当前位置:文档之家› A356铝合金显微组织及断口分析

A356铝合金显微组织及断口分析

A356铝合金显微组织及断口分析
A356铝合金显微组织及断口分析

目录

1 绪论 (1)

1.1断口分析的意义 (1)

1.2 对显微组织及断口缺陷的理论分析 (1)

1.3研究方法和实验设计 (3)

1.4预期结果和意义 (3)

2 实验过程 (4)

2.1 生产工艺 (4)

2.1.1 加料 (4)

2.1.2 精炼 (4)

2.1.3 保温、扒渣和放料 (5)

2.1. 4 单线除气和单线过滤 (5)

2.1. 5连铸 (6)

2.2 实验过程 (6)

2.2. 1 试样的选取 (6)

2.2.2 金相试样的制取 (8)

2.2.3 用显微镜观察 (9)

2.3 观察方法 (10)

2.3.1显微组织的观察 (10)

2.3.2 对断口形貌的观察 (11)

3 实验结果及分析 (11)

3.1对所取K模试样的观察 (11)

3.2 金相试样的观察及分析 (12)

3.2.1 对显微组织的观察 (12)

3.2.2 断口缺陷 (15)

结论 (23)

致谢 (24)

参考文献 (25)

附录 (27)

1 绪论

1.1断口分析的意义

随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。

然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。

另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。

但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。

1.2 对显微组织及断口缺陷的理论分析

铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2Si,通过热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg2Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共晶+

Mg2Si。其相图如右图1-1,在冷却时,由液相先析出α-Al铝,随着铝的析出,液相成分变至二元共晶线,发生共晶反应,反应式为:

L→α-Al+Si (1)

图1-1 铝硅镁三元共晶图

由于A356的含Si量仅为7%,所以,液相成分在达到三元共晶点之前,液相消失,凝固完全。凝固后的组织为初生α-Al基体+(α-Al+Si)共晶。凝固后铝固溶体含有Si和Mg元素,在继续冷却过程中析出Si和Mg2Si(如图1-1)。室温下的组织为初生α-Al、(α-Al+Si)共晶和Mg2Si。冷却速度较快时,次生相Si和Mg2Si弥散细小不易分辩,而表现出α-Al和(α-Al+Si)共晶。在实际铸造条件下(非平衡凝固),除基本相外,还可出现少量α-Al+Mg2Si+Si三元共晶体和杂质铁等构成的杂质相和一些复杂的多元共晶相[13]。

一般来说,铸造缺陷对构件的抗拉强度影响较小,但较显著影响构件的伸长率[14]。A356铝合金内部缺陷主要有偏析、缩松、缩孔、气孔、针孔、非金属夹杂和夹渣、金属夹杂、氧化铝膜、白点等。这些缺陷对其性能和强度有很大的影响。因为生产铝锭的铝水是电解铝液,电解铝液的温度一般在930℃以上,是过热金属[15]电解过程产生的H2和AL2O3夹杂直接进入铝液中,会造成H2含量高和AL2O3夹杂多[16],H2产生气孔、气泡和白点缺陷的重要因素,AL2O3易形成夹渣;

电解铝液中的杂质元素Fe、Si与合金中的Mn、Mg等元素作用形成Al-FeMnSi、Mg2Si等第二相,分布于晶粒内以及晶界处,影响基体连续性;铸造过程中由于清渣不彻底以及凝固过程中的选分结晶和冷却条件不当易于生成夹杂、缩松和缩孔[17];α-Al枝晶二次枝晶臂之间板片状共晶体是材料中最薄弱的区域,该区域中尺寸最大的Si颗粒首先发生断裂形成裂纹源。由于以上因素的影响,A356铝合金容易断裂,从而影响其强度、塑韧性和力学性能。若共晶Si呈灰色针状和片状,杂乱无章地分布在α-Al铝基体上,用光学显微镜可以看到铸造过程中的铸造缩孔、铸造气孔、氧化膜等缺陷。

1.3研究方法和实验设计

大颗粒夹杂:用肉眼观察其存在形式、数量、大小和分布特点(存在区域)以及夹杂物本身的形貌和大小,并结合冶炼工艺分析其来源;检测杂质净化效果和晶粒细化效果。

显微夹杂:用金相显微镜和扫描电镜观察其存在形式、数量、大小和分布特点(存在区域)以及夹杂物本身的形貌和大小,并结合冶炼工艺分析其来源;检测杂质净化效果和晶粒细化效果。

对A356铝合金显微组织的观察主要用金相显微镜进行观察。首先是取样:包括用长柄样勺从和料炉铝液、用短柄样勺从炉外取样以及取成品样,将取到的熔液倒入样饼模和K模得到样饼和K模试样,用上述取样方法选取不同工艺参数、不同生产阶段的试样。将取得的试样通过切、车、銑、磨、抛等步骤制成金相试样,通过不同的放大倍率观察索取试样的显微形貌,并获得各个形貌的照片。

