当前位置:文档之家› 基于PLC的锅炉加热温度控制系统设计

基于PLC的锅炉加热温度控制系统设计

基于PLC的锅炉加热温度控制系统设计
基于PLC的锅炉加热温度控制系统设计

图书分类号:

密级:

基于PLC的锅炉加热温度控制系统设计DESIGN OF BOILER TEMPERATURE CONTROL SYSTEM

学生学号

学生姓名

学院名称

专业名称

指导教师

摘要

本文主要介绍了工业温度控制的发展前景、S7-200系列PLC的基本知识以及锅炉温度控制系统的工作流程、基本原理和组成结构。通过对锅炉温度控制系统设计要求的分析,给出锅炉温度控制系统的I/O口分配表和系统原理图并且以可编程控制器(PLC)为核心,根据系统的控制要求利用STEP 7编程软件设计系统的梯形图。该系统以电热锅炉加热管为被控对象,锅炉水温为被控参数同时兼顾锅炉内压力及水位等条件,以PLC为控制器,锅炉加热管通电时间为控制参数设计了一个温度控制系统。其中调用了西门子公司PLC中自带的PID模块,以更简洁更方便的方法完成了锅炉温度的自动控制设计。本文从系统的工作原理、系统硬件选型、系统软件编程以及组态监控画面设计等方面进行阐述。

关键词电热锅炉;温度控制;PLC;PID;固态继电器

Abstract

This article focuses on the industrial development prospects of temperature control, basic knowledge of S7-200 series PLC as well as the boiler temperature control system made up of work processes, principles, and structure.Through the analysis of boiler temperature control system design, I/O port allocation table of temperature control system of the boiler,system schematics and a programmable logic controller (PLC) as the core, according to the control system requires the use of STEP 7 programming software system design of ladder diagram.The system to electric boiler heating tubes to a charged object, parameters of boiler water temperature to be controlled both the pressure and the water level in the boiler and other conditions, the PLC controller, boiler heating power parameter design of a temperature control system for control.Which is called the Siemens PLC comes with PID modules,and a more concise and more convenient way to complete the automatic control system design of the boiler temperature.This paper described the working principle of the system, system hardware selection, system software programming and configuration of the monitor screen design.

Keywords Electric boiler Temperature control PLC PID Solid State Relays

目录

1 绪论 (1)

1.1 课题背景及意义 (1)

1.2 国内外研究现状 (1)

1.3 本文研究内容 (2)

2 温度控制系统设计 (3)

2.1 温度控制系统工作原理 (3)

2.2 PID控制及参数整定 (3)

2.2.1 PID控制原理 (3)

2.2.2 PID参数的整定 (4)

3 系统硬件设计 (7)

3.1 PLC的产生和特点 (7)

3.1.1 PLC的产生与应用 (7)

3.1.2 PLC的特点 (7)

3.2 PLC控制系统设计的基本原则和步骤 (7)

3.2.1 PLC控制系统设计的基本原则 (8)

3.2.2 PLC控制系统设计的一般步骤 (8)

3.3 系统整体设计方案 (9)

3.4 PLC选型 (9)

3.4.1 PLC的主机模块 (9)

3.4.2 PLC的I/O扩展模块 (10)

3.4.3 PLC的选择 (10)

3.5 传感器选型 (10)

3.5.1 温度传感器选型 (10)

3.5.2 PT100温度变送器选型 (11)

3.5.3 压力传感器选型 (11)

3.5.4 液位传感器选型 (11)

3.6 固态继电器 (12)

3.6.1 固态继电器的原理分析 (12)

3.6.2 固态继电器的组成 (12)

3.6.3 固态继电器的优缺点 (12)

3.7数码管 (13)

3.8 系统工作流程及硬件接线 (13)

3.8.1 系统工作流程 (13)

3.8.3 系统主电路图 (14)

3.8.4 系统控制电路图 (14)

3.8.5 PLC硬件连接图 (15)

3.8.6 I/O端口分配 (17)

4 软件设计 (18)

4.1 系统流程图 (18)

4.2 PID控制器的参数整定 (18)

4.3 PLC程序梯形图设计 (22)

5 人机界面设计 (32)

5.1 组态软件基础 (32)

5.1.1 组态定义 (32)

5.1.2 组态王软件的特点 (32)

5.1.3 组态王软件仿真的基本方法 (32)

5.2 组态变量的建立及设备连接 (32)

5.2.1 新建项目 (32)

5.2.1 新建设备 (33)

5.2.3 新建变量 (34)

5.2.4 变量与PLC的传输 (35)

5.3 创建组态画面 (36)

5.3.1 新建主画面 (36)

5.3.2 新建PID参数设定窗口 (37)

5.3.3 新建实时曲线 (37)

5.3.4 新建历史曲线 (38)

5.3.5 新建报警窗口 (38)

6 系统仿真及测试 (40)

6.1 系统运行 (40)

6.2 运行结果 (40)

6.2.1 参数设定画面 (40)

6.2.2 实时趋势曲线 (41)

6.2.3 历史趋势曲线 (41)

6.2.4 报警窗口 (41)

结论 (43)

致谢............................................................................................................... 错误!未定义书签。参考文献 (45)

附录 (46)

1 绪论

1.1 课题背景及意义

电热锅炉的应用领域相当广泛,电热锅炉的性能优劣决定了产品的质量好坏。目前电热锅炉的控制系统大都采用计算机控制技术,既能提高系统的自动化程度又能提高其控制精度。电热锅炉是机电一体化的产品,可将电能直接转化成热能,具有效率高,体积小,无污染,运行安全可靠,供热稳定,自动化程度高的优点,是理想的节能环保的供暖设备。加上目前人们的环保意识的提高,电热锅炉越来越受人们的重视,在工业生产和民用生活用水中应用越来越普及。电热锅炉目前主要用于供暖和提供生活用水。主要是控制水的温度,保证恒温供水。

PLC从上世纪80年代至90年代中期起发展十分迅速。在这时期,PLC网络能力、人机接口能力、数字运算能力和处理模拟量能力等发展迅速。由此,PLC逐渐进入过程控制领域,并在部分应用上取代了原来处于统治地位的DCS系统。PLC具有具有编程方法简单易学、可靠性高、抗干扰能力强、适应性强、通用性好、功能强大、性价比高、体积小、功耗低、设计施工周期短等诸多优点[1]。

PID控制是迄今为止应用最广泛的控制方法之一。因为其可靠性高、稳定性好、算法简单,所以在过程控制中被广泛应用,尤其适用对于可建立精确数学模型的确定性系统尤其适用。PID控制的效果由四个参数决定,即采样周期T S、比例增益系数K P、积分时间系数T i、微分时间系数T d。所以,PID参数的整定与微调一直是自动控制领域着重研究的课题。PID在工业过程控制中已应用了上百年的时间,在此期间虽然出现了许多新兴算法,但由于PID算法自身的特点,再加上人们在此期间所积累的丰富经验,使其经久不衰。在PID算法中,对于P、I、D三个参数的整定和优化的问题是关键问题[2]。

