当前位置:文档之家› 透射电子显微镜的原理及应用

透射电子显微镜的原理及应用

透射电子显微镜的原理及应用
透射电子显微镜的原理及应用

透射电子显微镜的原理及应用

一.前言

人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。

图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下:

α

λs i n 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X 射线和γ射线波长较短,但是难以会聚聚焦。

1924年德布罗(De Broglie )证明了快速粒子的辐射,并发现了一种高速运动电子,其波长为0.05A 。,这比可见的绿光波长短十万倍!又过了两年布施(Busch )提出用轴对称的电场和磁场聚焦电子线。在这两个构想基础上,1931-1933年鲁斯卡(Ruska )等设计并制造了世界上第一台透射电子显微镜。经

图1-1 透镜的分辨本领

过半个世纪的发展,透射电子显微镜(以下称透射电镜)已广泛应用在各个学科领域和技术部门。现在对于材料科学和工程,它已经成为联系和沟通材料性能和内在结构的一个最重要的“桥梁”。

透射电镜所以发展这么迅速,是因为他有许多特点:具有高的分辨率,可以达到1A。,能够在原子和分子尺寸直接观察材料的内部结构;能方便地研究材料内部的相组成和分布以及晶体中的位错、层错、晶界和空位团等缺陷,是研究材料微观组织结构最有力的工具;能同时进行材料晶体结构的电子衍射分析,并能同时配置X射线能谱、电子能损谱等测定微区成分仪器。目前,它已经是兼有分析微相、观察图像、测定成分、鉴定结构四个功能结合、对照分析的仪器。

二.透射电子显微学发展史

§世界上第一台电子显微镜始创于1932年,它由德国科学家Ruska研制,奠定了利用电子束研究物质微观结构基础;

§1946年,Boersch在研究电子与原子的相互作用时提出,原子会对电子波进行调制,改变电子的相位。他认为利用电子的相位变化,有可能观察到单个原子,分析固体中原子的排列方式。这一理论实际上成为现代实验高分辨电子显微分析方法的理论依据;

§1947年,德国科学家Scherzer提出,磁透镜的欠聚焦(即所谓的Scherzer 最佳聚焦,而非通常的高斯正焦)能够补偿因透镜缺陷(球差)引起的相位差,从而可显著提高电子显微镜的空间分辨率;

§1956年,英国剑桥大学的Peter Hirsch教授等人不仅在如何制备对电子透明的超薄样品,并观察其中的结构缺陷实验方法方面有所突破,更重要的是他们建立和完善了一整套薄晶体中结构缺陷的电子衍射动力学衬度理论。运用这套动力学衬度理论,他们成功解释了薄晶体中所观察到的结构缺陷的衬度像。因此50~60年代是电子显微学蓬勃发展的时期,成为电子显微学最重要的里程碑;

晶体理论强度、位错的直接观察-—50-60年代电子显微学的最大贡献;

§1957年,美国Arizona洲立大学物理系的Cowley教授等利用物理光学方法来研究电子与固体的相互作用,并用所谓“多层法”计算相位衬度随样品厚度、欠焦量的变化,从而定量解释所观察到的相位衬度像,即所谓高分辨像。Cowley 教授建立和完善了高分辨电子显微学的理基础;

§1971年,Iijima等人首次获得了可解释的氧化物晶体的高分辨电镜像,证实了他们所看到的高分辨像与晶体结构具有对应关系,是晶体结构沿特定方向的二维投影;

§70~80年代,分析型电子显微技术兴起、发展,可在微米、纳米区域进行成分、结构等微分析;

§1982年,英国科学家Klug利用高分辨电子显微技术,研究了生物蛋白质复合体的晶体结构,因而获得了诺贝尔化学奖;

§1984年,美国国家标准局的Shechtman等科学家、中科院沈阳金属所的郭可信教授等,利用透射电子显微技术,发现了具有5次、8次、10次,及12次对称性的新的有序结构----准晶体,极大地丰富了材料、晶体学、凝聚态物理研究的内涵;

§1982年,瑞士IBM公司的G. Binning, H. Rohrer等人发明了扫描隧道显微镜(STM)。他们和电子显微镜的发明者Ruska一同获得1986年诺贝尔物理奖;§1991年,日本的Iijima教授利用高分辨电子显微镜研究电弧放电阴极产物时,发现了直径仅几十纳米的碳纳米管。

最新进展:德国科学家利用计算机技术实现了对磁透镜进行球差矫正,可以

实现零球差,以及负球差,从而大大提高了透射电镜的空间分辨本领,目前的最高点分辨率可以达到0.1纳米,估计5年内可以逼进0.05纳米的。此外,通过在电子束照明光源上加装单色仪,可以大大提高电镜的能量分辨率,目前最高可以获得70毫电子伏特的水平。

现在,通过计算机辅助修正,可以实现零或负值的球差系数,大大提高了透射电镜的空间分辨率,达到低于0.1 纳米的点分辨率。另外,通过单色仪等,可以使电子束的能力分辨率低于0.1 eV ,大大提高了能量分辩能力。

三.电子的波长与加速电压

1924年,德布罗意(de Broglie )鉴于光的波粒二相性提出这样的假设:运动的实物粒子(静止质量不为零的那些粒子:电子、质子、中子等)都具有波动性质,后来被电子衍射实验所证实。运动电子具有波动性使人们想到可以用电子束做为电子显微镜的光源。对于运动速度为v ,质量为m 的电子波长:

mv h /=λ (3-1) 式中,h 为普朗克常数。

一个初速度为零的电子,在电场中从电位为零处开始运动,因受加速电压u (阴极和阳极的电压差)的作用获得运动速度为v ,那么加速的每个电子(电子的电荷为e )所作的功(eu )就是电子获得的全部动能,即:

221eu mv =

(3-2) m

eu 2v = (3-3) 加速电压比较低时,电子运动的速度远小于光速,它的质量近似等于电子的静止质量,即m ≈m 。,合并式(3-1)和式(3-3)得:

u em h .2/=λ (3-4)

把h=6.62×10-34J ·s ,e=1.60×10-19C ,m 。=9.11×10-31Kg 代入,得:

2/1)(u 1.5/=λ (3-5)

式中,λ以mm 为单位,u 以伏为单位。上式说明电子波长与其加速电压平方根成反比;加速电压越高,电子波长越短。

对于低于500eV 的低能电子来说,用式(3-4)计算波长已足够准确,但一般透射 电子显微镜的加速电压在80-500KV 或更高,而超高压电子显微镜的电压在1000-2000kv 。对于这样高的加速电压,上述近似不再满足,因此必修引入相对论校正,即:

2

)(1m c

v m -=。 (3-6) 式中,c 为光速。相应的电子动能为

22.c m mc eu -= (3-7)

整理式(3-4)、(3-5)得

).2/1(.2/2c m eu u em h +=λ (3-8)

与式(3-4)相比,式(3-8)中

).2/1(2c m eu +为相对论校正因子。在加速电压u 为50KV 、100KV 、200KV 时,这个修正值分别约为2%、5%、10%。表3-1中列出了不同加速电压下电子的波长和速度。从表中可知,电子波长比可见光波长短得多。以电子显微镜中常用的80-200KV 的电子波长来看,其波长仅为0.00418-0.00251nm ,约为可见光波长的十万分之一。

表3-1 不同加速电压下的电子波长和速度

提高加速电压,缩短电子的波长,可提高显微镜的分辨本领;加速电子速度越高,对试样穿透的能力也越大,这样可放宽对试样减薄的要求。厚试样与近二维状态的薄试样相比,更接近三维的实际情况。加速电压与电子的穿透厚度的关系,如图(3-1)所示,随着加速电压的提高,电子的穿透厚度也增加。在500KV

