当前位置:文档之家› 弹塑性力学总结读书报告

弹塑性力学总结读书报告

弹塑性力学总结读书报告
弹塑性力学总结读书报告

弹塑性力学读书报告

弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。弹塑性力学也是连续介质力学的基础和一部分。弹塑性力学包括:弹塑性静力学和弹塑性动力学。

弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。

1 基本思想及理论

1.1科学的假设思想

人们研究基础理论的目的是用基础理论来指导实践,而理论则是通过对自然、生活中事物的现象进行概括、抽象、分析、综合得来,在这个过程中就要从众多个体事物中寻找规律,而规律的得出一般先由假设得来,弹塑性力学理论亦是如此。固体受到外力作用时表现出的现象差别根本的原因在于材料本身性质差异,这些性质包括尺寸、材料的方向性、均匀性、连续性等,力学问题的研究离不开数学工具,如果要考虑材料的所有性质,那么一些问题的解答将无法进行下去。所以,在弹塑性力学中,根据具体研究对象的性质,并联系求解问题的范围,忽略那些次要的局部的对研究影响不大的因素,使问题得到简化。

1.1.1连续性假定

假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。

1.1.2线弹性假定(弹性力学)

假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。

1.1.3均匀性假定

假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。

1.1.4各向同性假定(弹性力学)

假定物体内一点的弹性性质在所有各个方向都相同,弹性常数(E、μ)不随坐标方向而变化;

1.1.5小变形假定

假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。可用变形前的尺寸代替变形后的尺寸,建立方程时,可略去高阶微量

1.2应力状态理论

应力的概念的提出用到了数学上极限的概念,定义为微小面元上的内力矢量。在微观层面,我们研究的是一点的应力状态。在宏观层面,根据物体所受的面力和体力以及其与坐标轴的关系,将物体的应力状态分为平面应力问题、平面应变问题及空间应力问题。平面应力问题是指物体在一个方向上的尺寸很小,且外荷载沿该方向的厚度均匀分布(如矩形薄板);平面应变问题则是物体在一个方向上的尺寸很大,外荷载沿该方向为常数(如水坝)。空间应力问题则是一般普遍的情形。对应力的分析应用静力学的理论可以得到求解弹塑性力学的平衡微分方程。

1.3应变状态理论

在外力、温度变化或其他因素作用下,物体内部各质点将产生位置的变化,即发生位移。物体内各质点发生位移后,如果仍保持各质点间初始状态的相对位置,则物体仅发生刚体位移,如果改变了各点间初始状态的相对位置,则物体还产生了形状的变化,包括体积改变和形状改变,物体的这种变化称为物体的变形。在弹塑性力学中,用应变的概念来描述物体变形,在已知物体位移的情况下,通过几何学工具,结合小变形假设条件,可推导出求解弹塑性力学的几何方程。

1.4本构理论:

本构理论探讨的是物体受到外力作用时应力与应变之间的关系,这是研究弹塑性力学非常重要的理论。对物体应力应变关系的研究首先总是通过实验的手段得来,当我们发现物体处于线弹性阶段时,应力与应变的关系可以通过胡克定律来描述,具体而言又可分为各向同性材料、各向异性材料、对称性材料等。

当受力物体某点的应力状态满足屈服条件是,该点已经进入塑性阶段,此时应力与应变不再呈现出线性关系,对于该点弹性本构关系不再适用。在塑性阶段,应变状态不但与应力状态有关,而且还依赖于整个应力历史(应力点移动的过程),由于应力历史的复杂性,很难建立一个能包括各种变形历史影响的全量形式的塑性应力-应变关系,只能建立应力与应变增量之间的塑性本够关系。当结构材料进入塑性状态之后,应力点位于屈服面上,此时材料的应力-应变关系将根据加载与卸载的不同情况而服从不同的规律。若为卸载,则施加的应力增量将使应力点从屈服面上回到屈服面内,增量应力与增量应变之间仍服从胡克定律。若为加载,则所施加的增量应力将使应力点在屈服面上移动或移动到新的屈服面上,此时材料的本构关系服从增量理论。

当个应变分量自始至终都按同一比例增加或减少时,应变强度增量可以积分求得应变强度,从而建立全量理论的应力应变关系

1.5 边界条件(圣维南原理)

边界条件表示在边界上位移与约束,或应力与面力之间的关系式。边界条件分为应力边界条件、位移边界条件、混合边界条件,求解弹性力学问题时,使应力分量、形变分量、位移分量完全满足8个基本方程相对容易,但要使边界条件完全满足,往往很困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供恒大的方便。圣维南原理描述如下:如果物体一小部分边界面上的面力是一个平衡力系(主矢量及主矩都等于零),那么这个面力就会使近处产生显著的应力,而远处的应力可以不计。

2. 材料力学性质模型

(1)弹性材料

弹性材料是对实际固体材料的一种抽象,它构成一个近似于真实材料的理想模型。弹性材料的特征是:物体在变形过程中,对应于一定的温度,应力与应变之间呈一一对应的关系,它和载荷的持续时间及变形历史无关;卸载后,类变形可以完全恢复。在变形过程中,应力与应变之司呈线性关系,即服从胡克(Hooke

R)规律的弹性材料称为线性弹性材料;而某些金属和塑料等,其应力与应变之间

呈非线性性质,称为非线性弹性材料。材料弹性规律的应用,就成为弹性力学区别于其它固体力学分支学科的本质特征。

(2)塑性材料

塑性材料也是固体材料约一种理想模型。塑性材料的特征是:在变形过程中,

应力和应变不再具有一一对应的关系,应变的大小与加载的历史有关,但与时间无关;卸载过程中,应力与应变之间按材料固有的弹性规律变化,完全卸载后,物体保持一定的永久变形、或称残余变形。部分变形的不可恢复性是塑性材料的基本特征。