1.2 国内外研究现状

1970年以来,因为工业过程控制的发展,尤其是计算机技术和微电子技术以及自动控制理论和方法的发展,国外温控系统的发展极为迅猛,并在自我适应、参数整定和智能化等方面取得了丰富成果。在这方面,以德国、美国、日本、瑞典等国的技术领先,都生产出了一批性能优秀、商品化的温度控制器,并得到了广泛应用。主要有以下特点:

(1)适应于大惯性、大滞后等复杂的温度控制体统的控制。

(2)能适应于受控系统数学模型难以建立的温度控制系统的控制。

(3)能适用于受控系统过程复杂、参数时变的温度控制系统的控制。

(4)这些温度控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论及计算机技术,运用先进的算法,适应范围广泛。

(5)温度控制器普遍具有参数整定功能。借助于计算机软件技术,温度控制器具有对控制参数及特性进行自整定的功能。有的还具有自学习功能。

(6)温度控制系统既有控制精度高、抗干扰能力强、稳定性好的特点。目前,国外温度控制系统及仪表正朝着高精度、智能化、小型化等方向发展[3]。

目前,国外温度控制系统正朝着小型化、高精度、智能化等方面高速发展。但我国目前生产出来的温度控制器,仍处于相对低的水平,同德国、美国等先进国家相比,仍然差距很大。目前,这方面的总体技术水平国内仍然处于上世纪80年代中后期水平,产品仍以“点位”控制以及常见的PID控制器为主,目前对于一般温度系统控制可以达到要求,但对于时变、滞后、复杂的温度系统控制难以适应,而对于要求较高控制场合的智能化、自适应控制仪表等,国内的技术还达不到要求,可以形成商品化并大范围使用的控制仪表还很少。可见我国在温度控制仪表业还差国外相关行业很远。

1.3 本文研究内容

PLC技术在温度监控系统上的应用从整体上分析和研究了控制系统的硬件配置、电路图的设计、程序设计,控制算法的选择和参数的整定、人机界面的设计等。本文使用德国西门子公司的S7-200系列PLC控制器,系统首先由温度传感器将检测到的实际水温转化为电流信号,经过EM235模拟量输入模块转换成数字量信号并送到PLC中进行PID调节,PID控制器输出量转化成占空比,通过固态继电器控制锅炉加热的通断来实现对水温的控制。对于监控画面,利用亚控公司的组态软件“组态王”绘制。

全论文分六章,各章的主要内容说明如下。

第一章,对锅炉温度控制系统的背景意义及国内外的发展状况进行了阐述。

第二章,简单概述了系统框图及PID控制原理。

第三章,主要在系统框图基础上根据系统需要选择系统中所需各类硬件型号。同时绘制系统电路图、控制电路图及硬件连接图。

第四章,在硬件设计的基础上,通过工程整定法确定系统PID控制参数并完成本文的详细程序设计。

第五章,详细介绍了利用亚控公司的组态软件“组态王”进行系统监控画面的设计。

第六章,对系统进行仿真与测试。

2 温度控制系统设计

2.1 温度控制系统工作原理

在本控制系统中,温度传感器将检测到的水温信号转化为电流信号送入模拟量输入模块EM235。模拟信号经过EM235转化为数字信号送入PLC ,PLC 再通过PID 模块进行PID 调节控制。图2-1中SP 为设定温度值,PV 为反馈温度值。

图2-1 锅炉温度控制系统框图

2.2 PID 控制及参数整定

2.2.1 PID 控制原理

在控制系统中,控制器一般最常用的控制规律是PID 控制。一般的PID 控制原理见图2-2。系统由PID 控制器及被控对象组成。

PID 控制器是一种线性控制器,它由给定值r(t)与实际输出值c(t)构成偏差:

)()()(t c t r t e -= 式(2.1)

将偏差的比例(P)、积分(I)和微分(D)通过线性组合可以构成控制量,对被控对象进行控制,故称PID 控制器。它的表达式为:

??

???

?++=?t D I P dt t de T dt t e T t e K t u 0)()(1)()( 式(2.2) 转化成传递函数为:

)11()()()(s T s T K s E s U s G D I P ++== 式(2.3) 积分 比例

微分

被控对象 e(t)

r(t) + - c(t)

图2-2 PID 控制系统原理框图

PLC EM235 固态继电器

锅炉电热管

EM235

温度传感器 SP + T - PV

式中P K 为比例系数,I T 为积分时间常数,D T 为微分时间常数。

从系统的稳定性、稳态精度、超调量和响应速度等方面考虑,PID 各环节有如下作用: 比例(P)调节作用:能按比例反映系统的偏差,比例调节能在系统出现偏差时立即产生作用。比例作用越大,调节速度越快,但是一旦过大就会降低系统的稳定性,导致不稳定。具体分为对动态特性的影响和对稳态特性的影响:

(1)对动态特性的影响:比例控制参数加大使系统动作灵敏,运转速度变快,K P 越大,振荡次数变多,调节时间也相应的变长。当K P 太大时,系统会不稳定,当K P 太小时,系统会运行缓慢。

(2)对稳态特性的影响:在系统相对稳定的情况下,比例参数K P 变大,稳态误差就会减少,这样可以提高精度,不过对于消除稳态误差无帮助。

积分(I)调节作用:可以消除系统的稳态误差。只要系统产生误差,积分调节就会作用,直至无差时积分调节才会停止。积分作用大小由积分常数T i 决定且与之成反比,T i 越大,积分作用越弱。系统中加入积分环节会使系统稳定性下降,动态响应变慢。所以积分作用通常是与另两种调节环节相结合,组成PI 调节器或PID 调节器。 具体分为对动态和稳态特性的影响:

(1)积分会引起系统稳定性下降,T i 太小系统会不稳定,甚至会出现振荡;T i 太大对系统的作用又会缩减,只有当T i 相对合适的时候才能出现理想的过度特性。

(2)积分可以降低系统的稳态误差同时也能提高系统的精度,不过,当T i 太大的时候,积分的作用也很小,稳态误差也就不会减少了。

微分(D)调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调量,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的微分调节,对系统抗干扰不利。此外,微分反应的是变化率,所以当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD 或PID 控制器。

2.2.2 PID 参数的整定

PID 调试一般原则

在输出不振荡时,增大比例增益P 。在输出不振荡时,减小积分时间常数T i 。在输出不振荡时,增大微分时间常数T d 。

计算整定法:

进行整定时先进行P 调节,使I 和D 作用无效,观察温度变化曲线,若变化曲线多次出现波形则应该放大比例(P)参数,若变化曲线非常平缓,则应该缩小比例(P)参数。比例(P)参数设定好后,设定积分(I)参数,积分(I)正好与P 参数相反,曲线平缓则需要放大积分(I),出现多次波形则需要缩小积分(I)。比例(P)和积分(I)都设定好以后设定微分(D)参数,微分(D)