对于断口的观察所用试样是公司提供的,将试样断口处切下,在车床上将试样切成金相试样大小,然后通过粗磨、细磨、抛光、浸蚀制成金相试样,通过金相显微镜观察并记录观察到的缺陷,分析缺陷产生的原因。

1.4预期结果和意义

1)结合企业生产需求,对A356铝合金进行金相及扫描电镜试验,对分布在初生α-Al基体上的共晶硅相、杂质相及气孔等进行观察,分析其分布特征、形貌及影响。

2)用扫描电镜观察铝合金断口形貌,并研究其断裂过程及机理。

3)将所观察的断口形貌进行分类。

2 实验过程

此次实验分为三个步骤:1)生产工艺,主要是了解生产的概况,记录生产过程中的工艺参数;2)实验阶段,是关键步骤,要熟悉实验过程中的每个步骤,掌握所需的参数;3)观察方法,是对试样进行观察的总结。

2.1 生产工艺

联信公司用的是魏桥铝厂提供的电解铝液,通过连铸生产A356铝合金铸锭。该厂有四个和料炉,每炉装料量为30t,从南到北分别为1#炉、2#炉、3#炉和4#炉。两条国内最大连铸生产线,单块铝锭规格:长:740mm;宽:105(95)mm;高:55mm;重量:约9.5Kg。整跺铝锭规格:740×740×760mm。每跺块数:93块。详细工艺过程如下。

2.1.1 加料

A356合金是一个典型的Al-Si-Mg系三元合金,主要成分是:Si6.5%-7.5%,Mg20%-0.40%,Cu≦0.20%,Zn≦0.10%,Mn≦0.10%,Ti≦0.20%,其他元素每种≦0.05%,其余是铝。该厂主要生产A356.2铝合金,加料方法为:向和料炉中加铝水分为两次,真空包(最大铝量为9000㎏)运来铝水后用天车吊到炉前,打开和料炉炉门开始倒铝水,此时铝液温度在840℃-880℃,5min左右倒完,开始熔炼。根据不同工艺设定熔炼温度和所要加的成及其用量计算加料量,如加硅、加镁、加钛、废铝锭等。下表是A356.2铝合金的成分表。

表2.1 A356.2铝合金化学成份(%)

Si Ti Mg Fe Cu Mn Zn P

6.5-

7.5 ≤0.20.30-0.45 ≤0.12 ≤0.1≤0.05 ≤0.05 痕迹2.1.2 精炼

加料后为了快速均匀成分和温度,在和料炉中进行电磁搅拌。搅拌时间在15-20min,根据不同工艺搅拌温度在690℃-740℃;炉内精炼是通过喷吹以氮气

作为载体将精炼剂和清渣剂加入炉内的,氮气纯度大于等于99.995%,喷吹时间为5min-10min。精炼剂和清渣剂的用量为0.1%-0.2%(与Al相比)。

精炼后取样分析,根据能谱仪结果判断各个元素含量是否合格,补加硅镁等矿石。

2.1.3 保温、扒渣和放料

精炼结束后保温一段时间(一般在10min-15min),待温度均匀后开始扒渣。该厂运用人工扒渣,扒渣时间在15min-30min,时间可长达40min,费时费力。扒渣完成后静置5min,使成分和温度均匀。待成分和温度符合放料条件时,打开和料炉炉门开始放料。

2.1. 4 单线除气和单线过滤

铝液出和料炉后先进行在线除气,在经过过滤,之后进入结晶器开始连铸。

2.1.4.1 单线除气

使用ALPUR-55旋转除气装置进行在线除气(图2-1)。这种除气装置为双石墨转子,最大金属流量为55t/h。ALPUR净化工艺是基于吸附净化原理,通过转子吹出精炼气体,借助旋转喷嘴产生均匀分布的微小气泡,并与反应室内的熔体充分接触反应使熔体净化。精炼气体可以是氮气,也可以是氮气与氯气的混合气体。

图2-1 ALPUR净化铝熔体示意图

2.1.4.2单线过滤

过滤除渣主要是靠过滤介质的阻挡作用、摩擦力或流体的压力使杂质沉降或堵滞,从而净化熔体。上述生产线采用CFF双级泡沫陶瓷过滤板,过滤箱安装2套平行过滤板,处理流量为55t/h。过滤板为双层30/50ppi复合泡沫陶瓷过滤板,上层过滤板的孔隙度为30ppi,底层过滤板的孔隙度为50ppi。CFF泡沫陶瓷过滤装置可以有效除去直径大于20um的夹渣物,过滤效率可达75%。图2-2为泡沫陶瓷过滤装置工作示意图。

图2-2 CFF泡沫陶瓷过滤装里工作示度图

2.1. 5连铸

过滤后的铝液通过溜槽流入结晶器,浇铸机转速为863rpm-864rpm,开始结晶出来的坯壳先由人工导入足辊,之后进入校直段。铝锭经过切定尺之后被切断。铝锭的冷却是通过喷水冷却的,分三段冷却。冷却水流速分别为0.137m/s、0.684m/s和1.478m/s;流量分别为133.7m3、401.1m3和883.1m3。剪切后的铝锭通过机械手堆垛,最后捆扎。