(3)粘性材料

当材料的力学性质具有时间效应,即材料的力学性质与载荷的持续时间和加载速率相关时,称为粘性材料。实际材料都具有不同程度的粘性性质,只不过有时可以略去不计。

2 求解方法

在弹弹塑性力学里求解问题,主要有三种基本方法,分别是按位移求解、按应力求解和按能量原理求解。

2.1位移法

它以位移分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含位移分量的方程和相应的边界条件,并由此解出位移分量,然后再求出形变分量和应力分量。位移法能适应各种边界条件问题的求解。

2.2应力法

它以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和相应的边界条件,并由此解出应力分量,然后再求出形变分量和位移分量。按应力法求解平面问题时,需要满足相容方程,它是偏微分方程,由于不能直接求解,则只能采用逆解法或半逆解法。

?,从而求所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数

出应力分量。然后根据应力边界条件来考察,在各种形状的弹性体上,这些应力分量对应于什么样的面力,从而得知所设定的应力函数可以解决什么问题。所谓半逆解法,就是针对所要解的问题,根据弹性体的边界形状和受力情况,假设部

?,然后来考察这个应分或全部应力分量为某种形式的函数,从而推出应力函数

力函数是否满足相容方程以及原来假设的应力分量和由这个应力函数求出其他应力分量,是否满足应力边界条件和位移单值条件。

2.3能量原理

由以上的方法可以解决梁的弯曲、薄板弯曲、厚壁圆筒、孔边应力等问题的求解,然而只有对一些特殊结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,在给定边界条件时,求解极其困难,而且往往是不可能的。为解决这些问题,数值解法的应用就有重要的意义,如有限元法、边界元法等,这些解法的依据都是能量原理。

虚位移原理,在外力作用下处于平衡状态的可变形体,当给予物体微小虚位移时,外力在虚位移上所做的虚功等于物体的虚应变能。

虚功原理,当物体在已知体力和面力作用下处于平衡状态时,微小虚面力在实际位移所做的虚功,等于虚应力在真实应变所产生的虚应变余能。

最小势能原理,即给定外力作用下保持平衡的弹性体,在满足位移边界条件的位移场中,真实的位移场使其总势能能取最小值。

最小余能原理,在所有满足平衡方程和应力边界条件的静力许可的应力场中,真实的应力场使余能取最小值。

3总结

弹塑性力学作为固体力学的一个重要分支,是我们认识物体受力时应力应变规律的重要基础理论,是分析和解决许多工程技术问题的基础和依据。结合本专业,树立土的本构模型概念,在有限元计算中根据实际问题选取合适的本构模型对于问题的求解具有重要意义。

高等土力学读书报告

高等土力学读书报告 姓名:杨耀辉 学院:水利与土木工程学院 专业:水利工程 学号: 1338020126

无粘性土颗粒组成的类型与基本性质 一 无粘性土颗粒组成类型与分类 1.颗粒组成 颗粒组成是研究无粘性土基本性质的主要依据,通常以各粒径含量的累积曲线或分布曲线表示。 均匀土:分布曲线是单峰形式,各粒径都有一定的含量,峰值粒径含量占绝对优势,其破坏形式主要是流土破坏。 单峰形:峰值远离中值,呈左偏峰,出现双峰时右峰较低,两峰连续,谷点里粒径至少占4%至5%,曲线无明显平缓段,集中在某段,无峰值。 不均匀土:级配连续和级配不连续。 双峰形:双峰间有间断,有的相连接,但最低点粒径含量小于或等于3%,累积曲线呈椅子形,出现台阶。 2.均匀土的区分原则和方法 均匀土特点:级配不良,压实性差,孔隙率大,稳定性差。 太沙基指出5,1.0<

质仍取决于粗料。但随细料的含量的增加,混合料密度增加,孔隙相应减小,到细料超出一定含量时,混合料性质就取决于细料。最优级配的细料含量P=25%到30%。 混合料中开始参与骨架作用的细料含量 21n n n = ;并考虑到无粘性土一般21s s ρρ=;得出细料含量与孔隙率的关系 理想状态下的计算式: ()2 222 1 1 1n n n P d s d ?+?-?= ρρρ 其中 ()1 111 s d n ρρ?-=; 在理想状态下: n n n P --= 12。 为使P 含量与实际相符,就要考虑粗料孔隙体积被撑开的影响,由实验分 析知2n 随n 增大而增大,且223n n =?;我们取粗料孔隙率为0.3,则2 233.0n n += ∴ n n n P --+= 133.02 但在实际中,混合料中细料是多少要撑开粗料孔隙的,所以理论计算的P 要小于实际中的。 实际值小于它时表明细料没填满粗料孔隙; 实际值大于它时细料填满粗料孔隙且与粗料共同组成骨架; 当实际值等于它时认为混合料有最优级配料。 渗透系数与细料含量的关系; P 〈30%时填不满孔隙,对渗透系数起控制作用的是粗料。 P 〉30%时孔隙与细料产生关系。 P 〉70%时粗料只起填充作用,对渗透系数的影响减少直到消失。 4.级配连续土的基本性质 级配连续土的性质: Cu>10 1

弹塑性力学试卷

二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、; 五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为:

式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量 之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑 的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图 4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作 用。设管内各点处的应力状态均相同,且设在加载过程中始终保持,(采用柱坐 标系,r为径向,θ为环向,z为圆管轴向。)材料的屈服极限为=400MPa。试求此圆管材料屈服时(采用Mises屈服条件)的轴向载荷P和轴矩M s。 (提示:Mises屈服条件:;) 填空题 6 平衡微分方程 选择ABBC

弹塑性力学总结汇编

弹塑性力学总结 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 一、弹性力学 1、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。