参数与比例(P)参数的设定方法是一样的。

一般步骤

(1)确定比例增益P

对比例增益P的数值确定时,先直接去掉积分与微分项,即令T i=0、T d=0,让PID调节变为单纯的比例调节。输入设定先定为系统允许的输入最大值的60%~70%,由0开始逐步增大比例增益P,直到该系统发生振荡;然后再反过来,从出现振荡时的比例增益P值开始缓缓往下减,当系统振荡消失时记录对应的P值。系统的PID调节比例增益P即设定为此值的60%~70%,调试即完成。

(2)确定积分时间常数T i

确定P值后,首先确定一个较大的积分时间常数初值,然后逐渐减小T i,直到系统发生振荡,之后再反过来,缓缓加大T i,当系统振荡消失时记录此时的T i,系统的积分时间常数T i即设定为当前值的150%~180%,T i调试至此完成。

(3)确定积分时间常数T d

T d一般情况为0,不另外设定。如有需要,其设定方法同P和T i的调试方法,数值设定为不振荡时的30%。

(4)当系统空载以及带载时联调,然后再进行微调,直至满足系统要求。

工程整定法:

工程整定法主要依赖经验,在控制系统的直接试验中进行,上手简单方法,比较容易掌握,在实际生活中被广泛采用。PID控制器参数的工程整定方法,主要有临界衰减法、比例法和反应曲线法这三种方法。这三种方法都各有特点,其的共同点为均通过实验得出结论,对控制器参数整定时依据工程经验公式。采用这三种方法得到的参数仍然需要在实际运行时作调整。

扩充临界比例度法:

扩充临界比例度法也是实验经验法中应用广泛的一种,它最大的好处是,参数的整定直接在现场整定、简单易行。

它对有自平衡特性的受控对象尤其适用,同时扩充了连续时间PID控制器参数整定的临界比例度法。

扩充比例度法整定数字PID控制器参数的步骤是:

(1)首先选择一个足够短的采样周期。一般T S应比受控对象纯延迟时间的十分之一还小。

(2)让系统采用此T S工作。首先去掉积分与微分作用,将控制变成纯比例控制器,形成闭环。然后将比例放大系数K P逐步放大,当系统出现临界振荡时停止,然后将此时的K P记为K r,临界振荡周期则为T r。

(3)选择控制度。即将连续时间PID控制器作为基准,把数字PID控制效果与之比较。控制效果的评价函数一般为误差平方积分。

(4)定义控制度。采样周期T S的大小会决定采样数据控制系统的品质,相同条件下采样数据控制系统的控制品质会比连续时间的差一些。因此,控制度一般都是要大于1的,而且采样数据控制系统的品质好坏与控制度大小成反比。所以系统的控制品质好坏决定控制度的选择。

(5)参数由查表决定。

(6)运行及修正。将上述所得各参数输入PID控制器,将系统闭环运行,然后观察相应效果,然后做适当调整。

3 系统硬件设计

3.1 PLC的产生和特点

3.1.1 PLC的产生与应用

1969年美国数字设备公司(DEC)根据美国通用汽车公司的这种要求,研制成功了世界上第一台可编程控制器,并在通用汽车公司的自动装配线上试用,取得很好的效果。从此这项技术迅速发展起来。

随着PLC功能的不断完善,性价比的不断提高,PLC的应用面也越来越广。目前,PLC 在国内外已经广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。PLC的应用范围通常可分为开关逻辑控制、运动控制、过程控制、机械加工中的数字控制、机器人控制、通信和联网等[4]。S7-200PLC是德国西门子公司生产的一种小型PLC,其许多功能达到大、中型PLC的水平,而价格却和小型PLC的一样,因此,它一经推出,即受到了广泛的关注。在2000年以前,西门子在中国市场的PLC产品主要是大中型PLC,日本的小型PLC占据了中国的大部分市场份额。在S7-200PLC推出后,这种情况得到了明显改变,最近几年来的小型PLC市场上S7-200PLC 成为了主流产品。

可编程逻辑控制器(PLC)是集计算机技术、自动控制技术和通信技术为一体的新型自动控制装置。其性能优越,已被广泛的应用于工业控制的各个领域,并已经成为工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)之一。

西门子最小的小型PLC产品是在上世纪末推出的S7-200CPU21*系列的PLC,但很快就被CPU22*系列的产品所取代。因为它拥有多个功能模块和人机界面可供选择,所以系统的集成非常方便,并且相对来说比较容易的就组成了PLC网络。以此同时它还具有功能完全的编程软件和工业组态软件,这使其可以简单的完成控制系统的设计。现在最新版的S7-200系列PLC是在2004年推出的,它的主要特点是:较高的可靠性、丰富的指令集、丰富的内置集成功能、实时特性强和强大的通信能力。

3.1.2 PLC的特点

(1)抗干扰能力强,可靠性高。

(2)控制系统结构简单,通用性强。

(3)编程方便,易于使用。

(4)功能强大,成本低。

(5)设计、施工、调试的周期短。

(6)维护方便。

3.2 PLC控制系统设计的基本原则和步骤

3.2.1 PLC 控制系统设计的基本原则

(1)充分发挥PLC 功能,最大限度地满足被控对象的控制要求。

(2)在满足控制要求的前提下,力求使控制系统简单、经济、使用及维修方便。

(3)保证控制系统安全可靠。

(4)考虑生产的发展和工艺的改进,在选择PLC 的型号、I/O 点数和存储器容量等内容时,应留有适当的余量,以利于系统的调整和扩充。

3.2.2 PLC 控制系统设计的一般步骤 分析评估控制任务

PLC 选型,I/O 设备选择

I/O 地址分配

调试程序电气系统设计

程序设计硬件系统安装

检查硬件系统满足要求吗调试程序

检查修改程序检查硬件接线

满足要求吗现场安装调试

编制技术文件

交付使用

Y

Y

N N N

图 3-1 PLC 控制系统设计一般步骤

3.3 系统整体设计方案

在第二章基础上,系统整体具体设计方案见图3-2。 PLC

(CPU 226)

报警及显示

水位及压

力检测

固态继电器电热热水锅炉

加热管温度检测

信号处理

PT100温度变送器

上位机

图3-2 整体设计方案 3.4 PLC 选型

3.4.1 PLC 的主机模块

本文选择的是西门子S7-200系列PLC ,可以单机运行,也可以进行输入/输出和功能模块的扩展。它价格低廉,结构小巧,可靠性高,运行速度快,有极丰富的指令集,性能价格比非常高,在各行各业中迅速推广,在规模不太大的控制领域是较为理想的控制设备。