2.2 实验过程

对于显微组织及断口分析实验,主要工具是显微镜观察。因此实验主要分三个步骤:1)试样的选取;2)金相试样的制备;3)观察记录。

2.2. 1 试样的选取

取样时要注意取样阶段和参数,对各个试样的详细信息做记录。在1#、3#、4#炉内取样时按下表取样。表格如下。

表2-2 1#炉参数表

阶段时间取样温度

熔炼8 h 724℃

精炼0.5h 737℃

喷吹699℃过滤693℃

表2-3 3#炉和4#炉参数表

阶段时间取样温

3#炉熔炼8 h 747℃3#炉精炼0.5h 737℃4#炉熔炼702℃4#炉精炼699℃

1)炉内取样:炉内取样用长柄样勺(如图2-3),取样前先给样勺和模具刷一层涂料并烘烤干燥,保证样勺和模具干净。为保证所取铝液有代表性应该在炉膛中心取样,先用样勺扒开浮渣,然后将样勺深入液面100mm以下,防止带入渣子。将铝液取出后倒入样饼模(图2-2-1)得到样饼,倒入K模(K模包括有K 模本体,K模本体设置有一槽道,槽道内设置有至少一个沿槽道宽度方向布置的断裂楔块)中得到K模试样。在取K模时,一对模具要用一勺铝水同时浇铸完全,凡是其中一个不合格的要同时浇铸一对。

图2-3 长柄样勺

2)炉外取样:炉外取样与炉内取样大致相同,但用短柄样勺(图2-4-2)取样。取样时要逆着铝液流盛取。

图2-4 短柄取样勺和样饼模,1-样饼模,2-短柄样勺

3)成品样的选取:成品铝锭应选有代表性的,然后弄断,切下断口,采取一定措施保护断口防止断口被氧化。

2.2.2 金相试样的制取

用金相分析的方法来观察检验金属内部的组织结构是工业生产中的一种重要手段,例如对原材料的冶金质量情况如偏析、非金属夹杂物分布类型与级别检查;对铸造材料的铸造疏松、气孔、夹渣组织均匀性检查;对锻造件的表面脱碳、过热、过烧、裂纹、变形等情况检查。金相试样的制取是十分关键的一步[18],若制备不当,则可能出现假象,从而得出错误的结论[19]。金相试样的制备包括:切样、銑样、磨样、抛光和浸蚀。

1)切样和銑样:所取成品断口试样横截面大小不合适难以放进磨样机固定装置时,应该首先将试样切成一定大小和形状,注意不要破坏要观察的断面。在对断面和样饼进行磨制前应该先銑所要观察的那一面,以使盖面平整,便于磨制。

2)磨样:磨光过程是试样制备最重要的阶段,除使试样表面平整外,主要是使组织损伤层减少到最低程度。试样是用机械进行磨制的,每次可同时磨六个试样。首先将试样固定在固定装置上,然后设置参数,开启开关进行磨制。磨样过程分三步:粗磨、中磨和细磨。要求每次要覆盖上次的磨痕,磨完后要清洗掉砂纸上的残留。磨样过程中连续供水喷在磨样处。磨样时参数如下。

表2:磨样参数

磨样方式转速(rpm)时间(s) 压力(N)水砂纸型号冷却水流量粗磨150 90 30 80 大中磨150 150 40 220中

细磨150 180 50 1200 小

抛光:试样磨完后要进行机械抛光,抛光的目的是去除磨光时留下的磨痕,提高试样表面的光反射性,改善组织分辨率,要求将金相试样抛成镜面。抛光过程也分三步:粗抛、中抛和细抛,抛光时不喷水,有对应的抛光液。每次抛完要将抛光布上的残余洗净。抛光过程参数设置如下。

表3:抛光参数

抛样方式转速(rpm)时间(s))压力(N)抛光液型号(um)剂量/级别粗抛150 330 60 9 0/9 中抛150 270 60 3 0/0 细抛150 240 60 0.04 0/0

浸蚀:所有的金相试样都必须浸蚀,显微组织可以很清晰显示,便于观察。所用浸蚀剂为0.5%氢氟酸水溶液(HF0.5mL+蒸馏水100mL),浸蚀时间为10s-15s。浸蚀后用清水冲洗,然后用酒精擦拭,最后用电吹风吹干。

2.2.3 用显微镜观察

所利用的金相显微镜(如图2-5)型号为Fegrapol-31,是丹麦生产的。显微镜直接与电脑相连,所观察的图像可以直接被拍成照片传到电脑上。利用显微镜对所有试样进行显微组织观察和断口缺陷分析后可获得显微组织图像和断口缺陷图像。