以上时,曲线由上升转为平缓。考虑到实用性,仪器成本,安装方便等因素,目前加速电压400KV左右的透射电镜越来越引起人们的兴趣和重视,将得到广泛的应用。

图3-1 不锈钢穿透薄膜数据

四.电磁透镜

一定形状的光学介质界面(如玻璃凸透镜旋转对称的弯曲折射界面)可使光波聚集成像,而特殊分布的电场、磁场,也具有玻璃透镜类似的作用,可使电子束聚焦成像,人们把用静电场和磁场做成的透镜分别称为“静电透镜”(Electrostatic Lens)和“电磁透镜”(Electromagnetic Lens),统称为“电子透镜”(Electron Lens)。最初,静电透镜既用于电子枪以获得会聚的电子束做为点光源,又用于照明系统的聚光镜和成像系统的物镜、中间镜和投影镜,后来,考虑到安全,照明系统和成像系统中的透镜均为电磁透镜。下面分别讨论静电透镜和电磁透镜的会聚原理和特点。

4.1 静电透镜

在电荷或带点物体的周围存在一种特殊的场,称为电场,若电场不随着时间变化,称为静电场。

在电位梯度变化的电场中存在许多相同的点电位,而这些电位相同的店构成等位面。电场强度与电位梯度的关系为:

n E dn

du -= (4-1) 式中,E ——电场强度,其定义为电场对单位正电荷产生的作用力;

n ——沿等位面法线朝着电位增大方向的单位矢量;

du/dn ——沿电场等位面法线方向的电位变化率,即电位梯度。

式(4-1)表明电场强度在数值上等于电位梯度的绝对值,因此,电场强度的方向就是电位变化率最大的方向。式中的负号表示电场强度方向与电位增加方向相反。

图4-1 平行板电极电场

如果两块电位分别为u a 和u b 的平行板电极,当电极尺寸远大于它们的间距(l )时,除边缘外,电极之间形成均匀电场并呈现以下特征:等电位面是一系列与电极平板平行的平面;电场中任意一点的电场强度方向垂直于该点的等位面,并从高电位指向低电位,如图4-1所示。显然,均匀电场中的任意一点的电场强度相等,因为等位面均垂直于电场强度方向,故电场强度的数值可直接用下式计算:

l

u u E a b -= (4-2) 当一个速度为v 的电子,沿着与等位面法线成一定角度方向运动时,如图4-2所示,并由上方u 1电位区通过等电位面进入下方u 2电位区的瞬间,在交接点O 处的运动方向发生突变,电子速度从v 1变为v 2。由于电场对电子作用力的方向总是沿着电子所处点的等位面的法向,从低电位指向高电位(因为电子是负电

荷),所以改点等位面法切线方向上电场作用力的分量为零,即该方向的电子速度保持不变,由此得到v t1=v t2。从图4-2所示的几何关系可得:

1

22211//sin sin v v v v v v t t ==γθ (4-3)

图4-2 电场对电子的折射

如果起始电位和电子初始速度均为零,由式(3-3)可得:

m u 1

12e v = m 2

22e u v =

将他们代入式(4-3)可得:

1

2

sin sin u u =γθ

(4-4) 由于

u 1

∝λ

所以式(4-4)可进一步改写为:

2112

sin sin λλγθ

==u u

4-5)

上式与光的折射定律类似,其中,u等同于折射率n,由此表明电场中等位面对电子的折射等同于光学系统中两种介质的界面对光的折射。

图4-3 静电透镜

(a)双圆筒静电透镜;(b)静电单透镜;(c)光学玻璃凸透镜可以想象,一定形状的光学介质界面可使光波聚焦成像,那么类似形状的等电位曲面簇也可使电子波成像,这样的等电位曲面簇就称为静电透镜,如图4-3(a)所示的双圆筒静电透镜,在电子枪中,由阳极、阴极和栅极组成静电单透镜,如图4-3(b)所示。由图可知,静电透镜主轴上物点散射的电子沿直线轨迹向电场运动,受到电场的作用被折射,最后被聚焦到透镜光轴上,其类似于光学玻璃透镜的作用(见图4-3(c))。

4.2 电磁透镜

磁场B对电荷量为e和速度为v的电子的作用力,即洛伦兹力,其矢量表

达式为:

-

=(4-6)

F?

v

)

(e B

F力的大小为)

e v B

F=

v

s i n(B

,

F力垂直于电荷运动速度v和磁感应强度B所决定的平面,F力的方向按矢量叉积(B×v)的右手法则来确定。为了便于分析电磁透镜聚焦原理,把透镜磁场中任意以id俺的磁感应强度B分解为平行于透镜主轴的轴向分享B z和与之垂直的径向分量B r,如图4-4(a)所示。

图4-4 电磁透镜聚焦原理

如果一束速度为v的电子沿着透镜主轴方向射入透镜,如图4-4(a)所示,其中精确的沿主轴运动的电子不受磁场力作用而不改变运动方向,轴线上磁感应

强度径向分量为零。而其他与主轴平行的入射电子将受到电子所处位置磁感应强度径向分量B z的作用,产生切向力F t=evB r,使电子获得切向速度v t,如图4-4(b)所示。一旦电子获得切向速度v t,开始作圆周运动的瞬间,由于v t垂直于B z,产生径向作用力Fr=ev t B z,使电子向轴偏转。结果使电子作如图4-4(c)、(d)所示的那样的圆锥螺旋运动。一束平行于主轴的入射电子,通过电磁透镜后被聚焦在轴线上的一点,即焦点。这与光学玻璃透镜对平行于轴线入射的平行光聚焦的作用十分相似(见图4-4(e))。

上述分析了短线圈磁场的聚焦成像的原理。由于短线圈的磁感应强度较低,若把它装到由软磁次材料制成的具有内环形间隙的壳子里(见图4-5),这样的短线圈所产生的磁力线都聚集中在内环间隙附件的区域,显著提高该区域的磁场强度。图4-5(a)、(b)分别画出了电磁透镜中磁力线和等磁位面的分布,并显示出旋转对称的不均匀磁场对电子的聚焦作用。

图4-5 有软磁壳的电磁透镜

(a)磁力线的分布;(b)等磁位面分布

实验和理论证明,电子束在电磁透镜中的折射行为和可见光在玻璃透镜中的折射相似,满足下列性质:

(1)通过透镜光心的电子束不发生折射。

(2)平行于主轴的电子书,通过透镜后聚焦在主轴上一点F ,称为焦点;经过焦点并垂直于主轴的平面称为焦平面。

(3)一束与某一副轴平行的电子束,通过透镜后将将聚焦在该副轴与焦平面的交点上。

电磁透镜与玻璃透镜一个显著不同的特点是它的焦距f 可变;经验公式表明:

2

)(IN U K f r = (4-7) 式中,K 是常数,其与软磁极靴几何因数相关,U r 是经相对论校正后的电子加速电压。从式(4-7)中可知,电磁透镜焦距与激磁安匝数(IN )的平方成反比,也就是说,无论激磁电流(I )方向如何改变,焦距总是正的,这表明电磁透镜总是会聚透镜。激磁线圈匝数(N )是固定不变的,只要调节激磁电流就可方便改变电磁透镜的焦距。

五.电磁透镜的像差

电磁透镜像玻璃透镜一样,也要产生像差,即使不考虑电子衍射效应对成像的影响,也不能把一个理想的物点聚焦为一个理想的像点。电磁透镜的像差也分为两类,一类是因透镜磁场的几何缺陷产生的,叫做几何像差,它包括球面像差(球差)、像散等。另一类是由电子的波长或能量的非单一性引起的色差。 球差:电磁透镜的近轴区域和远轴区域对电子束的聚焦能力不同而引起球

差。远轴区域的电子通过透镜时,一般比近轴去的折射成都严重,使得会聚点延伸在一定长度上,而不是会聚在一点上,从而影响了点在显微镜的分辨率。在这个距离上存在着一个最小的散焦斑,如图5-1a 中的A 。它的半径在原物面的折算值可表示如下:

3=αs s C r (5-1)

式中Cs :球差系数;ɑ:孔径半角。为了减小r s 值,对ɑ的要求与(1-1)式相反。

前者r s 与ɑ3成正比。为了提高球差对分辨率应使ɑ减小;而前者由衍射所确定的

分表本领确要求增大ɑ角。一般适中的ɑ角取值为:

4/1)(s C λ

αA = (5-2)

式中A 为一常数,代入式(5-2)中,得到:

3/4=λδ4/11S C K (5-3)