在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如:应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料服从虎克定律,应力与应变成正比。 (3)假设物体是均匀的。就是说整个物体是由同一种质地均匀的材料组成的。这样,整个物体的所有部分才具有相同的物理性质,因而物体的弹性模量和泊松比才不随位置坐标而变。 (4)假设物体是各向同性的。也就是物体内每一点各个不同方向的物理性质和机械性质都是相同的。 (5)假设物体的变形是微小的。即物体受力以后,整个物体所有各点的位移都小于物体的原有尺寸,因而应变和转角都远小于1。这样,在考虑物体变形以后的平衡状态时,可以用变

(完整版)弹塑性力学作业(含答案)(1)

第二章 应力理论和应变理论 2—3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa )并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值 应作何修正。 解:在右图示单元体上建立xoy 坐标,则知 σx = -10 σy = -4 τxy = -2 (以上应力符号均按材力的规定) 代入材力有关公式得: 代入弹性力学的有关公式得: 己知 σx = -10 σy = -4 τxy = +2 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。 2—6. 悬挂的等直杆在自重W 作用下(如图所 示)。材料比重为γ弹性模量为 E ,横截面面积为A 。试求离固定端z 处一点C 的应变εz 与杆的总伸长量Δl 。 解:据题意选点如图所示坐标系xoz ,在距下端(原点)为z 处的c 点取一截面考虑下半段杆的平衡得: c 截面的内力:N z =γ·A ·z ; c 截面上的应力:z z N A z z A A γσγ??===?; 所以离下端为z 处的任意一点c 的线应变εz 为: z z z E E σγε==; 则距下端(原点)为z 的一段杆件在自重作用下,其伸长量为: ()2 2z z z z z z z z y z z l d l d d zd E E E γγ γε=???=??=? = ?= o o o o V ; 显然该杆件的总的伸长量为(也即下端面的位移): ()2 222l l A l l W l l d l E EA EA γγ?????=??= = = o V ;(W=γAl ) 2—9.己知物体内一点的应力张量为:σij =50030080030003008003001100-?? ??+-?? ??--?? 应力单位为kg /cm 2 。 试确定外法线为n i (也即三个方向余弦都相等)的微分斜截面上的总应力n P v 、正应力σn 及剪应力τn 。 解:首先求出该斜截面上全应力n P v 在x 、y 、z 三个方向的三个分量:n '=n x =n y =n z 题图1-3

弹塑性力学读书笔记

弹塑性力学在岩体变形加固中的应用 姓名: xx 学号:导师: xx 弹塑性力学这门课程是《弹性力学》的延伸,经典弹塑性力学的基本要求是应力只能在屈服面以内或屈服面之上,材料在屈服面以外的力学行为是没有定义的,这意味着经典弹塑性理论只能处理稳定结构。结构需要加固力维持稳定,说明结构部分区域应力已超出屈服面。一般说来对于给定的外荷载,结构的工作区域可能是弹性区、稳定弹塑性区和非稳定弹塑性区。弹性区和稳定弹塑性区可由经典弹塑性力学处理,变形加固理论处理的是非稳定弹塑性区。本文首次提出变形加固理论的基础是非平衡态弹塑性力学,它是经典弹塑性力学的增量延拓,其理论核心是最小塑性余能密度原理,在结构上反映为最小塑性余能原理。 1 变形加固理论的提出 工程结构弹塑性有限元计算表现为一系列逼近真解的迭代过程。考察某一 典型的迭代步,设某一高斯点在该迭代步的初始应力为c 0 且有f( c 0) <,当前应力为c 1。应力场c 0,c 1 都应满足平衡条件,即该应力场在结构内处处满足平衡微分方程,在边界上满足力的边界条件,在有限元分析中表示为 2/ BT c 0dV= 2/ BT c

1dV=F 式中: F为外荷载向量,e表示对结构所有单元求和。 经典弹塑性理论要求结构各点应力必须在屈服面之上或以内,即各点都要满足屈服条件,这意味着结构在外荷载作用下是稳定的。而本文讨论加固问题首先意味着结构在外荷载作用下是不稳定的,需要引入加固力以维持稳定。所以有必要对经典弹塑性理论进行延拓以容纳加固特点。受弹塑性迭代总是使范数不断减少的启发,本文提出一个最小塑性余能原理: 对于给定的外荷载,在所有和其平衡的应力场中,结构真实应力场的塑性 余能范数最小。以此而论,弹塑性有限元计算的迭代过程就是△E的一个最小化过程。 3经典弹塑性本构关系 本文讨论关联的理想弹塑性材料,且不考虑弹塑性耦合。经典弹塑性力学的本构关系为率形式。 4非平衡态弹塑性本构关系 非平衡态弹塑性力学处理应力状态处于屈服面以外的材料行为,其本构关系基本上就是上述经典弹塑性本构关系的增量化。只有增量化才能出现应力位于屈服面以外的情形,这和弹塑性数值方法的处理方法是一致的。不过弹塑性数值方法是作为弹塑性理论的近似方法,而在本文,这些增量关系作为非平衡态弹塑性力学的本构关系,是作为事先给定的基本定义和出发点。 第一和第二最小塑性余能密度原理可统称为最小塑性余能密度原理,如上所述,其实质为增量型正交流动法则。增量型正交流动法则为正交流动法则的一阶近似。正是在这个意义上,非平衡态弹塑性力学可以看作是经典弹塑性力学在非稳定弹塑性区的一阶近似。最小塑性余能密度原理式可以认为是极值问题式的增量对