图2-5金相显微镜

2.3 观察方法

实验观察的内容主要有:显微组织的观察主要是显微组织类型、形态和大小。断口观察主要是观察断口的缺陷、数量、形态和大小。

2.3.1显微组织的观察

1)α-Al基体和共晶Si相的观察:对视野中所呈现形态要首先认识组织的种类、颜色和数量等特征。对共晶Si相晶粒大小的测量首先要选定具有代表性的或颗粒便于测量的晶粒,要对不同处理的晶粒(如变质的与未变质的)进行观察。金相图中的晶粒尺寸大小、相的分布、各相相对含量、相的特征以及化学成分等都可以通过Image-Pro Plus的计算机数字化处理来完成。

2)二次枝晶的观察:对二次枝晶的研究主要是对枝晶间距的研究。二次枝晶间距的测量方法为截线法[20]。

如图2-4所示,即画一条平行于一次枝晶的线和若干条平行于二次枝晶臂且垂直于一次枝晶的线,通过测量各条平行线的间距大小并取平均值来计算二次枝晶的平均间距。只取与一次枝晶相连且二次枝晶臂完整的枝晶进行测量。

图2-4 二次枝晶测量方法

在金相图片中找出符合要求的位置,先画出一次枝晶的平行线,再画出垂直于一次枝晶并平行于二次枝晶臂的线,测量截线上两平行线间距,并计算平行线间二次枝晶臂的数量,将所得数值除以二次枝晶臂数量,即获得所需要测量的二次枝晶间距,为了准确获得二次枝晶间距,选取金相图E处测量位置,并将所获得的二次枝晶间距再次求平均值。近似计算DCS如下:

DCS= L / n (2)

式中,L为图像中任意截线的长度,n为截线所截胞界的总数或截线与共晶区域交点的总数。

2.3.2 对断口形貌的观察

1)肉眼观察:对于K模,主要是用来检查铝液纯净度的。将一对K模标记上1-10,然后弄断。检查对应断口,看断口的夹渣(即小黑点数)。将数出的黑点数除以10得到K值,根据K值判断铝液是否合格。表格如下:

表2.4 各阶段K值级别

其中,对于浇包A级为合格,静置炉B级合格,和料炉E级合格。

2)金相观察:对于显微缺陷的观察只能借助于显微镜,要不断移动物镜尽量观察断面所有的地方,用不同放大倍数的物镜观察,观察不同放大倍率下缺陷所呈现的形态。

3 实验结果及分析

主要分析实验过程所获取K模试样和金相试样。K模试样主要是用肉眼观察夹渣数;金相试样主要观察铝基体和共晶硅的形态以及断口缺陷形貌。

3.1对所取K模试样的观察

所取K模(如图3-1)分为精炼前、精炼后、过滤前和过滤后的铝液浇铸的,粗略地观察和分析铝水纯净度以及精炼、除气和过滤效果。

图3-1 K模试样

通过数所选K模断口夹渣数,得到K值分别如下表:

表3.1 各阶段所得K值

阶段 K值(加精炼剂) K值(加清渣剂)

熔炼 3.5 3.6

精炼 2.3 1.2

除气0.5 0.4

过滤0.1 0.1通过上述表格所得数值与标。表2.4比较可知,各阶段铝水均合格;通过各阶段数值比较可知:精炼后特别是加清渣剂后铝水纯净度升高,另外除气和过滤均有除渣效果。

3.2 金相试样的观察及分析

金相显微镜可以观察试样显微组织形态及分布,还可以对晶粒度大小和二次枝晶进行测量;对断口缺陷类型及形态、大小及数量和分布进行观测。

3.2.1 对显微组织的观察

主要观察铝合金中α-Al基体(如图3-2a和图3-3b、图3-3c、图3-3d中A)形态和共晶Si相形态、大小。根据Al-Si二元合金相图,A356铝合金属于亚共

晶合金,其凝固过程先析出初生Al枝晶,然后Al-Si共晶体在枝晶臂之间形成。

3.2.1.1未经变质处理

未经变质处理的共晶Si一般呈针状(如图3-2a和图3-3b、图3-3c、图3-3d 中B),颜色比α-Al基体深。裂纹的萌生与Si相有密切关系[21]:(1)共晶Si 与共晶Al界面为非共格界面,存在空位缺陷,在应力作用下这些空位互相结合长大,导致了共晶Si与Al基体的界面分离;(2)共晶Si与Al基体的塑性不同,Si相为脆性相,而Al基体为塑性相;在应力作用下直径最大的Si相[22]优先发生断裂,成为裂纹源。

共晶Si呈灰色针状杂乱无章地分布在α-Al铝基体晶界上(如图3-2a中方框内),当裂纹扩展遇到与裂纹前进方向相异的共晶硅粒子时,将截断共晶硅粒子,使硅粒子发生断裂[23],即穿晶断裂。

3.2.1.2 变质处理后

加锶变质效果最好,锶变质有很好的长效性,可使变质效果维持长达5-8小时。变质后的共晶硅颗粒大部分呈点球状或短纤维状(如图3-2b、图3-2d和图3-2c中的B2)。但研究表明,锶的加入加大了铝熔液的吸气性[24]。由于变质后共晶硅形态的改变,可使得合金性能有所提高。