δ是考虑球差的理论分辨本领,式中常数K 1=0.6-0.8。设计电镜时应尽量减少球差Cs ,并提高加速电压以缩短波长λ来提高分辨率。

图5-1 电磁透镜的像差

色差:因为不同波长的电子线通过电磁透镜有不同的折射能力,因而聚焦能

力不同而使图像模糊。这犹如白光通过玻璃棱镜时,其中不同的波长走不通角度的路线,而被分成7种颜色的光一样。在电磁透镜的情况下,受两个因素影响:一是由于加速电压微小波动而导致电子速度变化,产生了“杂色光”;二是由于透镜本身的线圈存在激磁电流的微小波动,也导致聚焦能力的变化。电磁透镜中最小散焦斑,如图5-1,b 中的B 折算到原物面的半径r c ,可表示如下:

}{I

I U U C r c c ?-?-= (5-4)

上式中U U ?和I I

?分别代表加速电压和透镜电流的稳点度;Cs 为色差系数。 像散:由于电磁透镜的周向磁场不对称引起像散,见图5-1c 。在XX 方向上

电子聚焦的能力弱,而在YY 方向上的聚焦能力强。在C 1处XX 方向上的电子聚成一点,而在YY 方向电子却散开形成狭长的光斑。同样,在YY 聚焦的C 2截面上也形成狭长的光斑。在系列光斑中,最小的斑在原物面的折算半径值可表示如下:

α.A f f r ?= (5-5)

式中A f ?为像散焦距差。透镜制造精度差和极靴、光阑的污染都能导致像散。一般在电镜中附有消像散器,在操作中可随时按需要来校正像散。

六.透射电镜的构造

透射电镜是以电子束作为光线,用电磁透镜聚焦成像,电子穿透样品,获得透射电子信息的电子光学仪器。目前商品透射电镜的三个主要指标如下:

(1)加速电压(一般在80-3000伏之间);

(2)分辨率(一般点分辨率在2-3.5A 。);

(3)放大倍数(一般在30-80万倍之间)。

透射电子显微镜一般由电子光学系统(又称镜筒),真空系统和供电系统三大部分组成。

镜筒是透射电子显微镜的主体部分,其内部的电子光学系统自上而下顺序地排列着电子枪、聚光镜、样品室、物镜、中间镜、投影镜、荧光屏和照相机等装置。根据他们的功能不同又可将电子光学系统分为照明系统、样品室、成像系统和图像观察及记录系统。

(1)照明系统:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成,其作用是提供一束亮度高、相干性好喝束流稳定的照明源。为满足中心暗物成像的要哦球,照明电子束可在2°-3°范围内倾斜。

电子枪:电子枪是透射电子显微镜的光源,要求发射的电子束亮度高、电子束斑的尺寸小,发射稳定度高。目前常用的是发射式热阴极三极电子枪,它是由

阴极、阳极和栅极组成,见图6-1。

图6-1 电子枪结构示意图

1-阴极;2-栅极;3-阳极;4-电子束交叉点

阴极为0.1-0.95mm的“V”形钨丝。当加热时,钨丝的简短温度可高达2000°C以上,产生热发射电子现象。阴极与阳极之间有高电压,电子在高电压的作用下加速从电子枪中射出,形成电子束。在阴极和阳极之间有一栅极(又称控制极),它比阴极还负几百至几千伏的偏压,起着对阴极电子束流发射和稳定控制作用。同时,由阴极、栅极、阳极所组成的三极静电透镜系统对阴极发射的电子束起着聚焦的做哟个。在阳极孔附近形成一个直径小于50μm的第一交叉点,即通常所说的电子源,或称为点光源。

为了提高照明亮度,随后发明了电子逸出功小的六硼化镧(LaB6)做阴极。他比钨丝阴极的亮度高1-2个数量级,而且使用寿命增长。LaB6电子枪的结构原理见图6-2。

阴极为LaB6杆,其尖端半径仅为几个微米,另一端浸入油散热器中。LaB6被环绕其周围的W丝圈加热升温,W丝圈相对阴极保持负电位,以大电流通过

W丝圈。LaB6通过W丝线圈加热而发射电子,在阳极附近形成电子源。

图6-2 场发射电子枪结构原理图

目前,亮度最高的电子枪是长发射电子枪(FEG),其结构原理如图6-3所示。冷场发射不需要任何热能,阴极中的电子在大电场作用下可直接克服势垒离开阴极(称为隧穿效应),因此,发射的电子能量发散度很小,仅为0.3-0.5eV。阴极为有一尖端(曲率半径﹤10nm)的W<111>位向的单晶杆,以便获得低功函数和高发射率。这样低的功函数只能在清洁的表面上获得,即表面上无其他种类的未来原子。所以场发射需要极高的真空度,应为10μPa或更高。但发射在室温下进行,所以在发射极上就会产生残留气体分子的离子吸附而产生发射噪声,同时,伴随着吸附分子层的形成而使发射电流逐渐下降。因此,每天必修进行一次瞬间大电流取出吸附分子层的闪光处理,因而不得不中断研究,这是它的一个缺点。阴极对阳极为负电压,其尖端电场非常强(>107V.cm-1),以致电子能够借助“隧道”穿过势垒离开阴极。场发射电子枪不需要偏压(栅极),在阴极灯丝下面加

一个第一阳极,此电压不能加得太高(只加5KV),以免引起放电把灯丝打钝。在其下在加几十KV的第二阳极作静电系统,聚焦电子束并加速。

图6-3 LaB6电子枪的结构原理图

热阴极FEG可克服冷阴极FEG的上述缺点。在施加强电场的状态下,如果将发射极加热到比热电子发射低的温度(1600-1800K),由于电场的作用,电子越过变低的势垒发射出来,这杯称为肖特基效应。由于加热,电子的能量发散为0.6-0.8eV,较冷阴极稍大,但发射不产生粒子吸附,发射噪声大大降低,而且不需要闪光处理,可以得到稳定的发射电流。

高亮度的LaB6和场发射电子枪特别适用于高分辨成像和微区成分分析,但它们的价格昂贵,尤其是场发射电子枪,而且为了保持电子枪的寿命和发射率,它们需要很高的真空度,各种电子枪的特性的比较列于表6-1中。

表6-1 各种电子枪特性比较

图6-4 典型的磁透镜剖面图

聚光镜在光学显微镜中,旋转对称的玻璃透镜可使可见光聚焦成像,而特殊分布的电场、磁场,也具有玻璃透镜类似的作用,可使电子束聚焦成像。人们把静电场做成的透镜称为“静电透镜”(如电子枪中三极静电透镜);把用电磁场做成的透镜称为“电磁透镜”。透射电子显微镜的聚光镜、物镜、中间镜和投影镜均是“电磁透镜”。图6-4是一个典型的电磁透镜的剖面图。它是一个软磁铁壳、一个短线圈和一对中间嵌有唤醒黄铜的极靴组成的。软磁体可以屏蔽磁力线,减少漏磁;高磁导率的材料制成的极靴在环形间隙中可获得更强的磁场,形成近似理想的“薄透镜”。聚光镜的作用是会聚从电子枪发射出来的电子束,控制束斑尺寸和照明孔径角。仙子啊的高性能透射电子显微镜都采用双聚光镜系统。第一聚光镜为一个短焦距强磁透镜,其作用是缩小束斑,通过分级固定电流,使束斑缩小约为0.2-0.75μm;第二聚光镜是一个长聚焦弱磁透镜,以致使它和物镜之间有足够的工作距离,用以放置样品室和各种探测器附件。第二斑尺寸约为0.4-1.5μm。在第二聚光镜下方,常有不同孔径的活动光阑,用来选择不同照明孔径角。为了消除聚光镜的像散,在第二聚光镜下方装有消像散器。另外,为了

能方便地调整电子束的照明位置,在聚光镜与样品之间设有一个电子束对中装置,实施电子束平移和倾斜调整。它是通过电磁激励的偏转线圈来实现调节的,其原理见图6-5。

图6-5 聚光镜电子束对中系统工作原理图

如果下线图和上线圈均使电子束偏转相同角度,但两者偏转方向相反,则会得到单纯的平移,移动距离d=sθ,如果下线圈反向偏转角度大于上线圈,其为θ+α,可得sθ=Lα,则可使照明束斑不移动,仍在光轴上。