土力学读书报告分析

高等土力学读书报告 学院:土木工程 专业:结构工程 指导教师: 姓名: 学号: 2015.12.30

本学期学了土的应力与应变,强度理论,全量理论,增量理论,模型理论,滑线场理论及极限分析。以下对这些理论做简要回顾。 应力应变 土的应力应变关系十分复杂,除了时间外,还有温度、湿度等影响因素。其中时间是一个主要影响因素。与时间有关的土的本构关系主要是指反映土流变性的理论。而在大多数情况下,可以不考虑时间对土的应力——应变和强度(主要是抗剪强度)关系的影响。土的强度是土受力变形发展的一个阶段,即在微小的应力增量作用下,土单元会发生无限大(或不可控制)的应变增量。因而它实际上是土的本构关系的一个组成部分。 由于土是岩石风化而成的碎散颗粒的集合体,一般包含有固、液、气三相,在其形成的漫长的地质过程中,受风化、搬运、沉积、固结和地壳运动的影响,其应力应变关系十分复杂,并且与诸多因素有关。其中主要的应力应变特性是其非线性、弹塑性和剪胀(缩)性。主要的影响因素是应力水平(Stresslevel、应力路径(Strespath)和应力历史(Stresshistor),亦称3S影响 土的强度理论 土在外力作用下达到屈服或破坏时的极限应力。由于剪应力对土的破坏起控制作用,所以土的强度通常是指它的抗剪强度。 确定强度的原则土的强度一般是由它的应力-应变关系曲线上某 些特征应力来确定的,如屈服应力、破坏应力(或峰值应力)等,这些特征应力值与土的种类和物理条件(如加载时间、加载速率和排水条件等)有关。在不考虑加载时间或加载速率对土强度影响的常规试验中,对于不同的土,大体上可获得三种典型的应力-应变关系曲线,一种是当应力随应变增大直至峰值时,土体出现破裂,随着应变进一步增大,应力由峰值逐渐降低,最后达到稳定应力值。对此,人们取峰值应力作为破坏强度,取最后稳定应力值作为破坏后的强度。第二种是当应力达到最大值后,应力虽然不增加,但应变继续增加,对此,也可取最大应力值作为破坏强度。第三种是,在较大应变下,应力仍未达到最大值,而是随

材料力学读书报告

《材料力学(1)课程读书报告》 《材料力学》这门课程是研究材料在各种外力作用下产生的应变力强度、刚度、稳定和 导致各种材料破坏的极限。《材料力学》是设计工业设施必须掌握的知识。与理论力学、结构 力学并称三大力学。 《材料力学》《材料力学》是一门技术基础课程,是衔接基础课与专业基础课的桥梁课程。 是理论研究和实验并重的一门学科。是固体力学中的一个重要的分支学科,是研究可变形固 体受到处荷载力或温度变化等因素的影响而发生力学响应的一门科学,是研究构件在受载过 程中的强度、刚度和稳定性问题的一门学科。它是门理论研究与工程实践相结合的非常密切 的一门学科。 材料力学的基本任务是在满足强度、刚度和稳定性的安全要求下以最经济的代价。为构 件确定合理的形状和尺寸选择适宜的材料,为构件设计提供必要的理论基础和计算方法解决 结构设计安全可靠与经济合理的矛盾。 在人们运用材料进行建筑,工业生产的过程中,需要对材料的实际随能力和内部变化进 行研究这就催生了材料力学。在材料力学中,将研究对象被看作均匀,连续且具有各同性的 线性弹性物体,但在实际研究中不可能会有符合这些条件的材料,所以须要各种理论与实际 方法对材料进行实验比较,种材料的相关数据。我们一般通过假设对物体进行描述,这样有 利于我们通过数学计算出相关的数据,有连续性假设,均匀性假设。各向同性假设及小变型 假设等。 在材料力学中,物体由于外因而变化时,在物体内部各部分之间产生相互作用的内力以 低抗这种外因的作用,并力图使物体从变形的位置回复到变形前的位置,在所考察的截面某 一点单位面积上的内力称为应力。既受力物体内某点某微截面上的内力的分布集度,应变指 构件等物体内任一点因各种外力作用引起的形状和尺寸的相对改变(变形)。当撤除外力时固 体能恢复其变形的性能称为弹性,当撤除外力时固体能残留下来变形的性能称为塑性。物件 在外力作用下抵抗破坏的能力称强度。刚度是指构件在外力作用下抵抗变形的能力。 研究内力和应力一般用截面法,目的是为了求得物体内部各部分之间的相互作用力。轴 向拉伸(压缩)的计算公式为 ??fn 。?为横截面的应力。正应为和轴力fn同a 号。即拉应力为正,压应力为负。 原理:力作用于杆端的分布方式的不同,只影响杆端局部范围的应力分布影响区的轴向 范围的离杆端1~2个杆的横向尺寸。 《材料力学》在建设工程中有着之泛的应用。在桥梁,铁路,建筑,火箭等行业中起到 很重要的作用。如武汉长江大桥的设计,桥墩主要承受来自两侧浮桥本身的重力,桥面上生 物的重力,钢索主要受到拉力一方面是桥身以及桥面物体它们的自重。另一方面是钢索自重, 在这两个比较大的力的作用下钢索处于被拉伸状态。 《材料力学》研究的问题是构件的强度、刚度和稳定性;所研究的构件主要是杆件、几 种变形形式包括拉伸压缩、剪切、弯曲和扭转这几种基本变形形式。研究《材料力学》就是 解决在工程中研究外力作用下,如何保证构件正常的工作的问题。因此,材料力学是我们在 设计建造工程中起着相关重要的作用。篇二:弹塑性力学读书报告 弹塑性力学读书报告 本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科 来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析 各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具 有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。 但是在研究方法上也有不同,材料力学为简化计算,对构件的应 力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的;

土力学结课论文及对工程案例的分析

高等土力学读书报告 对地基下沉问题的讨论 姓名刘兴顺 学号2014210046 年级2014 专业桥梁与隧道工程系(院)建筑工程学院指导教师陈颖辉 2015年5月26日