图3-2 a 未变质无缺陷

图3-2b 典型缩松(变质后)

图3-2c 典型气孔+渣(变质后)

图3-2d 典型缩孔(变质后)

3.2.1.3 二次枝晶

二次枝晶(如图3-2b和3-2c中的B3)是在一次枝晶臂上生出来的,形状如树枝状,比一次枝晶要细。二次枝晶间距的大小是微观组织中一个重要数据,是衡量组织优劣的重要参数。二次枝晶间距大小是评判凝固组织优劣的重要特征,二次枝晶臂间距大小直接影响着成分偏析、第二相及显微孔洞的分布,另外,枝晶与枝晶间块状共晶体的强度高于二次枝晶臂之间板片状共晶体,因此板片状共晶体是A356合金的薄弱环节,裂纹首先在这个区域萌生[25]。

根据图2-4和式(2)可分别测量出图3-2b和3-2c中矩形方框中所标注的二次枝晶间距为:13.08um和17.78um。其中L分别为:65.36um和53.33um。n分别为:5和3。这个成果在国内同类行业中是比较先进的。

3.2.2 断口缺陷

断口缺陷分析是分析铝合金断裂机理的重要方式,在所取试样中观察到的缺陷有:缩松、缩孔、气孔、针孔、非金属夹杂和夹渣、氧化铝膜(表现为混皮、

渣皮等)。

3.2.2.1缩松和缩孔

1)缩松的形态:缩松(如图3-2b中的C和3-3a中的C)和缩孔(图3-3b 中的C和图3-2中的d)是铸锭在凝固过程中,由于合金在液态和固态的体积收缩得不到补充而产生的细小而分散的孔洞性缺陷。在金相显微镜下观察,缩松表现为沿晶界形成的形状不规则的图形,颜色单一且比基体深。缩孔表现为沿晶界较规则的图形,多近似为圆形,颜色单一且比基体深。

图3-3a 典型缩松(变质后)

图3-3b 典型缩孔(未变质)

2)产生原因:缩松一般包括收缩缩松和气体缩松。收缩缩松产生的机理是金属铸造结晶时从液态凝固成固态,体积收缩在树枝晶枝杈间因液体金属补缩不足而形成空腔,这种空腔即为收缩缩松。一般尺寸很小,难以避免。

气体缩松产生的机理是:熔体中未出去的气体氢气含量较高,气体被隐蔽在树枝晶枝杈间隙内,随着结晶的进行,树枝晶枝杈互相搭接形成骨架,枝杈间的气体和凝固时析出的气体无法逸出而集聚,结晶后这些气体占据的位置形成空腔,即为气体缩松。

当体积收缩大而液体金属补缩严重不足时就会形成缩孔。

3)危害:缩松使铸锭密度减小,致密性降低特别是降低高强铝合金的冲击韧性和断面收缩率,在热轧和锻造时易引起裂纹。缩孔破坏了金属的连续性,严重影响工艺性能,截取铸锭坯料时必须去掉。

4)预防措施:根据缩松和缩孔产生原因和形成过程可知,有如下的预防措施:

a)降低熔体中气体含量,如烘炉彻底、精炼剂和所需工具烘烤彻底、降低

各种材料的水含量、防止熔体在炉内时间过长、防止熔体过热等。

b)缩小铸锭中过渡带的尺寸,如:采用合适的漏斗均匀供流适当提高铸造温度和降低铸造速度、适当提高水压以提高铸锭冷却强度、适当降低开始凝固温度和凝固终了温度差。

3.2.2.2 气孔和渣孔

1)形态:气孔(如图3-2c中的D)是铸件组织中的圆形空洞,它是内表面光滑的球状空洞缺陷,其为未逸出的气泡在铸锭中形成的缺陷,其在显微镜下观察呈规则的圆形,但是析出位置不固定;渣孔(如图3-3c中的D)是气孔中卷入渣滓形成的,其内表面就不再是光滑的,在显微镜下观察呈不太规则的图形且颜色不一致。

图3-3c 典型渣孔(未变质)

2)产生原因:熔体中的气体以气泡析出,必须具备三个条件:一是溶解的气体处于过饱和状态;二是气泡内的压力之和大于作用与气泡的外压力;三是有大于临界尺寸的气泡核。在实际铸造条件下由于熔体中总是存在大量的非金属夹杂物、结晶体和精炼时未逸出的气泡因此熔体中的非自发气泡核很容易形成。另外结晶前沿造成的氢含量的过饱和对气泡的形成造成有利条件。

