-+=??

(完整版)弹塑性力学习题题库加答案

第二章 应力理论和应变理论 2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。己求得应力解为: σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ; 试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。 解:首先列出OA 、OB 两边的应力边界条件: OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0 代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0; OB 边:l 1=cos β;l 2=-sin β,T x =T y =0 则:cos sin 0 cos sin 0x xy yx y σβτβτβσβ+=??+=?……………………………… (a ) 将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得: ()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=?? ? --+-=?? L L L L L L L L L L L L L L L L L L 化简(b )式得:d =γ1ctg 2β; 化简(c )式得:c =γctg β-2γ1 ctg 3β 2—17.己知一点处的应力张量为3 1260610010000Pa ??????????? 试求该点的最大主应力及其主方向。 解:由题意知该点处于平面应力状态,且知:σx =12× 103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得: (()() 3 1.2333 3 121010 2217.0831******* 6.082810 4.9172410x y Pa σσσ?++?=±=????=?=±?=? 则显然: 3312317.08310 4.917100Pa Pa σσσ=?=?= σ1 与x 轴正向的夹角为:(按材力公式计算) ()22612 sin 226 12102 cos 2xy x y tg τθθσσθ--?-++ = = ==+=--+ 显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376° 题图 1-3

弹塑性力学讲义应力

第1章 应 力 1. 1 应力矢量 物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。为了描述内力场,Chauchy 引进了应力的重要概念。对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。如将B 部分移去,则B 对A 的作用应以分布的内力代替。考察平面C 上包括P 点在内的微小面积,如图1.1所示。设微面外法线(平面C 的外法线)为n ,微面面积为?S ,作用在微面上的内力合力为?F ,则该微面上的平均内力集度为?F /?S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为 T (n ) =S F s ???0 lim → B ?S A C P n ?F x y z 图1.1 应力矢量定义 在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为 T (n ) = T x e x +T y e y +T z e z (1.1) 式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力 8 除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。实际应用 中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。 显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。所有这些应力矢量构成该点的应力状态。 由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为: T(-n)= -T(n) (1.2) 1.2 应力张量 人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。因此有三个正面和三个负面。 图1.2 一点的应力状态

弹塑性力学基本内容

弹塑性力学基本内容 本课程是以物体的应力、应变理论以及在工程中的应用主要对象的一门基础性、实践性很强的应用学科。 教学目标为在强化物体的应力、应变理论基础的同时,关注物体的弹性力学模型的建立、分析和应用,并兼顾塑性理论的建立。在深度和广度上力求体现学科专业发展的前沿,有利于研究生掌握弹性理论专门知识,了解塑性理论的思想和方法,并着重在基础理论和实践应用两方面进行科研能力的培养。其基本要求为:使学生掌握弹性理论的建立、分析、应用,初步掌握塑性力学理论,使其具有从事弹性力学分析的知识和初步能力。 (1)弹塑性力学的研究对象和内容、弹塑性力学的分析方法和体系、弹塑性力学的基本假定 应力矢量、应力张量、Cauchy公式、平衡微分方程、力边界条件、应力分量的坐标变换、主应力、应力张量不变量、最大切应力、Mohr应力圆、偏应力张量及其不变量、八面体上的应力和等效应力、主应力空间与π平面 (2)位移分量和应变分量、两者的关系、物体内无限邻近两点位置的变化、转动分量、转轴时应变分量的变换、应变张量、主应变应变张量不变量、应变协调方程、应力和应变的关系、应力率和应变增量 (3)弹性力学的基本方程及其边值问题、位移解法(以位移表示的平衡微分方程)、应力解法(以应力表示的应变协调方程)、解的唯一性定理、局部性原理、逆解法和半逆解法、几个简单问题的求解 (4)平面应变问题、平面应力问题、应力解法(把平面问题归结为双调和方程的边值问题)、用多项式解平面问题、悬臂梁一端受集中力作用、简支梁受均匀分布荷载作用(5)平面问题的极坐标方程、轴对称应力问题和对应的位移、圆筒受均匀压力作用、曲梁的纯弯曲、具有小圆孔的平板的均匀拉伸 (6)薄板弯曲的基本概念及基本假设、弹性曲面的基本公式、薄板横截面上的内力、边界条件、圆形薄板弯曲问题 (7)塑性力学的基本概念、材料在简单拉压时的实验结果、应力-应变关系的简化模型、轴向拉伸时的塑性失稳、塑性本构关系的主要内容和研究方法 (8)应变张量和应力张量、屈服条件、几个常用的屈服条件、屈服条件的实验验证、加载条件 (9)塑性应变增量、加卸载判别准则、Drucker公设和Ilyushin公设、加载面外凸性和正交流动法则、塑性势理论、简单弹塑性问题