(2)样品室。它的主要作用通过样品室承载样品台,并能使样品移动,以便选择感兴趣的样品视域,在借助双倾样品座(见图6-6a),以使样品位于所虚的晶体位向进行观察。样品室内还可分别装上具有加热、冷却或拉伸等各种功能的侧插式样品座(见图6-6b),以满足相变、形变等过程的动态观察,但动态拉伸观察样品座原先只具有单倾功能,即只能使样品绕样品杆长轴方向旋转。样品台及其双倾旋转方向示意图如图6-6a所示。

图6-6 双倾样品座倾旋转方向和加热、冷却双倾座(3)成像系统。成像系统是由物镜、中间镜和投影镜组成。物镜是成像系统的第一级透镜,它的分辨本领决定了透射电子显微镜的分辨率。因此,为了获得最高分辨、高质量的图像,物镜采用强激磁、短焦距透镜以减少像差,借助物镜光阑降低球差,提高衬度,配有消像散器消除像散。中间镜和投影镜是将来自物镜给出的样品形貌像或衍射花样进行分级放大。

(4)图像观察与记录系统。该系统由荧光屏、照相机和数据显示器等组成。投影镜给出的最终像显示在荧光屏上以被观察,当荧光屏被竖起时,就被记录在其下方的照相底片上。

(5)真空和供电系统。真空系统是为了保证电子在镜筒内整个狭长的通道中不与空气分子碰撞而改变电子原有的轨迹,同时为了保证高压稳定度和防止样品污染。不同的电子枪要求不同的真空度。一般常用机械泵加上油扩散泵抽真空,为了降低真空室内残余油蒸汽含量或提高真空度,可采用双扩散泵或改用无油的涡轮分子泵。

供电系统主要提供稳定的加速电压和电磁透镜电流。为了有效地减小色差,一般要求加速电压稳定在每分钟10-3-10-6;物镜是决定显微镜分辨本领的关键,对物镜电流稳定度要求更高,一般为2×10-6/min,对中间镜和投影镜电流稳定度要求可比物镜低,约为5×10-6/min

实验透射电镜的结构原理及应用

实验透射电镜的结构原理及应用 一、目的要求 1.结合透射电镜实物,介绍其基本结构和工作原理,以加深对透射电镜的了解。 2.学习衍射图谱的分析步骤。 3.学习操作透射电镜,获得的明暗场像 二、透射电镜的基本结构 透射电子显微镜是以波长很短的电子束做照明源,用电磁透镜聚焦成像的一种具有高分辨本领,高放大倍数的电子光学仪器。透射电镜由电子光学系统、真空系统及电源与控制系统三部分组成。电子光学系统是透射电子显微镜的核心,而其他两个系统为电子光学系统顺利工作提供支持。 2.1 电子光学系统 电子光学系统通常称镜筒,是透射电子显微镜的核心,由于工作原理相同,在光路结构上电子显微镜与光学显微镜有很大的相似之处。只不过在电子显微镜中,用高能电子束代替可见光源,以电磁透镜代替光学透镜,获得了更高的分辨率(图9-6)电子光学系统分为三部分,即照明部分、成像部分和观察记录部分。 照明部分的作用是提供亮度高、相干性好、束流稳定的照明电子束。它主要由发射并使电子加速的电子枪、会聚电子束的聚光镜和电子束平移、倾斜调节装置组成。成像部分主要由物镜、中间镜,投影镜及物镜光阑和选区光阑组成。穿过试样的透射电子束在物镜后焦面成衍射花样,在物镜像面成放大的组织像,并经过中间镜、投影镜的接力放大,获得最终

的图像。观察记录部分由荧光屏及照像机组成。试样图像经过透镜多次放大后,在荧光屏上 显示出高倍放大的像。如需照像,掀起荧光屏,使像机中底片曝光,底片在荧光屏之下,由 于透射电子显微镜的焦长很大,虽然荧光屏和底片之间有数厘米的间距,但仍能得到清晰的 图像。 2.2 真空系统 电子光学系统的工作过程要求在真空条件下进行,这是因为在充气条件下会发生以下情 况:栅极与阳极间的空气分子电离,导致高电位差的两极之间放电;炽热灯丝迅速氧化,无 法正常工作;电子与空气分子碰撞,影响成像质量;试样易于氧化,产生失真。 目前一般电镜的真空度为10-5托左右。真空泵组经常由机械泵和扩散泵两级串联成。为 了进一步提高真空度,可采用分子泵、离子泵,真空度可达到10-8托或更高。 2.3 电源与控制系统 供电系统主要用于提供两部分电源:一是电子枪加速电子用的小电流高压电源;一是透 镜激磁用的大电流低压电源。一个稳定的电源对透射电镜非常重要,对电源的要求为:最大 透镜电流和高压的波动引起的分辨率下降要小于物镜的极限分辨本领。 三、透射电镜的工作原理 透射电子显微镜是依照阿贝成像原理工作的,即:平行入射波受到有周期性特征物体的 散射作用在物镜的后焦面上形成衍射谱,各级衍射波通过干涉重新在像平面上形成反映物的 特征的像。因此根据阿贝成像原理,在电磁透镜的后焦面上可以获得晶体的衍射谱,故透射 电子显微镜可以做物相分析;在物镜的像面上形成反映样品特征的形貌像,故透射电镜可以 做组织分析。 四、衍射花样标定 以已知晶体结构,定晶面取向的标定为例,基本程序如下: 1)测量距离中心斑点最近的三个衍射斑点到中心斑点的距离R; 2)测量所选衍射斑点之间的夹角φ; 3)根据公式λL Rd =,将测得的距离换算成面间距d; 4)因为晶体结构是已知的,将求得的d值与该物质的面间距表(如PDF卡片)相对照, 得出每个斑点的晶面族指数; }{HKL 5)决定离中心斑点最近衍射斑点的指数。若R1最短,则相应斑点的指数可以取等价晶 面中的任意一个; }{111L K H )(111L K H 6)决定第二个斑点的指数。第二个斑点的指数不能任选,因为它和第一个斑点间的夹角必须符合夹角公式。对立方晶系来说,两者的夹角可用下式(9.6)求得 )()(cos 22222221212 12 12121L K H L K H L L K K H H ++++++=φ (9.6) 在决定第二个斑点指数时,应进行所谓尝试校核,即只有代人夹角公式后 )(222L K H

扫描、透射电镜的基本原理及其应用

扫描、透射电镜在材料科学中的应用 摘要:在科学技术快速发展的今天,人们不断需要从更高的微观层次观察、认识 周围的物质世界,电子显微镜的发明解决了这个问题。电子显微镜可分为扫描电了显微镜简称扫描电镜(SEM)和透射电子显微镜简称透射电镜(TEM)两大类。本文主要介绍扫描、透射电镜工作原理、结构特点及其发展,阐述了其在材料科 学领域中的应用。 1扫描电镜的工作原理 扫描电子显微镜的制造依据是电子与物质的相互作用。扫描电镜从原理上讲就是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息。通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的观察。 电子束和固体样品表面作用时的物理现象:当一束极细的高能入射电子轰击扫描样品表面时,被激发的区域将产生二次电子、俄歇电子、特征X射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。 由电子枪发射的电子,以其交叉斑作为电子源,经二级聚光镜及物镜的缩小形成能谱仪可以获得且具有一定能量、一定束流强度和束斑直径的微细电子束,在扫描线圈驱动下,于试样表面作栅网式扫描。聚焦电子束与试样相互作,产生二次电子发射(以及其它物理信号)。二次电子信号被探测器收集转换成电讯号,经视频放大后输入到显像管栅极,调制与入射电子束同步扫描的显像管亮度,则 可以得到反映试样表面形貌的二次电子像[1]。 2扫描电镜的构成 主要包括以下几个部分: 1.电子枪——产生和加速电子。由灯丝系统和加速管两部分组成 2.照明系统——聚集电子使之成为一定强度的电子束。由两级聚光镜组合而成。 3.样品室——样品台,交换,倾斜和移动样品的装置。 4.成像系统——像的形成和放大。由物镜、中间镜和投影镜组成的三级放大系统。 调节物镜电流可改变样品成像的离焦量。调节中间镜电流可以改变整个系统的放大倍数。 5.观察室——观察像的空间,由荧光屏组成。 6.照相室——记录像的地方。 7.除了上述的电子光学部分外,还有电气系统和真空系统。提供电镜的各种电压、 电流及完成控制功能。