3)影响气孔和渣孔形成的主要因素:a)熔体原始含气量高。熔体原始含气

热处理对7075铝合金组织和性能的影响

热处理对7075铝合金组织和性能的影响 摘要:对7075铝合金进行了固溶和单级时效处理,研究了单级时效对铝合金组织和性能的影响,结果表明铝合金经单级时效后纤维组织消失,在晶界处生成第二相粒子。铝合金显微硬度的峰值时效温度为120℃,时间为16h,硬度为220HV。120℃/24h时效后合金的峰值强度为680.5MPa。本研究中主要阐述热处理对7075铝合金组织和性能的影响。 关键词:热处理;7075铝合金;组织性能 引言 近些年来,铝合金的发展历程先后经历了由单一的追求高强度到追求高强耐腐蚀,再到追求高强高韧耐腐蚀性能,又到高强高韧耐腐蚀抗疲劳,最终到现在的追求高淬透性高综合性能五个发展阶段。然后发展方向却集中在以满足高强高韧铝合金的航空航天领域以及适用于各种使用条件的民用铝合金领域。当前对于铝合金强韧化以及耐蚀性的研究已经成为了重中之重,相信随着综合性能的提高,铝合金在国民经济发展中的运用将更加广泛。 1、7xxx系铝合金概述 7xxx铝合金是以Al-Zn-Mg和Al-Zn-Mg-Cu合金为主的一种超高强度铝合金,它是超高系列铝合金的最主要代表,Fe和Si是7xxx铝合金的主要有害杂质。较2xxx高强度铝合金在强度和硬度方面高出许多。属于热处理可强化的合金。该系铝合金具有强度高、密度小、易加工、焊接性能良好等优良特点,并且一般耐蚀性较好,因此在航空航天工业、车辆、建筑、桥梁、工兵装备及大型压力容器方面得到了广泛的应用。现阶段7xxx铝合金的研究主要集中在通过调节合金化元素和优化热处理工艺来得到高强高韧耐腐蚀的综合性能[1]。这也是本文的研究方向的出发点。该系代表合金如7005、7050、7075等。 2、试验材料与方法 试验材料为7075铝合金,将铝合金(尺寸为20mmX20mmX160mm)在盐浴中进行固溶处理,处理工艺为480℃/2h铝合金固溶处理后在试验箱中进行单级时效处理,时效温度分别为100,120,150℃,时效时间为0-48h。 将试样按国标GB/T228-2010用线切割加工成拉伸试样,用酒精超声清洗去除表面油污,在MT810万能试验机上进行拉伸强度测试,取5个试样的平均值;采用

铜及铜合金的金相组织分析

铜及铜合金的金相组织分析一)结晶过程的分析 结晶是以树枝状的方式生长,树枝状的结晶容易造成夹渣外,通常形成显微疏松。 取决于模壁的冷却速度外,还取决于合金成分、熔化与浇注温度等。 (二)宏观分析中常见缺陷 在浇注过程中往往产生缩孔、疏松、气孔、偏析等缺陷。 浇注温度和浇注方式的影响,铸锭、紫铜中容易出现气孔和皮下气孔。 由于合金元素的熔点、比重不一,熔炼工艺不当造成铸锭的成分偏析。 铸造时热应力可产生裂纹。 浇注工艺不当(浇注温度过低),浇注时金属液的中断会造成冷隔。 (三)微观分析 与铜相互作用的性质,杂质可分三类: 1. 溶解在固态铜中的元素(铝、铁、镍、锡、锌、银、金、呻、锑)。 2. 与铜形成脆性化合物的元素(硫、氧、磷等)。 3. 实际上不溶于固态铜中与铜形成易熔共晶的元素(铅、铋等)。 铋与铜形成共晶呈网状分布于铜的基体上,淡灰色。 铅含量很少时和铋一样呈网状分布于晶界,其颜色为黑色; 铅含量大时在铜的晶粒间界上呈单独的黑点。 暗场观察:铅点呈黑色,孔洞为亮点。 硫与氧的观察:均与铜形成化合物(Cu2S、Cu2O),又以共晶形式(Cu2S+ Cu、 Cu2O+ Cu)分布在铜的晶界上。 氯化高铁盐酸水溶液浸蚀:Cu2O变暗,Cu2S不浸蚀。 偏振光观察:Cu2O呈暗红色。 QJ 2337-92 铍青铜的金相试验方法 金相分析晶粒度检测金属显微组织分析,晶粒度分析,GB/T 6394-02 金属平均晶粒度测定方法 ASTM E 112-96(2004) 金属平均晶粒度测定方法

YS/T 347-2004 铜及铜合金平均晶粒度测定方法 GB/T13298-91 金属显微组织检验方法 GB/T 13299-91 钢的显微组织评定方法 GB/T 10561-2005 钢中非金属夹杂物含量的测定标准评级图显微检验法 ASTM E45-05 钢中非金属夹杂物含量测定方法 GB/T 224-87 钢的脱碳层深度测定方法 ASTM E407-07 金属及其合金的显微腐蚀标准方法 GB/T 226-91 钢的低倍组织及缺陷酸蚀检验方法 GB/T 1979-2001 结构钢低倍组织缺陷评级图 GB/T 5168-85 两相钛合金高低倍组织 GB/T 9441-1988 球墨铸铁金相检验 ASTM A 247-06 铸件中石墨微结构评定试验方法 GB/T 7216-87 灰铸铁金相 EN ISO 945:1994 石墨显微结构 GB/T 13320-07 钢质模锻件金相组织评级图及评定方法 CB 1196-88 船舶螺旋桨用铜合金相含量金相测定方法 JB/T 7946.1-1999 铸造铝合金金相 铸造铝硅合金变质 JB/T 7946.2-1999 铸造铝合金金相 铸造铝硅合金过烧 JB/T 7946.3-1999 铸造铝合金金相铸造铝 氧是铜中最常见的杂质,可产生氢脆。所以含氧量应严格规定。 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89