摘要 本论文主要是本人对高等土力学的学习总结,并根据工程中遇到的问题用土力学的知识进行分析(由于本人没有实际的工程经验,现主要是对比比较著名的一些工程)。土力学是研究土体在力的作用下的应力-应变或应力-应变-时间关系和强度的应用学科,是工程力学的一个分支。为工程地质学研究土体中可能发生的地质作用提供定量研究的理论基础和方法。主要用于土木、交通、水利等工程。本论文主要结合中外建筑物倾斜(意大利比萨斜塔和中国苏州虎丘塔)与地基严重下沉(中国上海展览中心馆和墨西哥市艺术馆)来讨论其中关于土力学的乱放,并运用土力学的方法进行分析。 关键词:高等土力学;工程实例;地基基础

ABSTRACT This thesis is mainly my learning of advanced soil mechanics summary,and according to the problems encountered in engineering with the knowledge of soil mechanics analysis (because I didn't have the practical engineering experience,now is mainly contrast compared to the well-known engineering).Soil mechanics is a branch of engineering mechanics,which is applied to study the stress-strain,stress-strain,time and strength of the stress strain time relationship and strength of the soil..To provide the theoretical basis and methods for quantitative study of geological effects that may occur in the engineering geology..Mainly used in civil engineering,transportation,water conservancy and other projects.This paper mainly combines(Leaning Tower of Pisa,Italy and China Suzhou Huqiu tower and ground sinking heavily(China Shanghai Exhibition Center Museum and Mexico City Museum of Art) inclined buildings at home and abroad is to discuss the misplacing on soil mechanics,and using the method of soil mechanics analysis. Key words:advanced soil mechanics;engineering examples;foundation foundation

弹塑性力学试卷

一、问答题:(简要回答,必要时可配合图件答题。每小题5分,共10分。) 1、简述固体材料弹性变形的主要特点。 2、试列出弹塑性力学中的理想弹塑性力学模型(又称弹性完全塑性模型)的应力与应变表达式,并绘出应力应变曲线。 二、填空题:(每空2分,共8分) 1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。(参照oxyz直角坐标系)。 2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。 三、选择题(每小题有四个答案,请选择一个正确的结果。每小题4分,共16分。) 1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。裂纹展布的方向是:_________。 A、沿圆柱纵向(轴向) B、沿圆柱横向(环向) C、与纵向呈45°角 D、与纵向呈30°角 2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。该板危险点的最大拉应力是无孔板最大拉应力__________倍。 A、2 B、3 C、4 D、5 3、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。)则在该点处的应变_________。 A、一定不为零 B、一定为零 C、可能为零 D、不能确定 4、以下________表示一个二阶张量。 A、B、C、D、 四、试根据下标记号法和求和约定展开下列各式:(共8分) 1、;(i ,j = 1,2,3 ); 2、;

五、计算题(共计64分。) 1、试说明下列应变状态是否可能存在: ;() 上式中c为已知常数,且。 2、已知一受力物体中某点的应力状态为: 式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。为平均应力。并说明这样分解的物理意义。 3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。若选取=ay2做应力函数。试求该物体的应力解、应变解和位移解。 (提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。) 题五、3图

武汉大学弹塑性力学简答题以及答案

弹塑性力学简答题 2002年 1 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2 从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 3 两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 4 虚位移原理等价于哪两组方程?推导原理时是否涉及到物理方程?该原理是否适用于塑性力学问题? 平衡微分方程和静力边界条件。不涉及物理方程。适用于塑性力学问题。 5 应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的, 而是相关,否则导致位移不单值,不连续。 6 什么是加载?什么是卸载?什么是中性变载?中性变载是否会产生塑性变形? 加载:随着应力的增加,应变不断增加,材料在产生弹性变形的同时,还会产生新的塑性变形,这个过程称之为加载。 卸载:当减少应力时,应力与应变将不会沿着原来的路径返回,而是沿接近于直线的路径回到零应力,弹性变形被恢复,塑性变形保留,这个过程称之为卸载。 中性变载:应力增量沿着加载面,即与加载面相切。应力在同一个加载面上变化,内变量将保持不变,不会产生新的塑性变形,但因为应力改变,会产生弹性应变。 7 用应力作为未知数求解弹性力学问题时,应力除应满足平衡方程外还需要满足哪些方程? 协调方程和边界条件。 8 薄板弯曲中,哪些应力和应变分量较大?哪些应力和应变分量较小? 平面内应力分量最大,最主要的是应力,横向剪应力较小,是次要的应力;z 方向的挤压应力最小,是更次要的应力。 9 什么是滑移线?物体内任意一点沿滑移线的方向的剪切应力是多少? 在塑性区内,将各点最大剪应力方向作为切线而连接起来的线,称之为滑移线。 剪切应力是最大剪应力。