透射电子显微镜的原理与应用

透射电子显微镜的原理及应用 一.前言 人的眼睛只能分辨1/60度视角的物体,相当于在明视距离下能分辨0.1mm 的目标。光学显微镜通过透镜将视角扩大,提高了分辨极限,可达到2000A 。。光学显微镜做为材料研究和检验的常用工具,发挥了重大作用。但是随着材料科学的发展,人们对于显微镜分析技术的要求不断提高,观察的对象也越来越细。如要求分表几十埃或更小尺寸的分子或原子。一般光学显微镜,通过扩大视角可提高的放大倍数不是无止境的。阿贝(Abbe )证明了显微镜的分辨极限取决于光源波长的大小。在一定波长条件下,超越了这个极限度,在继续放大将是徒劳的,得到的像是模糊不清的。 图1-1(a )表示了两个点光源O 、P 经过会聚透镜L ,在平面上形成像O ,、P ,的光路。实际上当点光源透射会聚成像时,由于衍射效应的作用在像平面并不能得到像点。图1-1(b )所示,在像面上形成了一个中央亮斑及周围明暗相间圆环所组成的埃利斑(Airy )。图中表示了像平面上光强度的分布。约84%的强度集中在中央亮斑上。其余则由内向外顺次递减,分散在第一、第二……亮环上。一般将第一暗环半径定义为埃利斑的半径。如果将两个光源O 、P 靠拢,相应的两个埃利斑也逐渐重叠。当斑中心O ,、P ,间距等于案例版半径时,刚好能分辨出是两个斑,此时的光点距离d 称为分辨本领,可表示如下: α λs in 61.0d n = (1-1) 式中,λ为光的波长,n 为折射系数,α孔径半角。上式表明分辨的最小距离与波长成正比。在光学显微镜的可见光的波长条件下,最大限度只能分辨2000A 。。于是,人们用很长时间寻找波长短,又能聚焦成像的光波。后来的X

TEM_透射电镜习题答案与总结

电子背散射衍射:当入射电子束在晶体样品中产生散射时,在晶体向空间所有方向发射散射电子波。如果这些散射电子波河晶体中某一晶面之间恰好符合布拉格衍射条件将发生衍射,这就是电子背散射衍射。 二、简答 1、透射电镜主要由几大系统构成? 各系统之间关系如何? 答:三大系统:电子光学系统,真空系统,供电系统。 其中电子光学系统是其核心。其他系统为辅助系统。 2、照明系统的作用是什么?它应满足什么要求? 答:照明系统由电子枪、聚光镜和相应的平移对中、倾斜调节装置组成。它的作用是提供一束亮度高、照明孔经角小、平行度好、束流稳定的照明源。它应满足明场和暗场成像需求。 3、成像系统的主要构成及其特点、作用是什么? 答:主要由物镜、物镜光栏、选区光栏、中间镜和投影镜组成. 1)物镜:强励磁短焦透镜(f=1-3mm),放大倍数100—300倍。 作用:形成第一幅放大像 2)物镜光栏:装在物镜背焦面,直径20—120um,无磁金属制成。 作用:a.提高像衬度,b.减小孔经角,从而减小像差。C.进行暗场成像3)选区光栏:装在物镜像平面上,直径20-400um, 作用:对样品进行微区衍射分析。 4)中间镜:弱压短透镜,长焦,放大倍数可调节0—20倍 作用a.控制电镜总放大倍数。B.成像/衍射模式选择。 5)投影镜:短焦、强磁透镜,进一步放大中间镜的像。投影镜孔径较小,使电子束进入投影镜孔径角很小。 小孔径角有两个特点: a.景深大,改变中间镜放大倍数,使总倍数变化大,也不影响图象清晰度。 焦深长,放宽对荧光屏和底片平面严格位置要求。 4、分别说明成像操作与衍射操作时各级透镜(像平面与物平面)之间的相对位置关系,并 画出光路图。 答:如果把中间镜的物平面和物镜的像平面重合,则在荧光屏上得到一幅放大像,这就是电子显微镜中的成像操作,如图(a)所示。如果把中间镜的物平面和物镜的后焦面重合,则在荧光屏上得到一幅电子衍射花样,这就是电子显微镜中的电子衍射操作,如图(b)所示。

透射电子显微镜的结构、原理和衍衬成像观察

透射电子显微镜的结构、原理和衍衬成像观察实验报告 一、实验目的 1、了解透射电子显微电镜的基本结构; 2、熟悉透射电子显微镜的成像原理; 3、了解基本操作步骤。

二、实验内容 1、了解透射电子显微镜的结构; 2、了解电子显微镜面板上各个按钮的位置与作用; 3、无试样时检测像散,如存在则进行消像散处理; 4、加装试样,分别进行衍射操作、成像操作,观察衍射花样和图像; 5、进行明场、暗场和中心暗场操作,分别观察明场像、暗场像和中心暗场像。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 (一)、透射电镜的基本结构 透射电镜主要由电子光学系统、电源控制系统和真空系统三大部分组成,其中电子光学系统为电镜的核心部分,它包括照明系统、成像系统和观察记录系统组成。 (1)照明系统 照明系统主要由电子枪和聚光镜组成。

电子枪就是产生稳定的电子束流的装置,电子枪发射电子形成照明光源,根据产生电子束的原理的不同,可分为热发射型和场发射型两种。 图1 热发射电子枪图2 场发射电子枪 聚光镜是将电子枪发射的电子会聚成亮度高、相干性好、束流稳定的电子束照射样品。电镜一般都采用双聚光镜系统。 图3 双聚光镜的原理图 (2)成像系统 成像系统由物镜、中间镜和投影镜组成。 物镜是成像系统中第一个电磁透镜,强励磁短焦距(f=1~3mm),放大倍数Mo一般为100~300倍,分辨率高的可达0.1nm左右。物镜的质量好坏直接影响到整过系统的成像质量。物镜未能分辨的结构细节,中间镜和投影镜同样不能分辨,它们只是将物镜的成像进一步放大而已。提高物镜分辨率是提高整个系统成像质量的关键。

透射电镜的基本原理及使用(精编文档).doc

【最新整理,下载后即可编辑】 透射电镜的基本原理及使用

图1 放射电子显微镜基本结构原理图(注:除上述部分外,电镜还包括必须的冷却和真空系统)

图2 电镜和光镜原理对比图 应用举例: JEM-100CXⅡ透射电镜操作说明 一、开机程序 1、首先打开房间空调,冷却循环水房温度21度,操作室25 度 2、开启冷却水循环装置,一个独立的小的控制器,先将开关 打至ON,再将按下POWER键 3、启动稳压电源,稳定于220V;查看电源箱供电指示灯亮 4、用钥匙启动主机,从OFF档位旋到START位,松开后钥 匙自动回到ON位置。仪器自动抽真空,等待约40分钟。 5、直至DP绿灯亮,HIGH绿灯亮,READY绿灯亮(若不亮 的话,将LENS LIGHT打至ON档位)。 二、电子枪合轴(1-3合轴) 1、确认READY绿灯亮 2、把样品拨出,物镜光栏拨出至0档位 3、加高压:按下HT键后,依次按下40-60-80-100KV键,并 注意观察束流表是否正常,每次都要等电流表显示稳定之后再进行下一步,一般调到80KV就行了。 4、加灯丝:将FILAMENT EMIISSION旋钮缓慢旋至锁定位 置 5、一般在SCAN(5300倍)条件下调节,调节CONDENSER