A铝合金显微组织及断口分析

目录 1 绪论 (1) 1.1断口分析的意义 (1) 1.2 对显微组织及断口缺陷的理论分析 (1) 1.3研究方法和实验设计 (3) 1.4预期结果和意义 (3) 2 实验过程 (4) 2.1 生产工艺 (4) 2.1.1 加料 (4) 2.1.2 精炼 (4) 2.1.3 保温、扒渣和放料 (5) 2.1. 4 单线除气和单线过滤 (5) 2.1. 5连铸 (6) 2.2 实验过程 (6) 2.2. 1 试样的选取 (6) 2.2.2 金相试样的制取 (8) 2.2.3 用显微镜观察 (9) 2.3 观察方法 (10) 2.3.1显微组织的观察 (10) 2.3.2 对断口形貌的观察 (11) 3 实验结果及分析 (11) 3.1对所取K模试样的观察 (11) 3.2 金相试样的观察及分析 (12) 3.2.1 对显微组织的观察 (12) 3.2.2 断口缺陷 (15)

结论 (23) 致谢 (24) 参考文献 (25) 附录 (27)

1 绪论 1.1断口分析的意义 随着现代科技的发展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向发展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的发展。尤其随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流动性好、气密性好、收缩率小和热裂倾向小,经过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒适、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。 然而,由于其凝固收缩,同时在熔融状态下很容易溶入氢,因此铸造铝合金不可避免地包含一定数量的缺陷,比如空隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能影响较大,如含1%体积分数的空隙将导致其疲劳50%,疲劳极限降20%[8-9]。所以研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的影响具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。 另外,通过显微组织和断口分析所得到的结果可以分析这些缺陷产生的原因,研究断裂机理,比结合工艺过程分析缺陷产生的原因,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提高铝合金铸锭的性能。 但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,希望对A356铝合金的断口缺陷有一个较为全面的研究。 1.2 对显微组织及断口缺陷的理论分析 铸件的力学性能与其微观组织有密切联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2Si,通过热处理来显著提高合金的时效强化能力,改善合金的力学性能。A356合金处于α-Al+Mg2Si+Si三元共晶系内,其平衡组织为初生α-Al+(α-Al+Si)共晶+

常用金属材料的显微组织观察

工程材料学实验(常用金属材料的显微组织观察) 何艳玲编写 机电工程学院材料系

常用金属材料的显微组织观察 一、实验目的 1.观察各种常用合金钢,有色金属和铸铁的显微组织。 2.分析这些金属材料的组织和性能的关系及应用。 二、概述 1.几种常用合金钢的显微组织 合金钢依合金元素含量的不同,可分为三种:合金元素总量小于5%的称为低合金钢;合金元素为5~10%的称为中合金钢;合金元素大于10%的称为高合金钢。 1)一般合金结构钢、合金工具钢都是低合金钢。由于加入合金元素,铁碳相图发生一些变动,但其平衡状态的显微组织与碳钢的显微组织并没有本质的区别。低合金钢热处理后的显微组织与碳钢的显微组织也没有根本的不同,差别只是在于合金元素都使C曲线右移(除Co外),即以较低的冷却速度可获得马氏体组织。例如16Mn淬火后为马氏体组织,40Cr钢经调质处理后的显微组织是回火索氏体,如图1、2所示。GCrl5钢(轴承钢)840℃油淬低温回火试样的显微组织,与T12钢780℃水淬低温回火试样的显微组织也是一样的,都得到回火马氏体+碳化物十残余奥氏体组织,如图3所示。 图1 16Mn淬火组织图2 40Cr钢调质后的组织 图3 GCr15钢淬火低温回火后组织图4 W18Cr4V淬火三次回火后的组织