龙岩市中考满分作文 土力学读书报告

土力学读书报告 一、土的工程特性有哪些。 1、土的结构有哪些,这些结构都有哪些特点,对土的工程特性有何影响? 土的结构是在成土的过程中逐渐形成的,它反映了土的成分、成因和年代对土的工程性质的影响,其结构按其颗粒的排列和联结可分为三种基本类型。a、单粒结构,单粒结构是碎石土和砂土的结构特征。其特点是土粒间没有联结存在,或联结非常微弱,可以忽略不计。疏松状态的单粒结构在荷载作用下,特别在振动荷载作用下会趋向密实,土粒移向更稳定的位置,同时产生较大的变形;密实状态的单粒结构在剪应力作用下会发生剪胀,即体积膨胀,密度变松。单粒结构的紧密程度取决于矿物成分、颗粒形状、粒度成分及级配的均匀程度。片状矿物颗粒组成的砂土最为疏松;浑圆的颗粒组成的土比带棱角的容易趋向密实;土粒的级配愈不均匀,结构愈紧密。b、蜂窝状结构,蜂窝状结构是以粉粒为主的土的结构特征。粒径在0.02~0.002 mm左右的土粒在水中沉积时,基本上是单个颗粒下沉,在下沉过程中、碰上已沉积的土粒时,如土粒间的引力相对自重而言已经足够地大,则此颗粒就停留在最初的接触位置上不再下沉,形成大孔隙的蜂窝状结构。c、絮状结构,絮状结构是粘土颗粒特有的结构特征。悬浮在水中的粘土颗粒当介质发生变化时,土粒互相聚合,以边-边、面-边的接触方式形成絮状物下沉,沉积为大孔隙的絮状结构。 土的结构形成以后,当外界条件变化时,土的结构会发生变化。 2、地基岩土的工程分类 作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。、岩石应为颗粒间牢固联结,呈整体或具有节理裂隙的岩体。a、碎石土为粒径大于2mm的颗粒含量超过全重50%的土。b、砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。c、粘性土为塑性指数I p大于10的土。d、粉土为介于砂土与粘性土之间,塑性指数I p≤10且粒径大于0.075mm的颗粒含量不超过全重50%的土。e、人工填土根据其组成和成因,可分为素填土、压实填土、杂填土、冲填土。 二、地基中的应力计算,何谓基底压力,地基反力,基底附加压力,土中附加应力。 1、地下水位的升降对土自重应力有何影响? 地下水位升降会引起土体中有效应力的变化,从而会影响土的变形。由有效

弹塑性力学读书报告

应用弹塑性力学读书报告 刘艳 10076139019 河北工程大学土木工程学院建筑与土木工程专业 摘要:弹塑性力学是研究可变形固体受到外力作用或温度变化的影响而产生的应力、应变和位移及其分布变化规律。它由弹性理论和塑性理论组成。弹性理论研究弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变性固体在塑性阶段的力学问题。弹塑性力学就是研究经过抽象化的可变性固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。 关键字:弹塑性力学弹性阶段塑性阶段假设求解方法弹塑性力学是固体力学的一个重要分支,是研究可变形固体变形规律的一门学科。研究可变形固体在荷载(包括外力、温度变化等作用)作用时,发生应力、应变及位移的规律的学科。它由弹性理论和塑性理论组成。弹性变形阶段是指当外力小于某一限值(通常称为弹性极限荷载)时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,而固体只产生弹性变形的阶段称为弹性阶段。塑性变形阶段是外力一旦超过弹性极限荷载,这时再卸除荷载,固体也不能恢复原状,其中有一部分不能消失的变形被保留下来,这种保留下来的永久变形就称为塑性变形,从而这一阶段就称为塑性阶段。弹塑性力学也是连续介质力学的基础和一部分,它包括:弹塑性静力学和弹塑性动力学。

塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。工程上常把脆性和韧性也作为一种概念来讲,它们之间的区别在于固体破坏时的变形大小。若变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏,称为韧性或延性。通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。 在塑性理论中,由于实际固体材料在塑性阶段的应力----应变关系过于复杂,若采用它进行理论研究和计算都非常复杂,因此,同样需要进行简化处理。常用的简化模型可分为两类:即理想塑性模型和强化模型。理想塑性模型又分为理想弹塑性模型和理想刚塑性模型。 在单向应力状态下,强化模型的特征如图0.2所示。强化模型又分为:线性强化弹塑性模型、线性强化刚塑性模型、幂次强化模型。

弹塑性力学学习体会

弹塑性力学读书报告 本学期我们选修了樊老师的弹塑性力学,学生毕备受启发对工科来说,弹塑性力学的任务和材料力学、结构力学的任务一样,是分析 各种结构物体和其构件在弹塑性阶段的应力和应变,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。 但是在研究方法上也有不同,材料力学为简化计算,对构件的应力分布和变形状态作出某些假设,因此得到的解答是粗略和近似的; 而弹塑性力学的研究通常不引入上述假设,从而所得结果比较精确, 并可验证材料力学结果的精确性。 弹塑性力学的任务是分析各种结构物或其构件在弹性阶段和塑 性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。并且弹塑性力学是以后有限元分析、 解决具体工程问题的理论基础,这就要求我们掌握其必要的基础知识和具有一定的计算能力。通过一学期的弹塑性力学的学习,对其内容总结如下: 第一章绪论 首先是弹塑性力学的研究对象和任务。 1、弹塑性力学:固体力学的的一个分支学科,是研究可变形固体受 到外载荷、温度变化及边界约束变动等作用时,弹性变形及应力状态的科学。 2、弹塑性力学任务:研究一般非杆系的结构的响应问题,并对基于 实验的材料力学、结构力学的理论给出检验。

这里老师讲到过一个重点问题就是响应的理解,主要就是结构在外因的作用下产生的应力场(强度问题)、应变场(刚度问题),整体大变形(稳定性问题)。 3、弹性力学的基本假定 求解一个弹性力学问题,通常是已知物体的几何形状(即已知物体的边界),弹性常数,物体所受的外力,物体边界上所受的面力,以及 边界上所受的约束;需要求解的是物体内部的应力分量、应变分量与位移分量。求解问题的方法是通过研究物体内部各点的应力与外力所 满足的静力平衡关系,位移与应变的几何学关系以及应力与应变的物理学关系,建立一系列的方程组;再建立物体表面上给定面力的边界以及给定位移约束的边界上所给定的边界条件;最后化为求解一组偏分方程的边值问题。 在导出方程时,如果考虑所有各方面的因素,则导出的方程非常复杂,实际上不可能求解。因此,通常必须按照研究对象的性质,联系求解问题的范围,做出若干基本假定,从而略去一些暂不考虑的因素,使 得方程的求解成为可能。 (1)假设物体是连续的。就是说物体整个体积内,都被组成这种物 体的物质填满,不留任何空隙。这样,物体内的一些物理量,例如: 应力、应变、位移等,才可以用坐标的连续函数表示。 (2)假设物体是线弹性的。就是说当使物体产生变形的外力被除去 以后,物体能够完全恢复原来形状,不留任何残余变形。而且,材料 服从虎克定律,应力与应变成正比。