钮,得到光斑。 6、SPOT SIZE调到3档,调节CONDENSER钮聚光,得到 最小最亮光斑,然后用左右ALIGNMENT:TRANS(小的)将光斑拉至最中心位置(中心位置有一黑点)。 7、SPOT SIZE调到1档,调节CONDENSER钮聚光,得到 最小最亮光斑,然后用GUN ALIGNMENT:TRANS(X、Y)将光斑拉至中心位置。 8、再重复6、7步骤,使束流不偏离中心。 三、调灯丝相(每次开机都需要检查) 1、在SCAN模式下,SPOT SIZE调到1档 2、将FILAMENT EMIISSION旋钮稍稍往回调,到看到灯丝 欠饱和像,即车轮像(鱼眼像),若车轮像不对称,则进行下面调节。 3、缓慢旋转GUN ALIGNMENT:TILT(X、Y),使灯丝像 对称。 4、然后调节FILAMENT EMIISSION旋钮至灯丝饱和(即刚 好全亮,没有阴影),并锁定该位置。 四、粗对焦(该步很重要) 1、关灯丝(FILAMENT EMIISSION旋钮至OFF)后,插入 样品,插入物镜光栏(2档) 2、开灯丝(FILAMENT EMIISSION旋钮至ON)后,放大 光斑至满屏(以免烧坏铜网) 3、找到样品,并选中一目标为参照 4、将IMAGE WOBBLER打至ON,此时看到样品会有一定 的晃动,调节FOCUS旋钮(有大中小三个,一般只用到中和小)至图像清晰没有重影。 五、聚光镜对中调节 1、关灯丝后,拨出样品,拨出光栏,开灯丝,缩小光斑,检查 是否在中心位置, 2、在SCAN模式,SPOT SIZE 1档情况下,将COND ALIGNMENT打到ON,然后下面一WOBBLER键打到X,

透射电镜实验

实验二透射电镜结构原理及明暗场成像 令狐采学 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏

上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附

加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 1.电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.真空系统 为保证电镜正常工作,要求电子光学系统应处于真空状态下。电镜的真空度一般应保持在105托,这需要机械泵和油扩散泵两级串联才能得到保证。目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×108Pa或更高。如果电镜的真空度达不到要求会出现以下问题: (1) 电子与空气分子碰撞改变运动轨迹,影响成像质量。

透射电子显微镜的原理

透射电子显微镜的原理 XXX (大庆师范学院物理与电气信息工程学院2008级物理学200801071293黑龙江大庆163712) 摘要:透射电子显微镜在成像原理上与光学显微镜类似。它们的根本不同点在于光学显微镜以可见光作照明束,透射电子显微镜则以电子为照明束。在光学显微镜中将可见光聚焦成像的玻璃透镜,在电子显微镜中相应的为磁透镜。由于电子波长极短,同时与物质作用遵从布拉格(Bragg)方程,产生衍射现象,使得透射电镜自身在具有高的像分辨本领的同时兼有结构分析的功能。 关键词:第一聚光镜;第二聚光镜;聚光镜阑;物镜光阑;选择区光阑;中间镜 作者简介:XXX(1988-),黑龙江省绥化市绥棱县,物理与电气信息工程学院学生。 0引言: 工业多相催化剂是极其复杂的物理化学体系。长期以来,工业催化剂的制备很大程度上依赖于经验和技艺,而难以从原子分子水平的科学原理方面给出令人信服的形成机制。为开发更高活性、选择性和稳定性的新型工业催化剂,通过各种表征技术对催化剂制备中的过程产物及最终产品进行表征是一个关键性的基础工作。在当前各种现代表征手段中,透射电子显微镜尤其是高分辨透射电子显微镜,可以在材料的纳米、微米区域进行物相的形貌观察、成分测定和结构分析,可以提供与多相催化的本质有关的大量信息,指导新型工业催化剂的开发。 为什么透射电子显微镜有如此高的分辨率那?本文阐述了透射电子显微镜的工作原理。 1透射电子显微镜的定义/组成 1.1定义 在一个高真空系统中,由电子枪发射电子束, 穿过被研究的样品,经电子透镜聚焦放大,在荧光 屏上显示出高度放大的物像,还可作摄片记录的一 类最常见的电子显微镜称为透射电子显微镜。[1] 1.2组成 透射电子显微镜由照明系统、成像系统、记录 系统、真空系统和电器系统组成。(如图1) 2透射电子显微镜的照明系统 照明系统的作用是提供亮度高、相干性好、束 流稳定的照明电子束。它主要由发射并使电子加速 的电子枪和会聚电子束的聚光镜组成。图1透射电子显微镜结

透射电镜结构原理及明暗场成像#精选、

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料显微分析实践 考核项目:透射电镜的明暗场成像技术学生所在院(系):材料学院 学生所在学科:材料工程 学生姓名:张珞斌 学号:17S109247 学生类别:专硕 考核结果阅卷人

透射电镜结构原理及明暗场成像 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。 2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 2.1电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.2 真空系统

透射电镜TEM的应用

第三节透射电镜的应用 一、复型在金相分析中的应用 (一)钢中典型组织的观察 1.珠光体 奥氏体在C曲线“鼻子”上部分区域 分解的产物为珠光体型组织,包括珠光体、 索氏体和屈氏体,都是铁素体与渗碳体的 机械混合物,区别只是层片间距不同而已。 珠光体组织内层片的粗细和冷却速度、转 变温度有关,冷速愈快,转变温度愈低, 所形成的珠光体则越细。由于珠光体在晶 界形核,然后向晶内长大直至相遇,所以图5—21 T8,退火,5000×组织:珠光体 在一个奥氏体晶粒内有若干不同位向的珠 光体领域。见图5—21 2.贝氏体 奥氏体在中间温度(低于珠光体转变温度,高于马氏体转变温度)的转变产物为贝氏体,贝氏体也是铁素体和渗碳体的两相组织,但其相变机制和组织形态与珠光体不同。随着钢的成分及转变温度的不同,贝氏体形态有很大差别,大致可分为三类:上贝氏体、下贝氏体和粒状贝氏体。 上贝氏体是在贝氏体转变区的较高温度范围内形成的。在光镜观察时可看到羽毛状或单羽毛状特征,一般是沿奥氏体晶界长出。其中渗碳体粒子很难辨别。复型图象可清晰地显示上贝氏体由大体平行的铁素体条和分布于其间的断续杆状渗碳体所组成。见图5—22。 下贝氏体在低温范围形成,光镜下呈黑色针叶状,并相互成角度。复型电镜观察表明,在铁素体片内沉淀的细小碳化物有一定的取向,与铁素体片长轴成55o~60o角。见图5—23 。 图5—22 GCr15,900℃奥氏体化图5—23 GCr15,970℃奥氏体化400℃等温7秒,7000×,组织:上贝氏体300℃等温30秒,7000×,组织:下贝氏体

3. 马氏体 通常,奥氏体快速冷却时得到马氏体,其形态根据含碳量不同可分为两类:低碳马氏体和高碳马氏体,含碳量在0.2~1%时为两者的混合组织。 低碳马氏体呈条束状排列。同一领域内的马氏体条大致平行,领域之间位向不同。交角60o、90o等,因为其亚结构为大量位错线缠结,又称它为位错马氏体,见图5— 24。高碳马氏体呈针片状,片的大小不一,有一定的交角,马氏体片间往往有残余奥氏体存在,高碳马氏体的亚结构是极薄的孪晶组织,又叫孪晶型马氏体。马氏体片中 图5—24 40Mn 加热至860℃,水冷 2000× 图5—25GCr15 加热至900℃,水冷 3000× 组织:板条马氏体 组织:针状马氏体 还常常可以看到中脊线。见图5—25。 (二)化学热处理渗层组织观察 在电镜下观察化学热处理零件的渗层组织与测量其层深是十分有效的。但由于复型样品边缘碳膜折迭、破碎、卷曲,往往不容易得到完整的表层复型。为了得到较为完整的渗层复型,在制备金相试样时将表层紧紧贴夹铜片,镍片或环氧树脂,然后磨、抛光、腐蚀并将其制成复型样品。在观察时只要找到铜或镍的复型就可找到渗层的最表层,因而能够观察从表面到心部组织变化和测量其层深。 (三)大型零件组织的复型观察 大型零件出故障后,为了分析原因找出补救措施,可在现场做复型。把零件局部抛光、腐蚀、贴AC 纸,取下复型后拿回实验室做投影喷碳,制成样品,观察组织,分析故障原因。这种方法既方便,又不损坏零件。 二、萃取复型的应用 应用萃取复型技术可观察夹杂物或第二相粒子的大小、形态、分布以及通过衍射研究它们的点阵类型和晶体结构。在任何一种合金钢中都或多或少地存在着一些非金属夹杂物。在外力作用下由于它们和基体之间性能上的差异,一般常在它们和基体的界面处产生很大应变,随之形成微裂纹,在材料断裂后,它们一般还保留在断口表面上,用光学显微镜无法查出小尺寸夹杂物。用萃取复型方法萃取到断口复型上,在观察形貌的同时就可以利用电子衍射技术对它们进行物相鉴定,即定出它们的晶体结构。