CPU22*系列PLC 按I/O 点数的多少和效能不同而分为五种不同结构的配置,即CPU221、CPU222、CPU224、CPU224XP 和CPU226。

(1)CPU221 本机集成6输入/4输出,无扩展能力,程序和数据存储容量较小,有一定的高速计数功能和通信功能,非常适合于少数点的或特定的控制系统使用。

(2)CPU222 本机集成8输入/6输出,和CPU221相比,它最多可以扩展2个模块,是应用更为广泛的全功能控制器。

(3)CPU224 本机集成14输入/10输出,和前两者相比,程序存储容量扩大了一倍,数据的存储容量扩大了四倍,它最多可以扩展7个模块,有强大的模拟量和高速计数处理能力。

(4)CPU224XP 其大部分功能都和CPU224相同,最大的不同是,在主机上增加了2个输入/1个输出的模拟量单元和一个通信口。

(5)CPU226 本机集成24输入/16输出,与CPU224相比,程序存储容量扩大了一倍,它有两个通信口,通信能力更为强大。它可用于点数较多,要求较高的小型或中型控制系统。

3.4.2 PLC 的I/O 扩展模块

当系统所需的I/O 点数较多或要求执行特殊功能时,必须进行I/O 扩展。常用的输入/输出扩展模块有:

(1)输入扩展模块EM221:分为8点DC 输入和8点AC 输入两种。

(2)输出扩展模块EM222:分为8点DC 晶体管输出、8点AC 输出和8点继电器输出三种类型。

(3)输入/输出混合扩展模块EM223有六种:分别为4点(8点、16点)DC 输入/4点(8点、16点)DC 输出;4点(8点、16点)DC 输入/ 4点(8点、16点)继电器输出。

(4)输入扩展模块EM235:分为8点DC 输入和8点AC 输入两种。

3.4.3 PLC 的选择

根据系统控制要求分析,系统共需要开关量输入点3个,开关量输出点32个。因为需调用PID 模块,所以选用主机为CPU226;扩展模块EM223(16点晶体管输出)用于数码管显示实时温度;模拟量输入输出模块EM235用于输入模拟量:预设温度、温度传感器反馈值、锅炉压力和液位传感器的反馈值。

整个PLC 系统的配置见图3-3。

图3-3 PLC 系统组成

3.5 传感器选型

3.5.1 温度传感器选型

温度传感器即一种将温度变化转化为电量变化的装置。在各类转化方法中,将温度量转换为电势或电阻是最为普遍的。其中最常用的是热电偶和热电阻,热电偶是将温度变化转化为电势变化,热电阻则是转化为电阻的变化。这两种传感器目前在工业生产温度测量中被广泛应用。

该系统需要的传感器是将温度转化为电流,且水温最高是100℃,所以选择PT100铂热电阻传感器。PT100铂热电阻,简称为:PT100铂电阻,其阻值会随着温度的变化而改变。PT 后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工作原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值成匀速增长[5]。

PT100热电阻传感器型号:薄片型铂电阻WZP023

PT100热电阻温度变送器型号:SBWZ-2460

PT100是铂热电阻,它的阻值跟温度的变化成正比。

扩展单元 EM223 16点晶体管 模拟量单元 EM235 4AI/1AO

主机单元

CPU226

AC/DC 继电器

它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的阻值会随着温度上升而成近似匀速的增长。但他们之间的关系并不是简单的正比的关系,而更应该趋近于一条抛物线。

铂电阻的阻值随温度的变化而变化的计算公式:

℃℃0200<<-t ])100(1[0t t C t B t A R R t -+++= 式(3.1)

8500<

公式中的A ,B ,系数为实验测定。

这里给出标准的系数: ; ; 。

3.5.2 PT100温度变送器选型

变送器技术指标:

(1)输入信号:PT100铂电阻信号输入

(2)供电电压:10-30V DC

(3)负载电阻:0-500Ω

(4)输出信号:二线制4-20mA ,最大30mA

(5)热电阻温度变送器精度:0.2%FS

(6)温度稳定性:零点漂移 标准0.05%FS/℃ 量程漂移 标准0.002%FS/℃

(7)回路保护:带反向连接保护(防止电源正负极)

(8)温度变送器功耗:小于等于0.5W

(9)温度变送器重量:约35克

(10)热电阻温度变送器外形尺寸:外径Ф42mm ,高度H23mm ,安装孔距33mm ,安装孔Ф5.5m

3.5.3 压力传感器选型

压力传感器的作用就是检测锅炉炉膛内的压力,防止锅炉内由于加热造成压力过大产生危险。它把测得的压力转换成4-20mA 的电流信号或者是1-5V 的电压信号,然后把此模拟量信号输送到PLC 的扩展模块EM235中。选择压力传感器输出量时,为了提高系统的抗干扰能力,本文选用了4-20mA 输出的压力传感器。

压力传感器型号:CYB-11 西安为普仿真计算有限公司

3.5.4 液位传感器选型

液位传感器的作用是测量炉膛内水位,防止水位过低锅炉空烧或者水位过高产生危险。它是利用液体的压力与深度成正比的原理,将检测到的压力信号经转换变成标准的4-20mA 的电流信号传送给PLC 。

产品采用正装结构,并汲取了智能锅炉汽包液位计的长处,将抗高温、耐高压、抗腐

℃710802.5-?-=B ℃121027350.4-?-=C ℃31090802.3-?=A

蚀、抗波动性能集于一身,变送部分利用军工器件,使信号输出更加稳定、可靠。该液位计安装简单,维护量小,测控精确,性价比高,是传统的电极式、差压式、磁翻板式液位计理想的换代产品,值得推广普及。

液位计传感器型号:UHM-F2~4 无锡中南液位磁控器厂

3.6 固态继电器

3.6.1 固态继电器的原理分析

固态继电器(Solid State Relay ,简称SSR)与机电继电器相比,是一种没有机械运动,不含运动零件的继电器,但它具有与机电继电器本质上相同的功能。SSR 是一种全部由固态电子元件组成的无触点开关元件,他利用电子元器件的电、磁和光特性来完成输入与输出的可靠隔离,利用大功率三极管,功率场效应管,单向晶闸管和双向晶闸管等器件的开关特性,来达到无触点,无火花地接通和断开被控电路。它是一种四端有源器件,其中两端为输入控制端,另外两端为输出受控端,如图3-4所示。 图3-4 固态继电器模块示意图

当输入端有控制信号,输出端从关断状态变为导通状态;控制信号撤消后,输出端变为关断状态,从而实现自动控制。

固态继电器的输入端、输出端之间采用光电隔离技术,使得弱电和强电隔离,因此从计算机等弱电设备输出的信号可以直接加在固态继电器的控制端上,无需另外的保护电路

[14]。

3.6.2 固态继电器的组成

固态继电器由三部分组成:输入电路,隔离(耦合)和输出电路。按输入电压的不同,输入电路可分为直流输入电路,交流输入电路和交直流输入电路三种。固态继电器的输入与输出电路的隔离和耦合方式有光电耦合和变压器耦合两种。固态继电器的输出电路也可分为直流输出电路,交流输出电路和交直流输出电路等形式。交流输出时,通常使用两个晶闸管或一个双向晶闸管,直流输出时可使用双极性器件或功率场效应管。