高等土力学读书报告第二章

第二章 土的本构关系 2.1 概述 材料的本构关系是反映材料的力学性状的数学表达式,表示形式一般为应力-应变-时间关系。与时间有关的土的本构关系主要是指反映土流变性的理论,本章介绍的主要是与时间无关的本构关系。 土力学的基本理论有土的莫尔-库伦强度理论、有效应力原理和饱和粘土的一维固结理论。但人们总是在实际中将问题分类为变形问题和稳定问题,前者一般基于弹性理论计算,后者多用刚塑性或理想塑性的理论(如极限平衡分析)。 多年来本构关系已经得到很大的发展,进而推动了岩土数值计算的发展和土工试验的发展。下文将对土的本构关系进行详细论述。 2.2应力和应变 1、应力 (1)应力分量与应力张量 设土体中的一点为M (x,y,z )的应力状态用通过该点的微小立方体上的应力分量表示。即: []?= ???? ? ????????z zy zx yz y yx xz xy x ττττττ=???????????????????333231232221131211亦即{σ}T ={zx yz xy z y x τ ττ???}。 土力学中正应力正方向规定压为正。剪应力,在正面(外法向与坐标轴一致的面),剪应力与坐标轴方向相反为正;在负面(外法向与坐标轴方向相反),剪应力与坐标轴方向一致为正。 (2)应力张量的坐标变换 二阶张量 ij ?在任一新坐标系下的分量 [ [j i ?应满足:[[j i ?=kl l j k i ?[[αα,其中l j k i [[αα与为新坐标系 轴与老坐标系轴夹角的余弦。 (3)应力张量的主应力和应力不变量 在过一点的斜截面上,如果只有法向应力而无剪应力时,这个斜截面就是主应力面。 第一应力不变量:kk z y x I σσσσ=++=1 第二应力不变量: 2 222zx yz xy x z z y y x I τττσσσσσσ---++=

弹塑性力学试题及标准答案(2015、16级工程硕士)

工程硕士研究生弹塑性力学试题 一、简述题(每题5分,共20分) 1.简述弹性力学与塑性力学之间的主要差异。 固体力学是研究固体材料及其构成的物体结构在外部干扰(荷载、温度变化等)下的力学响应的科学,按其研究对象区分为不同的科学分支。塑性力学、弹性力学正是固体力学中的两个重要分支。 弹性力学是研究固体材料及由其构成的物体结构在弹性变形阶段的力学行为,包括在外部干扰下弹性物体的内力(应力)、变形(应变)和位移的分布,以及与之相关的原理、理论和方法;塑性力学则研究它们在塑性变形阶段的力学响应。 大多数材料都同时具有弹性和塑性性质,当外载较小时,材料呈现为弹性的或基本上是弹性的;当载荷渐增时,材料将进入塑性变形阶段,即材料的行为呈现为塑性的。所谓弹性和塑性,只是材料力学性质的流变学分类法中两个典型性质或理想模型;同一种材料在不同条件下可以主要表现为弹性的或塑性的。因此,所谓弹性材料或弹性物体是指在—定条件下主要呈现弹性性态的材料或物体。塑性材料或塑性物体的含义与此相类。如上所述。大多数材料往往都同时具有弹性和塑性性质,特别是在塑性变形阶段,变形中既有可恢复的弹性变形,又有不可恢复的塑性变形,因此有时又称为弹塑性材料。本书主要介绍分析弹塑性材料和结构在外部干扰下力学响应的基本原理、理论和方法。以及相应的“破坏”准则或失效难则。 塑性力学和弹性力学的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和流变学的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关,而不随时间变化,而流变学考虑的永久变形则与时间有关。 2.简述弹性力学中圣维南原理的基本内容。 3.简述薄板弯曲的基本假定。

弹塑性力学读书报告

弹塑性力学在土力学方面的应用 1.土的弹塑性性质 传统的弹塑性理论认为,材料的全变形过程包括弹性变形和弹塑性变形两个阶段。在加载过程中,随着应力的增加,材料除了会出现弹性变形,还会有塑性变形,且弹性变形的应力范围不断加大,这也就是所谓的塑性硬化。一般认为,塑性硬化的过程不会改变卸载时的弹性性质,称为弹塑性的非耦合性。且当材料反向受力时,不会出现包辛克效应,即不会产生于正向不同的塑性变形或塑性硬化。但是,岩土材料具有不同于金属材料的一些性质,如岩土材料有时表现出极低的弹性区,屈服极限不明显;岩土除了塑性硬化之外,还可能出现塑性软化;岩土还具有弹塑性耦合性质,会出现包辛克效应等。以上这些性质也就要求岩土的弹塑性理论要比传统的理论考虑更多的问题,要求我们就要考虑传统弹塑性的理论基础,又要考虑岩土材料的特殊性质。 2.土的弹塑性理论 弹塑性理论都是采用增量法,建立应力增量与应变增量之间的关系,以适应和描述应力—应变发展的非线性规律。在一定应力条件下,由应力的变化所引起的应变增量可以分解为弹性应变增量和塑性应变增量。其表达式可以写成: p e d d d εεε=+ (1) 式中况分别表示弹性和塑性情、p e 。对于弹性应变部分,可以有弹性理论的应力—应变关系求出。而对于塑性应变部分,可需要塑性理论来解决。在应用塑性理论前,首先需要对塑性应变的标准、产生条件、应变方向、应变大小和应变发展变化的规律有一定的认识。 1)塑性判断标准。塑性判断标准常用德鲁克公设(如图1)或依留申公设(如图2)。德鲁克公设认为,一个盈利循环所做的功大于零才有塑性应变。依留申公设认为,一个应变循环中所做的功大于零才有塑性应变。