透射电镜结构原理及明暗场成像

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:材料显微分析实践 考核项目:透射电镜的明暗场成像技术学生所在院(系):材料学院 学生所在学科:材料工程 学生姓 :张珞斌 名 学号:17S109247 学生类别:专硕 考核结果阅卷人

透射电镜结构原理及明暗场成像 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。 2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。 2.1电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。

透射电子显微镜实验讲义

一、实验名称 透射电子显微镜用于无机纳米材料的检测。 二、实验目的 1.认知透射电子显微镜的基本原理,了解有关仪器的主要结构; 2.学习利用此项电子显微技术观察、分析物质结构的方法,主要包括:常规成 像、高分辨成像、电子衍射和能谱分析等; 3.重点帮助学生掌握纳米材料等的微观形貌和结构测试结果的判读,主要包括: 材料的尺寸、大小均匀性、分散性、几何形状,以及材料的晶体结构和生长取向等。 三、实验原理 透射电子显微技术自20世纪30年代诞生以来,经过数十年的发展,现已成为材料、化学化工、物理、生物等领域科学研究中物质微观结构观察、测试十分重要的手段,尤其是近20多年来,纳米材料研究的快速发展又赋予这一电子显微技术以极大的生命力,可以这样说,没有透射电子显微镜,就无法开展纳米材料的研究。 透射电子显微镜在成像原理上与光学显微镜是类似的,所不同的是光学显微镜以可见光做光源,而透射电子显微镜则以高速运动的电子束为“光源”。在光学显微镜中,将可见光聚焦成像的是玻璃透镜;在电子显微镜中,相应的电子聚焦功能是电磁透镜,它利用了带电粒子与磁场间的相互作用。 在真空系统中,由电子枪发射出的电子经加速后,通过磁透镜照射在样品上。透过样品的电子被电子透镜放大成像。成像原理是复杂的,可发生透射、散射、吸收、干涉和衍射等多种效应,使得在相平面形成衬度(即明暗对比),从而显示出透射、衍射、高分辨等图像。对于非晶样品而言,形成的是质厚忖度像,当入射电子透过此类样品时,成像效果与样品的厚度或密度有关,即电子碰到的原子数量越多,或样品的原子序数越大,均可使入射电子与原子核产生较强的排斥作用——电子散射,使面通过物镜光阑参与成像的电子强度降低,忖度像变淡。另外,对于晶体样品而言,由于入射电子波长极短,与物质作用满足布拉格

透射电镜的基本结构及应用举例

透射电镜的基本结构及应用举例 一、实验目的 1.理解透射电子显微镜(TEM : transmission electron microscope)的成像原理,观察基本结构; 2.掌握典型组织的TEM像的基本特征和分析方法。 二、透射电镜的基本结构和成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨本领、高放大倍数的电子光学仪器。它由电子光学系统(镜筒)、电源和控制系统、真空系统三部分组成。 显微镜原理对比图

)透射电子显微镜b) 透射光学显微镜 电子枪发射的电子在阳极加速电压的作用下,高速地穿过阳极孔,被聚光镜会聚成很细的电子束照明样品。因为电子束穿透能力有限,所以要求样品做得很薄,观察区域的厚度在200nm左右。由于样品微区的厚度、平均原子序数、晶体结构或位向有差别,使电子束透过样品时发生部分散射,其散射结果使通过物镜光阑孔的电子束强度产生差别,经过物镜聚焦放大在其像平面上,形成第一幅反映样品微观特征的电子像。然后再经中间镜和投影镜两级放大,投射到荧光屏上对荧光屏感光,即把透射电子的强度转换为人眼直接可见的光强度分布,或由照相底片感光记录,从而得到一幅具有一定衬度的高放大倍数的图像。 三、实验仪器 1.JEM-2010型透射电子显微镜 JEM-2010高分辨型透射电子显微镜,是日本电子公司的产品。它的主要性能指标是:晶格分辨率0.14nm;点分辨率0.23nm;最高加速电压200KV;放大倍数2,000~1,500,000;样品台种类有:单倾、双倾。JEM-2010还配有CCD相机,牛津公司的能谱仪(EDS),美国GATAN公司的能量损失谱仪(EELS)。 可观察的试样种类:复型样品;金属薄膜、粉末试样;玻璃薄膜、粉末试样;陶瓷薄膜、粉末试样。 主要功能:JEM-2010属于高分辨型透射电镜,可以进行高分辨图像观察,位错组态分析;第二相、析出相结构、形态、分布分析;

扫描电镜的基本结构和工作原理

扫描电镜的基本结构和工作原理 扫描电子显微镜利用细聚焦电子束在样品表面逐点扫描,与样品相互作用产行各种物理 信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像。扫描电镜具有景深大、图像立体感强、放大倍数范围大、连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效分析工具。 扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被 分析样品的性质适当地选择,最常用的加速电压约在20kV左右。扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整,放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。 扫描电镜的基本结构可分为电子光学系统、扫描系统、信号检测放大系统、图像显示 和记录系统、真空系统和电源及控制系统六大部分。这一部分的实验内容可参照教材第十二章,并结合实验室现有的扫描电镜进行,在此不作详细介绍。 三、扫描电镜图像衬度观察 1.样品制备 扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可 以直接进行观察。但在有些情况下需对样品进行必要的处理。 1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。 2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。清洗时可能会失去一些 表面形貌特征的细节,操作过程中应该注意。 3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5-10nm 为宜。 2.表面形貌衬度观察 二次电子信号来自于样品表面层5~l0nm,信号的强度对样品微区表面相对于入射束的 取向非常敏感,随着样品表面相对于入射束的倾角增大,二次电子的产额增多。因此,二次电子像适合于显示表面形貌衬度。 二次电子像的分辨率较高,一般约在3~6nm。其分辨率的高低主要取决于束斑直径,而 实际上真正达到的分辨率与样品本身的性质、制备方法,以及电镜的操作条件如高匝、扫描速度、光强度、工作距离、样品的倾斜角等因素有关,在最理想的状态下,目前可达的最佳分辩率为lnm。 扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透 到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。在材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。 利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、

第十章透射电镜的结构与成像原理

第十章透射电镜的结构与成像原理 透射电镜构造原理 透射电镜一般是电子光学系统、真空系统和电源与控制系统三大部分组成。电子光学系统通常称为镜筒,是透射电子显微镜的核心,它又可以分为照明系统、成像系统和观察记录系统。 下图是电镜电子光学系统的示意图,其中左边是电镜的剖面图,右边是电镜的示意图和光学显微镜的示意图对比。由图中可以看出,电镜中的电子光学系统主要包括电子枪、聚光镜、试样台、物镜、物镜光阑、选区光阑、中间镜、投影镜和观察记录系统等几部分组成,其成像的光路与光学显微镜基本相同。 电镜的电子光学系统中,一般将电子枪和聚光镜归为照明系统,将物镜、中间镜和投影镜归为成像系统,而观察记录系统则一般是荧光屏和照相机,现在的电镜往往还配有慢扫描CCD相机,主要用来记录高分辨像和一般的电子显微像。下图是电子光学系统的框架图。