3.6.3 固态继电器的优缺点

优点:

(1)高寿命,高可靠:SSR 没有机械零部件,由固体器件完成触点功能,由于没有运动的零部件,因此能在高冲击,振动的环境下工作,由于组成固态继电器的元器件的固有特

块 输出模块

性,决定了固态继电器的寿命长,可靠性高。

(2)灵敏度高,控制功率小,电磁兼容性好:固态继电器的输入电压范围较宽,驱动功率低,可与大多数逻辑集成电路兼容不需加缓冲器或驱动器。

(3)快速转换:固态继电器因为采用固体器件,所以切换速度可从几毫秒至几微秒。

(4)电磁干扰小:固态继电器没有输入“线圈”,没有触点燃弧和回跳,因而减少了电磁干扰。大多数交流输出固态继电器是一个零电压开关,在零电压处导通,零电流处关断,减少了电流波形的突然中断,从而减少了开关瞬态效应。

缺点:

(1)导通后的管压降大,晶闸管或双相晶闸管的正向降压可达1~2V ,大功率晶体管的饱和压降在1~2V 之间,一般功率场效应管的导通电阻也较机械触点的接触电阻大。

(2)半导体器件关断后仍有数微安至数毫安的漏电流,因此不能实现理想的电隔离。

(3)由于管压降大,导通后的功耗和发热量也大,大功率固态继电器的体积远远大于同容量的电磁继电器,成本也较高。

(4)电子元器件的温度特性和电子线路的抗干扰能力较差,耐辐射能力也较差,如不采取有效措施,则工作可靠性低。

(5)固态继电器对过载有较大的敏感性,必须用快速熔断器或RC 阻离电路对其进行过载保护。固态继电器的负载与环境温度明显有关,温度升高,负载能力将迅速下降。

选型:双向晶闸管型的固态继电器SSR-S340ZF 济南帝诺自动化技术有限公司

3.7 数码管

数码管显示有两种接法:共阳极、共阴极,本设计选择共阴极接法。如图3-5所示。

图3-5 数码管的接法 3.8 系统工作流程及硬件接线

3.8.1 系统工作流程

系统工作流程:硬件系统接入电源后先判断是否缺相,在不缺相情况下电源信号亮。

共阴极 共阳极 a b c d e g GND f dp

GND a b c e f g d ·dp a b c d e f g dp dp g

f e d c b a +5V (a)(b)

输入预设水温并按下启动按钮,系统工作。工作后热电阻温度传感器测量锅炉内实际水温并经过温度变送器转换后经EM235输入PLC,PLC将实际水温与预设水温做差并调用PID 算法计算出输出值,程序根据输出值判断SSR状态及通断时间,从而控制锅炉加热管加热时间。

3.8.3 系统主电路图

系统主电路图如图3-6所示。

图3-6 系统主电路图

主电路原理:系统经空气开关QA0接入电路,熔断器防止系统过流,锅炉加热管与电源间加入热继电器和固态继电器,热继电器防止系统过热。QA0为电路总开关,当固态继电器导通时锅炉加热管加热;固态继电器断开时,锅炉加热管断电,停止加热。

3.8.4 系统控制电路图

系统控制电路图如图3-7所示。

图3-7 系统控制电路图

控制电路原理:KF为缺相保护防止电源缺相。SB3为缺相保护继电开关,SB2为系统停止按钮,SB1为系统启动按钮。系统不缺相情况下,按下启动按钮SB1,线圈KM1得电,KM1常开开关闭合,SB1自锁。PLC输出Q0.0导通后工作灯Q0.0亮。Q0.1输出为正且Q0.7输出为0时固态继电器工作,系统加热。Q0.3、Q0.4、Q0.5或Q0.6中有输出为正时相应灯亮且电铃工作,固态继电器停止工作。停止时,按下按钮SB2,系统停止,Q0.2得电,停止信号灯亮。

3.8.5 PLC硬件连接图

如图3-8所示为PLC硬件连接图。

硬件图原理:SB1(I0.0)是系统启动按钮,SB2(I0.1)为系统停止按钮,SB3(I0.2)是缺相保护的继电开关。温度传感器用的PT100热电阻温度变送器。右边的输出部分为6个信号灯、1个固态继电器和1个电铃,还有三个显示锅炉水温的数码管。具体作用见I/O端口

分配表。

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

电阻加热炉温度控制

电阻加热炉温度控制精 选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

微型计算机控制技术 课程设计 ----电阻加热炉温度控制 学院:信息工程学院 专业班级:自动化0703班 姓名:唐凯 学号:07001139

目录 一、摘要 二、总体方案设计 1、设计内容及要求 2、工艺要求 3、要求实现的系统基本功能 4、对象分析 5、系统功能设计 三、硬件的设计和实现 四、数字控制器的设计) 五、软件设计) 1、系统程序流程图 2、程序清单 六、完整的系统电路图 七、系统调试 八、设计总结 九、参考文献

一、摘要 温度是工业对象中主要的被控参数之一。特别是在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉、反应炉等。由于炉子的种类不同,所采用的加热方法及燃料也不相同,如煤气、天然气等。但就控制系统本身的动态特性而言,均属于一阶纯滞后环节,在控制算法上基本相同,可采用PID 控制或其他纯滞后补偿算法。 为了保证生产过程正常安全地进行,提高产品的质量和数量,以及减轻工人的劳动强度,节约能源,对加热用的各种电炉要求在一定条件下保持恒温,不能随电源电压波动或炉内物体而变化,或者有的电炉的炉温根据工艺要求按照某个指定的升温或保温规律而变化,等等。 因此,在工农业生产或科学实验中常常对温度不仅要不断地测量,而且要进行控制。 二、总体方案设计 设计任务 用一台计算机及相应的部件组成电阻炉炉温的自动控制系统,并使系统达到工艺要求的性能指标。 1、设计内容及要求 电阻加热炉用于合金钢产品热力特性实验,电加热炉用电炉丝提供功率,使其在预定的时间内将炉内温度稳定到给定的温度值。在本控制对象电阻加热炉功率为8KW,有220V交流电源供电,采用双向可控硅进行控制。

加热反应炉监控系统课程设计

本科实验报告 课程名称:监控系统程序设计技术实验项目:加热反应炉监控系统实验地点:跨越机房 指导教师:闫高伟老师 2012年 1 月9 日

引言 一、设计任务和目的: 应用MCGS组态软件,监控加热反应炉自动控制系统。学习动画制作、控制流程的编写、变量设计、定时器构件的使用等多项操作。结合工程实例,对MCGS组态软件的组态过程、操作方法和实现功能等环节等环节进行全面的讲解,使学生对MCGS组态软件的内容、工作方法和操作步骤在短时间内有一个总体的认识。 二、监控系统分析和总体设计 2.1系统构成:本加热反应炉监控系统由上位机(MCGS)和下位机S7200CPU224PLC构成,系统构成示意图如图所示。 2.2组态界面:

在开始组态过程之前,先对该工程进行剖析,一边从整体上把我整个工程的结构、流程、需实现的功能及如何实现这些功能。 2.3工程框架: ●1个用户窗口:加热反应炉控制系统。主要包括:加热炉、加热电阻丝、四个阀、 两个液位传感器、压力传感器、温度传感器、温度计、压力表、加热指示灯、流动 管件、六个控制按钮。 ●定时器构件的使用 ●3个策略:启动策略、退出策略、循环策略 2.4数据对象:

2.5图形制作: 机械手控制系统窗口 ●加热炉、加热电阻丝、加热指示灯 ●卸放阀、进料阀、氮气阀、排气阀、温度计、压力表 ●六个控制按钮、上下液位传感器、压力传感器、温度传感器。 2.6流程控制: 按启动按钮后,系统运行;按停止按钮后,系统停止。两者信号总相反。 第一阶段:送料控制 1、检测下液面X1、炉内温度X 2、炉内压力X4是否都小于给定值(都为“0”)。 若是,则开启排气阀Y1和进料阀Y2。 2、当液位上升到上液面X3时,应关闭排气阀Y1和进料阀Y2。 3、延时10s,开启氮气阀Y3,氮气进入反应炉,炉内压力上升。 4、当压力上升到给定值时,即X4=1,关断氮气阀,送料结束。 第二阶段:加热反应控制 1、接通加热炉电源Y5。 2、当温度升到给定值时(此时信号X2=1),切断加热电源,加热过程结束。 第三阶段:泄放控制 1、延时10s,打开排气阀Y1,使炉内压力降到给定值以下(此时X4=0)。

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

完成版基于单片机的锅炉温度控制系统的设计.

1.1 课题背景及研究意义 锅炉是一种热能转换设备,由锅和路两大主体和保证其安全经济连续运行的附件,仪表附属设备,自控和保护系统组成,水在锅(锅筒)中不断被炉里燃料燃烧释放出来的能量加热,温度升高并产生带压蒸汽,由于水的沸点随压力的升高而升高,锅是密封的,水蒸气在里面的膨胀受到限制而产生压力形成热动力(严格的说锅炉的水蒸气是水在锅筒中定压加热至饱和水再汽化形成的)作为一种能源广泛使用。锅炉广泛用于生产和生活之中。中小型锅炉作为供暖设备用于提供热水,取暖方面得到了广泛应用。目前,取暖多采用集中供暖方式。集中供暖,一般都是按一个采暖季每平方(建筑面积)来收费的,对北方地区来说,天气比较冷,需要供暖时间长,应该集中供暖省钱。指集中集团式供暖的一种形式。从能源利用方面讲,集中供暖一次性投资大,运行费用高,无论是否需要,暖气始终全天供热,因楼层不同而造成温度不均,若遇到供暖偏热,居民只有开窗降温,使宝贵的能源白白浪费。这种供暖方式从原理上而言,效率较高。集中供暖的锅炉大多数是燃媒锅炉,锅炉燃烧时污染大,已经带来了严重的环境污染问题。由于这些用户采用集中取暖,给个别用户带来不便的缺陷。 基于这种情况,近年来采用以天然气,液化石油气为燃料的中小型燃气锅炉具有高效、环境污染小,发热量大甚至无污染等特点,受到普遍欢迎。尤其在国外,燃气锅炉目前已得到了普遍应用。家用燃气锅炉常见的是套管式燃气锅炉、板换式燃气锅炉、冷凝式燃气锅炉。随着科技的发展以及各种客观条件的具备,生活采暖用燃气锅炉的应用也必将得到进一步的发展与推广。随着燃料不断补给,燃料充足,城市燃气管网逐步完善,燃气使用率逐步会提高。市场经济的发展与开放,国有企业享受国家能源补贴的取消,住房逐渐私有化,供热管网费、采暖费全部由个人支付。会有越来越多的人放弃集中供热方式而采用分散采暖方式。而小型家用燃气锅炉的使用作为集中供暖的一个很好补充或替代它必将被越来越多的人关注和选用成为趋势。 目前市场上家用燃气锅炉为进口,价格高,售后服务不够完善,不利于燃气锅炉的推广使用,研制燃气锅炉的公司亦相对较少。因此研制开发小型家用燃气锅炉就具有现实的意义与客观的市场价值。 本设计将结合小型家用燃气锅炉实际的需要,利用MCS-51系列单片机为核心器件组成温度控制系统,采用温度采集技术,通过运行和分析研究,以期正确认识和全面理解利用单片机实现温度采集技术在过程控制中的应用。 1.2 系统的总体设计思想 目前,世界计算机市场上出现了专门用于工业控制的单片机系列产品,单片机以其体积小、重量轻、功耗低、价格便宜、功能强的特点,在工业控制的实践中得到越来越广泛的应用单片机不仅可以实现各种常规的控制,还可以根据被控对象

加热反应炉控制系统

过程控制工程 课程设计任务书 设计名称:基于MCGS组态的反应炉自动控制设计设计时间:2015/9/1-2015/9/10 姓名:李宜林 班级:自1205 学号:1501120516 指导教师:薄翠梅杨世品徐启李丽娟 南京工业大学电气工程与控制科学学院

摘要 加热反应炉是许多企业中的重要设备之一,为了避免事故的发生,实现安全生产,有必要对它的状态进行实时数据监控。通过MCGS组态软件设计上位机监控画面,实时监控各参数。本设计利用组态MCGS组态技术,使加热反应炉进行进料和排料,进气和排气,加热等自动控制,还可以进行数据实时报表输出,并可以对加热反应炉内水位变化进行实时曲线显示输出和历史曲线显示输出,并显示出报警信息,这样能预防和减少生产过程中的安全事故的发生,提高了人身的安全系数。当意外发生或事故发生了以后,可以通过对历史数据报表和曲线观察分析,迅速总结经验,加强管理,从而避免今后再次发生类似的意外情况或事故,达到安全生产的目的。 关键词:加热反应炉,MCGS组态控制,监控画面

ABSTRACT Heating furnace is one of the most important equipment for many enterprises.In order to avoid accidents and produce safely,it is necessary to monitor its production state in real time.Through the monitoring screen of MCGS configuration software technology,enterprises can monitor various parameters in real time.This design uses MCGS technology,automating feeding and nesting,intake and exhaust,heating of heating furnace.It can also output the data report in real time and shows alarm information,which can prevent and reduce the likelihood of accidents in the production process;enhance personal safety factor. When accidents happened,experience can be quickly summed up through the existed data report and curve analysis.According to them,enterprises strengthen the management,avoiding similar accidents in the future and achieve the purpose of safety production. Keywords: heating reactor, MCGS control, Monitoring menu