高等土力学读书报告

高等土力学读书报告 张文川220132524 指导老师:缪林昌教授摘要:《土工原理》是土力学专著,系统地总结和介绍了国内外在土力学重要领域内的理论发展,重在阐述原理。内容包括土的组成和基本性质,土的压缩性与沉降计算,土的强度,土体渗流原理与计算,土的三向变形与本构模型,有限单元法在土工中的应用,土的固结理论,土体的流变理论,土坡的稳定性,砂土液化与地震永久变形,城市环境岩土工程,地基承载力。 1、土的应力应变关系的特征及其影响因素:非线性、弹塑性、剪胀性、(各向异性、结构性、流变性);应力水平、应力路径、应力历史。 2、邓肯—张模型分析总结:应变仅由偏应力贡献,球应力没有贡献。优点:①能反映土体变形的主要特征,非线性、应力历史、应力路径;②简单,容易为工程接受;③模型参数容易确定,积累了丰富的确定模型的经验。缺点:不能反映土体变形的剪胀性、软化、各向异性和结构性。 3、剑桥模型的试验基础和基本假设:①试验基础:正常固结土和弱超固结土试验基础上建立②基本假设:帽子屈服面,相适应的流动规则,以塑性体应变为硬化参数(加工硬化定律)。只要有三个试验场数:各向等压固结系数λ,回弹系数k,破坏常数m。 4、土的强度的三个特点:由于土的碎散性、多相性造成土①强度主要由颗粒相互作用力决定,土的破坏主要是剪切破坏,其强度主要表现为粘聚力和摩擦力;②研究时要考虑孔隙水压力、吸力等土特有的影响强度的因素;③土的地质历史造成土强度强烈的多变性、结构性和各向异性。 5、屈服与破坏的关系:对于刚弹性体和弹性—理想塑性体屈服即意味着破坏,对于增量弹性模量屈服和破坏并不是同一概念。土的屈服与强度与人们选择的理论模型有关,土体破坏与边值问题的具体边界有关。 6、影响土的抗剪强度的因素:①内部因素:土的组成(如矿物成分、颗粒大小、级配、含水量等)、土的状态(如密度、孔隙比)、土的结构(如絮凝结构);②外部因素:温度、应力应变因素(如围压、中主应力)、应力历史、主应力方向、加载速率、排水条件等。 7、一维渗流固结理论的基本假定:①土层是均质的、完全饱和的;②土粒与水均为不可压缩介质;③外荷载一次性瞬时施加到土体上,在固结过程中保持不变;④土体他应力与应变之间存在线性关系,压缩系数为常数;⑤在外力作用下,土体中只引起上下方向的渗流与压缩;⑥土中水的渗流服从达西定律,渗透系数保持不变;⑦土体变形完全是由孔隙水排出和超静水压力消散所引起的。 8、 Biot理论与准三维固结理论比较:①二者建立方程的依据基本一致:小变形、线弹性、渗流符合达西定律,但准三维固结理论假设法向总应力随时间不变,而Biot理论不作此假定;②Biot理论考虑土骨架变形孔压的影响,即位移与孔压相互耦合,而准三维固结理论对土体变形和孔 压消散分别加以计算,其直接后果是后者无法解释Mandel-Cryer效应。 9、常规三轴试验的优缺点:①近似单元体试验,试样内στ、相对对均匀;②σ状态和路径明确;③排水条件清楚,可控制;④破坏面非人为固定;⑤操作复杂,现场无法试验;⑥不能反映2σ的影响;⑦边界条件、膜嵌入的影响。 10、割线模型与切线模型的比较:①割线模型考虑了应力应变全量关系,能反映土变形的非线性及应力水平的影响,可用于应变软化阶段。但理论不严密,不能保证解的唯一性;②切线模型为分段线性化的增量形式的胡克定律,能反映土变形全过程。 11、在直剪、単剪、环剪试验中,试样的应力和应变的特点:①直剪:破坏面人为确定,应力和应变不均匀且十分复杂,试样内各点应力状态及应力路径不同。在初始状态,剪切面土单元与试样中其他单元一样是K0应力状态,即3001vKKσσσ==。在剪切破坏时,剪切面附近土单元主应力大小和方向决定与强度包线;②単剪:试样内所施加的应力被认为是纯剪,加载过程中竖直应力vσ和水平应力hσ保持常数,()vhhv ττ不断增加。应力莫尔圆圆心不变,其直径逐渐扩大,直至与强度包线相切;③剪切面的总面积不变。

弹塑性力学简答题

弹塑性力学简答题

弹塑性力学简答题 第一章 应力 1、 什么是偏应力状态?什么是静水压力状态?举例说明? 静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。 2、应力边界条件所描述的物理本质是什么? 物体边界点的平衡条件。 3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系? 相同。110220330 S S S σσσσσσ=+=+=+。 4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法? 不规则,内部受力不一样。 5、解释应力空间中为什么应力状态不能位于加载面之外? 保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 6、Pie 平面上的点所代表的应力状态有何特点? 该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。 固体力学解答必须满足的三个条件是什么?可否忽略其中一个? 第二章 应变 1、从数学和物理的不同角度,阐述相容方程的意义。 从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值。从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入”,即产生不连续。 2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么? 相同。应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关。 3、应力状态是否可以位于加载面外?为什么? 不可以。保证位移单值连续。连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。 4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么? 满足。根据几何方程求出各应变分量,则变形协调方程自然满足,因为变形协调方程本身是从几何方程中推导出来的。 5、应变协调方程的物理意义是什么? 对于单连通体,协调方程是保证由几何方程积分出单值连续的充分条件。多于多连通体,除满足协调方程方程外,还应补充保证切口处位移单值连续的附加条件。 6、已知物体内一组单值连续的位移,试问通过几何方程给出的应变一定满足变形协调方程吗?为什么?

相关主题
文本预览
相关文档 最新文档