第一节照明系统 照明系统由电子枪、聚光镜以及相应的平移、倾转和对中等调节装置组成,其作用是提供一束亮度高、照明孔径半角小、平行度好、束流稳定的照明源。为了满足明场和暗场成像的需要,照明束可以在5度范围内倾转。 1.1 电子枪 电子枪可分为热阴极电子枪和场发射电子枪。热阴极电子枪的材料主要有钨丝(W)和六硼化镧(LaB6)而场发射电子枪又可以分为热场发射、冷场发射和Schottky场发射,Schottky场发射也归到热场发射。场发射电子枪的材料必须是高强度材料,一般采用的是单晶钨,但现在有采用六硼化镧(LaB6)的趋势。下一代场发射电子枪的材料极有可能是碳纳米管。 A、热阴级电子枪 热电子枪由灯丝(阴极)、栅极帽、阳极组成。常用灯丝为钨丝(如H-800)、LaB6(如JEM-3010)。下图为热阴级电子枪的示意图。其中左图是电子枪自偏压回路的示意图,右边是电子枪中等电压面的示意图。 下图是热阴级电子枪的实图,其中左边是钨灯丝电子枪,右边是六硼化镧电子枪。钨灯丝电子枪的特点是价格便宜,对真空系统的要求不高,一般用比较老式的电镜中;而六硼化镧灯丝的性能要优于钨灯丝,在现在的电镜中,热阴级电子枪一般采用六硼化镧灯

透射电子显微镜基本结构及功能

透射电子显微镜部分结构及功能 在光学显微镜下无法看清小于0.2µm的细微结构,这些结构称为亚显微结构(s ubmicroscopic structures)或超微结构(ultramicroscopic structures;ultrastructur es)。要想看清这些结构,就必须选择波长更短的光源,以提高显微镜的分辨率。1 932年Ruska发明了以电子束为光源的透射电子显微镜(transmission electron mi croscope,TEM),电子束的波长要比可见光和紫外光短得多,并且电子束的波长与发射电子束的电压平方根成反比,也就是说电压越高波长越短。目前TEM的分辨力可达0.2nm。 电子显微镜与光学显微镜的成像原理基本一样,所不同的是前者用电子束作光源,用电磁场作透镜。另外,由于电子束的穿透力很弱,因此用于电镜的标本须制成厚度约50nm左右的超薄切片。这种切片需要用超薄切片机(ultramicrotome)制作。电子显微镜的放大倍数最高可达近百万倍、由电子照明系统、电磁透镜成像系统、真空系统、记录系统、电源系统等5部分构成,如果细分的话:主体部分是电子透镜和显像记录系统,由置于真空中的电子枪、聚光镜、物样室、物镜、衍射镜、中间镜、投影镜、荧光屏和照相机。 电子显微镜是使用电子来展示物件的内部或表面的显微镜。高速的电子的波长比可见光的波长短(波粒二象性),而显微镜的分辨率受其使用的波长的限制,因此电子显微镜的分辨率(约0.1纳米)远高于光学显微镜的分辨率(约200纳米)。 透射式显微镜的结构与原理 透射式电子显微镜(TEM)与投射式光学显微镜的原理很相近,它们的光源、透镜虽不相同,但照放大和成像的方式却完全一致。 在实际情况下无论是光镜还是电镜,其内部结构都要比图示复杂得多,图中的聚光镜(condonser lens)、物镜(object lens)和投影镜(projection lens)为光路中的主要透镜,实际制作中它们往往各是一组(多块透镜构成),在设计电镜时为达到所需的放大率、减少畸变和降低像差,又常在投影镜之上增加一至两级中间镜(in temediate lens)。 透射式电子显微镜的总体结构包括镜体和辅助系统两大部分,镜体部分包含:①照明系统(电子枪G,聚光镜C1、C2),②成像系统(样品室,物镜O,中间镜I1、

透射电镜实验

实验二透射电镜结构原理及明暗场成像 一、实验内容及实验目的 1.结合透射电镜实物介绍其基本结构及工作原理,以加深对透射电镜结构的整体印象,加深对透射电镜工作原理的了解。 2.选用合适的样品,通过明暗场像操作的实际演示,了解明暗场成像原理。 二、透射电镜的基本结构及工作原理 透射电子显微镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广泛应用于材料科学等研究领域。透射电镜以波长极短的电子束作为光源,电子束经由聚光镜系统的电磁透镜将其聚焦成一束近似平行的光线穿透样品,再经成像系统的电磁透镜成像和放大,然后电子束投射到主镜简最下方的荧光屏上而形成所观察的图像。在材料科学研究领域,透射电镜主要可用于材料微区的组织形貌观察、晶体缺陷分析和晶体结构测定。 透射电子显微镜按加速电压分类,通常可分为常规电镜(100kV)、高压电镜(300kV)和超高压电镜(500kV以上)。提高加速电压,可缩短入射电子的波长。一方面有利于提高电镜的分辨率;同时又可以提高对试样的穿透能力,这不仅可以放宽对试样减薄的要求,而且厚试样与近二维状态的薄试样相比,更接近三维的实际情况。就当前各研究领域使用的透射电镜来看,其主要三个性能指标大致如下: 加速电压:80~3000kV 分辨率:点分辨率为0.2~0.35nm、线分辨率为0.1~0.2nm 最高放大倍数:30~100万倍 尽管近年来商品电镜的型号繁多,高性能多用途的透射电镜不断出现,但总体说来,透射电镜一般由电子光学系统、真空系统、电源及控制系统三大部分组成。此外,还包括一些附加的仪器和部件、软件等。有关的透射电镜的工作原理可参照教材,并结合本实验室的透射电镜,根据具体情况进行介绍和讲解。以下仅对透射电镜的基本结构作简单介绍。1.电子光学系统 电子光学系统通常又称为镜筒,是电镜的最基本组成部分,是用于提供照明、成像、显像和记录的装置。整个镜筒自上而下顺序排列着电子枪、双聚光镜、样品室、物镜、中间镜、投影镜、观察室、荧光屏及照相室等。通常又把电子光学系统分为照明、成像和观察记录部分。 2.真空系统 为保证电镜正常工作,要求电子光学系统应处于真空状态下。电镜的真空度一般应保持在10-5托,这需要机械泵和油扩散泵两级串联才能得到保证。目前的透射电镜增加一个离子泵以提高真空度,真空度可高达133.322×10-8Pa或更高。如果电镜的真空度达不到要求会出现以下问题: (1) 电子与空气分子碰撞改变运动轨迹,影响成像质量。 (2) 栅极与阳极间空气分子电离,导致极间放电。 (3) 阴极炽热的灯丝迅速氧化烧损,缩短使用寿命甚至无法正常工作。 (4) 试样易于氧化污染,产生假象。 3.供电控制系统

透射电子显微镜原理

第二章透射电子显微镜 【教学内容】 1.透射电子显微镜的构造与成像原理 2.透射电镜图像的成像过程 3.透射电镜主要性能 4.表面复型技术 5.透射电镜观察内容 【重点掌握内容】 1.透射电子显微镜构造 2.表面复型技术 3.复型电子显微镜图像的分析。 【教学难点】 表面复型技术 2.1 透射电子显微镜的结构与成像原理 透射电子显微镜是以波长极短的电子束作为照明源,用电磁透镜聚焦成像的一种高分辨率、高放大倍数的电子光学仪器。 There are four main components to a transmission electron microscope: 1.an electron optical column 2. a vacuum system 3.the necessary electronics (lens supplies for focusing and deflecting the beam and the high voltage generator for the electron source) 4.software 电子光学系统(镜筒)(an electron optical column)是其核心,它的光路图与透射光学显微镜相似,如图所示,包括:照明系统,成像系统,观察记录系统。

图2-1 投射显微电镜构造原理和光路 2.1.1 照明系统 组成:由电子枪、聚光镜(1、2级)和相应的平移对中、倾斜调节装置组成。 作用:提供一束亮度高、照明孔径角小、平行度高、束斑小、束流稳定的照明源。为满足明场和暗场成像需要,照明束可在20-30范围内倾斜。 1. 电子枪 电子枪是电镜的电子源。其作用是发射并加速电子,并会聚成交叉点。目前电子显微镜使用的电子源有两类: 热电子源——加热时产生电子,W丝,LaB6 场发射源——在强电场作用下产生电子,场发射电镜FE 热阴极电子源电子枪的结构如图2-2所示,形成自偏压回路,栅极和阴极之间存在数百伏的电位差。电子束在栅极和阳极间会聚为尺寸为d0的交叉点,通常为几十um。栅极的作用:限制和稳定电流。 图2-2 电子枪结构

相关主题
文本预览
相关文档 最新文档