弹塑性力学定理和公式

弹塑性力学定理和公式

应力应变关系 弹性模量 ||广义虎克定律 1.弹性模量 对于应力分量与应变分量成线性关系的各向同性弹性体,常用的弹性常数包括: a 弹性模量单向拉伸或压缩时正应力与线应变之比,即 b 切变模量切应力与相应的切应变之比,即 c 体积弹性模量三向平均应力 与体积应变θ(=εx+εy+εz)之比,即 d 泊松比单向正应力引起的横向线应变ε1的绝对值与轴向线应变ε的绝对值之比,即 此外还有拉梅常数λ。对于各向同性材料,这五个常数中只有两个是独立的。常用弹性常数之间的关系见表3-1 弹性常数间的关系。室温下弹性常数的典型值见表3-2 弹性常数的典型值。 2.广义虎克定律 线弹性材料在复杂应力状态下的应力应变关系称为广义虎克定律。它是由实验确定,通常称为物性方程,反映弹性体变形的物理本质。 A 各向同性材料的广义虎克定律表达式(见表3-3 广义胡克定律表达式)对于圆柱坐标和球坐标,表中三向应力公式中的x 、y、z分别用r、θ、z和r、θ、φ代替。对于平面极坐标,表中平面应力和平面应变公式中的x、y、z用r、θ、z代替。 B 用偏量形式和体积弹性定律表示的广义虎克定律应力和应变张量分解为球张量和偏张量两部分时,虎克定律可写成更简单的形式,即 体积弹性定律 应力偏量与应变偏量关系式 在直角坐标中,i,j=x,y,z;在圆柱坐标中,i,j=r,θ,z,在球坐标中i,j=r,θ,φ。 弹性力学基本方程及其解法 弹性力学基本方程 || 边界条件 || 按位移求解的弹性力学基本方法 || 按应力求解的弹性力学基本方程 || 平面问题的基本方程 || 基本方程的解法 || 二维和三维问题常用的应力、位移公式 1.弹性力学基本方程 在弹性力学一般问题中,需要确定15个未知量,即6个应力分量,6个应变分量和3个位移分量。这15个未知量可由15个线性方程确定,即

弹塑性力学试题答案完整版

弹塑性力学2008、2009级试题 一、简述题 1)弹性与塑性 弹性:物体在引起形变的外力被除去以后能恢复原形的这一性质。 塑性:物体在引起形变的外力被除去以后有部分变形不能恢复残留下来的这一性质。 2)应力和应力状态 应力:受力物体某一截面上一点处的内力集度。 应力状态:某点处的9个应力分量组成的新的二阶张量∑。 3)球张量和偏量(P25) 球张量:球形应力张量,即σ=0 00000m m m σσσ?????????? ,其中()13m x y z σσσσ=++ 偏量:偏斜应力张量,即x m xy xz ij yx y m yz zx zy z m S σστττσστττσσ?? -?? =-????-? ?,其中()13 m x y z σσσσ=++ 4)描述连续介质运动的拉格朗日法和欧拉法 拉格朗日描述也被称为物质描述,同一物质点在运动过程中的坐标值不变,物质体变形表现为坐标轴变形、基矢量的随体变化。 采用拉格朗日描述时,在变形过程中网格节点和积分点始终与物质点一致,便于精确描述材料特性、边界条件、应力和应变率; 欧拉描述也被称为空间描述。在欧拉描述中,当前构形被离散化,初始构形(参考构形)是未知的。由于采用了物质对固定网格的相对运动,它具有以下优点: 欧拉描述便于对固定空间区域特别是包含流动、大变形和物质混合问题的建模。 5)转动张量:表示刚体位移部分,即 1102211022110 22u v u w y x z x v u v w ij x y z y w u w v x z y z W ? ? ?? ??????--?? ? ? ??????? ???? ? ? ?????????? =-- ? ??? ? ??????????? ????????????-- ? ? ????????? ?? ?? 6)应变张量:表示纯变形部分,即

相关主题
文本预览
相关文档 最新文档