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

锅炉温度控制系统的设计

齐鲁理工学院 课程设计说明书 题目基于PID的锅炉温度控制系统的设计 课程名称过程控制系统与仪表 二级学院机电工程学院 专业自动化 班级2014级自动化二班 学生姓名金高翔 学号201410532019 指导教师黄丽丽

设计起止时间:2016年12月5日至2016年12月18日

目录 摘要 (1) 1 绪论 (2) 1.1 课程设计的背景: (2) 1.2 课程设计的任务: (2) 1.3 课程设计的基本要求: (2) 2 PLC和组态软件介绍 (3) 2.1 可编程控制器 (3) 2.1.1 可编程控制器的工作原理 (3) 2.2 组态软件 (3) 2.2.1 组态的定义 (3) 2.2.2 组态王软件的特点 (4) 2.2.3组态王软件仿真的基本方法 (4) 3 PID控制及参数整定 (4) 3.1.PID控制器的组成 (4) 3.2.采样周期的分析 (5) 4 被控对象的建模 (6) 5 PLC控制系统的软件设计 (9) 5.1.程序编写 (9) 5.2用指令向导编写PID控制程序 (11) 6 组态的设计 (15) 7 系统测试 (18) 7.1 启动组态王 (18) 7.2 实时曲线界面 (18) 7.3历史曲线界面 (19)

8 结论 (19) 参考文献: (21) 致谢: (22)

基于PID的锅炉温度控制系统的设计 摘要:从上世纪的80年代到90年代中期,PLC得到了飞速的发展,在这个时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了大幅度的提高,PLC逐渐的进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等优点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的未来,是无法取代的。 本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度控制系统;采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。 锅炉的应用领域相当广泛,在相当多的领域里,锅炉的性能优劣决定了产品的质量好坏。目前锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。 本文分别就锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设计等几方面进行阐述。通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。 关键词:电热锅炉的控制系统温度控制PLC PID

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

加热反应炉电气控制系统

湖南工程学院课程设计 课程名称电气控制与PLC 课题名称加热反应炉电气控制系统 专业班级测控技术0801班 姓名罗德顺 学号200801200123 指导教师刘星平、赖指南 2011年11月25日

湖南工程学院 课程设计任务书 课程名称电气控制与PLC 课题名称加热反应炉电气控制系统设计 专业班级测控0801班 姓名罗德顺 学号200801200123 指导教师刘星平、赖指南 审批李晓秀、黄峰 任务书下达日期2011年11月14日 课程设计完成日期2011年11月25日

设计内容与要求 一.课程设计的性质与目的 本课程设计是自动化专业教学计划中不可缺少的一个综合性教学环节,是实现理论与实践相结合的重要手段。它的主要目的是培养学生综合运用本课程所学知识和技能去分析和解决本课程范围内的一般工程技术问题,建立正确的设计思想,掌握工程设计的一般程序和方法。通过课程设计使学生得到工程知识和工程技能的综合训练,获得应用本课程的知识和技术去解决工程实际问题的能力。 二. 课程设计的内容 1.根据控制对象的用途、基本结构、运动形式、工艺过程、工作环境和控制要求,确定控制方案。 2.绘制加热反应炉电气控制系统的电气原理图、控制系统的PLC I/O接 线图和梯形图,写出指令程序清单。 3.选择电器元件,列出电器元件明细表。 4.编写设计说明书。 三. 课程设计的要求 1.所选控制方案合理,所设计的控制系统能够满足控制对象的工艺要求,并且技术先进,安全可靠,操作方便。 2.所绘制的设计图纸符合国家标准局颁布的GB4728-84《电气图用图形符号》、GB6988-87《电气制图》、GB7159-87《电气技术中的文字符号制定通则》。 3.所编写的设计说明书应重点突出,层次清楚,条理分明,篇幅不少于7000字。 主要设计条件 编程软件及实物PLC,PLC实验室 设计说明书装订顺序 1.课程设计说明书封面。 2.课程设计任务书。 3.说明书目录。 4.正文(按设计内容逐项书写)。 5.参考文献。 6.附录。 7.课程设计评分表。 设计进度安排

基于单片机的温度控制系统设计报告

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第 1 页 (二)温度信号采集电路选择和数据处理--------------------------------第 3 页 (三)软件设计------------------------------------------------------第 3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第 5 页 (二)步进电机电路------------------------------------------------- 第 5 页(三)液晶显示模块---------------------------------------------------------- 第6 页 (四)晶振复位电路--------------------------------------------------第 7 页三、总结体会--------------------------------------------------------------------------------------第 7 页 四、参考文献-------------------------------------------第 8 页 附录:程序清单------------------------------------------第 8 页

基于PLC的锅炉温度控制系统毕业设计

基于PLC的锅炉温度控制系统 作者姓名xxx 专业自动化 指导教师姓名xxx 专业技术职务讲师

目录 摘要 (1) 第一章绪论 (3) 1.1课题背景及研究目的和意义 (3) 1.2国内外研究现状 (3) 1.3项目研究内容 (4) 第二章 PLC和组态软件基础 (5) 2.1可编程控制器基础 (5) 2.1.1可编程控制器的产生和应用 (5) 2.1.2可编程控制器的组成和工作原理 ··············错误!未定义书签。 2.1.3可编程控制器的分类及特点 (7) 2.2组态软件的基础 (8) 2.2.1组态的定义 (8) 2.2.2组态王软件的特点 (8) 2.2.3组态王软件仿真的基本方法 (8) 第三章 PLC控制系统的硬件设计 (9) 3.1 PLC控制系统设计的基本原则和步骤 (9) 3.1.1 PLC控制系统设计的基本原则 (9) 3.1.2 PLC控制系统设计的一般步骤 (9) 3.1.3 PLC程序设计的一般步骤 (10) 3.2 PLC的选型和硬件配置 (11) 3.2.1 PLC型号的选择 (11) 3.2.2 S7-200CPU的选择 (12) 3.2.3 EM235模拟量输入/输出模块 (12) 3.2.4 热电式传感器 (12) 3.2.5 可控硅加热装置简介 (12) 3.3 系统整体设计方案和电气连接图 (13) 3.4 PLC控制器的设计 (14) 3.4.1 控制系统数学模型的建立 (14)

3.4.2 PID控制及参数整定 (14) 第四章 PLC控制系统的软件设计 (16) 4.1 PLC程序设计的方法 (16) 4.2 编程软件STEP7--Micro/WIN 概述 (17) 4.2.1 STEP7--Micro/WIN 简单介绍 (17) 4.2.2 计算机与PLC的通信 (18) 4.3 程序设计 (18) 4.3.1程序设计思路 (18) 4.3.2 PID指令向导 (19) 4.3.3 控制程序及分析 (25) 第五章组态画面的设计 (29) 5.1组态变量的建立及设备连接 (29) 5.1.1新建项目 (29) 5.2创建组态画面 (33) 5.2.1新建主画面 (33) 5.2.2新建PID参数设定窗口 (34) 5.2.3新建数据报表 (34) 5.2.4新建实时曲线 (35) 5.2.5新建历史曲线 (35) 5.2.6新建报警窗口 (36) 第六章系统测试 (37) 6.1启动组态王 (37) 6.2实时曲线观察 (38) 6.3分析历史趋势曲线 (38) 6.4查看数据报表 (40) 6.5系统稳定性测试 (42) 结束语 (43) 参考文献 (44) 致谢 (45)

计算机控制课程设计 基于PID算法电加热炉温度控制系统设计

成绩 《计算机控制技术》 课程设计 题目:基于数字PID的电加热炉温度控制系统设计 班级:自动化09-1 姓名: 学号: 2013 年 1 月 1 日

基于数字PID的电加热炉温度控制系统设计 摘要:电加热炉控制系统属于一阶纯滞后环节,具有大惯性、纯滞后、非线性等特点,导致传统控制方式超调大、调节时间长、控制精度低。本设计采用PID算法进行温度控制,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节相串联来实现温度的较为精确的控制。 电加热炉加热温度的改变是由上、下两组炉丝的供电功率来调节的,它们分别由两套晶闸管调功器供电。调功器的输出功率由改变过零触发器的给定电压来调节,本设计以AT89C51单片机为控制核心,输入通道使用AD590传感器检测温度,测量变送传给ADC0809进行A/D转换,输出通道驱动执行结构过零触发器,从而加热电炉丝。本系统PID算法,将温度控制在50~350℃范围内,并能够实时显示当前温度值。 关键词:电加热炉;PID ;功率;温度控制; 1.课程设计方案 1.1 系统组成中体结构 电加热炉温度控制系统原理图如下,主要由温度检测电路、A/D转换电路、驱动执行电路、显示电路及按键电路等组成。 系统采用可控硅交流调压器,输出不同的电压控制电阻炉温度的大小,温度通过热电偶检测,再经过变送器变成0 - 5 V 的电压信号送入A/D 转换器使之变成数字量,此数字量通过接口送到微机,这是模拟量输入通道。 2.控制系统的建模和数字控制器设计 2.1 数字PID控制算法 在电子数字计算机直接数字控制系统中,PID控制器是通过计算机PID控制算法程序实现的。计算机直接数字控制系统大多数是采样-数据控制系统。进入计算机的连续-时间信号,必须经过采样和整量化后,变成数字量,方能进入计算机的存贮器和寄存器,而在数字计算机中的计算和处理,不论是积分还是微分,只能用数值计算去逼近。

自动温度控制系统的设计开题报告

附表1 铜陵学院学生毕业论文(设计)选题审批表院部:专业:

附表2 铜陵学院毕业论文(设计)任务书 同学:你好! 你所预选的毕业论文(设计)题目自动温度控制系统的设计经审定已通过,你可以进入研究(设计)阶段,请你按照以下进程要求完成毕业论文(设计)的研究设计任务。 一、在指导教师的指导下,进一步明确所选课题的目的和意义。 二、根据选题进行广泛调研,并检索主要参考文献。 三、拟定研究(设计)方案(包括内容、方法、预期目标、进度安排等)。 四、毕业论文(设计)的主要内容(或主要技术要求与数据):主要 是设计一个温度自动控制系统,用单片机控制,数字温度传感器采集数据, 并用LCD液晶显示器模块显示。它属于一个恒温系统。通过单片机处理,并 发出指令,使用继电器控制、隔离。 五、编写毕业论文(设计)提纲。 六、将包含上述内容的开题报告于 2015 年 1 月 6 日前送 交指导老师,并于 2015 年 1 月 15 日前完成开题。 七、请你于 2015 年 4 月 20 日前完成毕业论文(设计)的初 稿。 八、请你在 2015 年 4 月 22 日至 5 月 31 日之间反复修改 初稿(要求不少于三次)。 九、请你于 2015 年 6 月 20 日前把符合铜陵学院毕业论文(设 计)撰写格式要求的纸质定稿和相关的附件等材料,按要求装订一式三份, 连同对应的电子文档送交指导老师。 十、你的毕业论文(设计)如果通过了答辩资格审查,请于 2015 年 6月 20 日前准备参加本学院统一组织的毕业论文(设计)答辩(具体答辩

时间另行通知)。 十一、如果你的联系方式发生变动,应及时通知你的指导老师。 指导教师电话: E-mail: 学生电话: E-mail: 指导教师签名:学生签名: 下达任务日期: 2014 年 12 月 23 日接受任务日期: 2014 年 12 月24 日注:本任务书一式两份,一份交给学生,一份指导教师留存。 附表3 铜陵学院毕业论文(设计)开题报告

锅炉温度控制系统的设计

综述 锅炉汽包燃烧系统是工业蒸汽锅炉安全、稳定运行的重要指标,温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,传热效率下降,过热蒸汽温度下降,严重时将引起蒸汽品质下降,影响生产和安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸。尤其是大型锅炉,一旦控制不当,容易使汽包满水或汽包内的水全部汽化,造成重大事故。因此,在锅炉运行中,保证温度在正常范围是非常重要的。 本文设计了一种数字式锅炉温度控制系统,并给出了硬件原理图。该控制系统是用MCS-51系列单片机及其相关硬件来实现,利用传感器测量温度数据、CPU循环检测传感器输出状态,并用光柱和LED指示温度的高度。当锅炉温度低于用户设定的值时,系统自动打开燃料通道,当温度到达设定值时,系统自动关闭燃料通道。通过定量的计算表明该控制系统设计合理、可行。 一.系统总体设计 1.1 系统总体设计方案 设计框图如下所示: 图1-1系统框图 1.2 单元电路方案的论证与选择

硬件电路的设计是整个实验的关键部分,我们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 采用温度传感器DS18B20 美国DALLAS 公司的产品可编程单总线数字式温度传感器DS18B20可实现室内温度信号的采集,有很多优点:如直接输出数字信号,故省去了后继的信号放大及模数转换部分,外围电路简单,成本低;单总线接口,只有一根信号线作为单总线与CPU 连接,且每一只都有自己唯一的64位系列号存储在其内部的ROM 存储器中,故在一根信号线上可以挂接多个DS18820,便于多点测量且易于扩展。 DS 18 B2 0的测温范围较大,集成度较高,但需要串口来模拟其时序才能使用,故没有选用此方案。 1.2.1输入输出通道及其接口设计 1)温度检测模拟输入通道设计 图1-2 输入通道原理图 设V /F 变换器的额定输出频率为F ,计数器对输出脉冲的计数时间为Ts ,A /D 转换结果的分辨率为i ,则有: s i s F T 2 取Ts =1s ,则在V /F 的输出频率范围0~10kHz 内,可以得到13位的A /D 转换结果。

相关主题
文本预览
相关文档 最新文档