2)高速钢是一种常用的高合金工具钢,例如W18Cr4V。因为它含有大量合金元素,使铁碳相图中的E点大大向左移,以致它虽然只含有0.7~0.8%的碳,但也已经含有莱氏体组织,所以称为莱氏体钢。 高速钢的铸造状态下与亚共晶白口铸铁的组织相似。其中莱氏体由合金碳化物和马氏体或屈氏体组成。莱氏体沿晶界呈宽网状分布,莱氏体中的碳化物粗大,有骨架状,不能靠热处理消除,必须进行锻造打碎。锻造退火后高速钢的显微组织是由索氏体和碳化物所组成的。 高速钢优良的热硬性及高的耐磨性,只有经淬火及回火后才能获得。它的淬火温度较高,为1270~1280℃,以使奥氏体充分合金化,保证最终有高的热硬性。淬火时可在油中或空气中冷却。淬火组织为马氏体、碳化物和残余奥氏休。由于淬火组织中存在有较大量(25~30%)的残余奥氏体,一般都进行三次约560℃的回火。经淬火和三次回火后,高速钢的组织为回火马氏体、碳化物和少量残余奥氏体(2~3%)(图4)。 3)不锈钢是在大气、海水及其它浸蚀性介质条件下能稳定工作的钢种,大都属于高合金钢,例如应用很广的1Crl8Ni9即18-8钢。它的碳含量较低,因为碳不利于防锈;高的铬含量是保证耐蚀性的主要因素;镍除了进一步提高耐蚀能力以外,主要是为了获得奥氏体组织。这种钢在室温下的平衡组织是奥氏体十铁素体+(Cr,Fe)23C6。为了提高耐蚀性以及其它性能,必须进行固溶处理。为此加热到1050~1150℃,使碳化物等全部溶解,然后水冷,即可在室温下获得单一的奥氏体组织,如图5所示。 但是1Crl8Ni9在室温下的单相奥氏体状态是过饱和的,不稳定的,当钢使用时温度到达400~800℃的范围或者从较高温度,例如固溶处理温度下冷却较慢时,(Cr,Fe)23C6会从奥氏体晶界上析出,造成晶间腐蚀,使钢的强度大大降低。目前,防止这种晶间腐蚀的途经有两条:一是尽量降低碳含量,但有限度;二是加入与碳的亲和力很强的元素Ti,Nb等。因此出现了1Crl8Ni9Ti、0Crl8Ni9Ti 等及更复杂的牌号的奥氏体镍铬不锈钢。 200× 500× 图5 1Crl8Ni9钢固溶处理后的组织 2.几种常用有色金属的显微组织 1)铝合金应用十分广泛的铝合金主要分变形铝合金和铸造铝合金两类。依照热处理效果又可分为能热处理强化的铝合金及不能热处理强化的铝合金。

均匀化退火对6056铝合金组织与性能的影响

均匀化退火对6056铝合金组织与性能的影响 宁波科诺铝业有限责任公司,董培纯邱建平李博 摘要:采用热分析技术、扫描电子显微镜、拉伸试验研究均匀化退火处理对于6056铝合金微观组织和力学性能的影响。结果表明:6056铝合金铸态组织存在严重的枝晶偏析及明显的非平衡共晶组织,经过540℃×12 h 均匀化退火处理后,枝晶偏析和非平衡共晶组织明显消除,其强度降低、塑性大幅度提高。 关键词:均匀化退火;微观组织;力学性能 The effect of homogenizing annealing on microstructure and properties of 6056 aluminum alloy (Ningbo KENO Aluminum Co.,Ltd,Ningbo 315033,China) Abstract:The influence of homogenizing annealing on microstructure and properties of 6056 aluminum alloy is investigated by heat analysis technology,scan electrical microscope and tensile test. The results show that severe dendritic-segregation and unequilibrium phases exist in its as-cast structure,After 540℃×12h homogenizing annealing treatment,dendrite segregation and unequilibrium eutectic phases eliminate . The strength decrease and the ductility increase obviously. Keywords:Homogenization annealing;Microstructure;Mechanical properties 引言 6056铝合金是广泛应用于汽车和航空领域的一种Al-Mg-Si-Cu合金,其强度比6061铝合金高15%,可焊性、耐腐蚀性能和切削加工性能均优于7075和2024铝合金[1,2]。6056铝合金成分复杂,在半连续铸造过程中,铸锭组织会不同程度地偏离平衡状态,产生严重的枝晶偏析,形成大量的非平衡凝固共晶组织,因此,6056铝合金铸锭必须进行均匀化退火处理,以消除枝晶偏析,同时使合金中非平衡凝固共晶组织溶入基体,最大限度地减少基体中残留的结晶相,提高合金的塑性[3,4]。 均匀化退火处理是6056铝合金获得理想工艺性能和力学性能的关键环节之一。目前国内对于6065铝合金的均匀化退火处理的研究还不充分,本文通过研究均匀化退火对6065铝合金微观组织和性能的影响,为6056铝合金的生产提供试验指导。 试验材料与试验方法 按照表1所示的6056铝合金成分进行配料,使用中频感应炉熔炼,精炼后采用半连续铸造的方法铸成Φ85 mm的铸棒。在铸棒上取样,采用DSC进行热分析试验,得到铸棒中低熔点共晶组织的熔化温度,以确定均匀化退火温度,DSC试验的升温速率5 ℃/min,从室温加热到600 ℃。截取Φ85×100 mm的铸棒进行均匀化退火,均匀化退火温度为540 ℃,保温时间分别是6 h、12 h。从铸态和均匀化退火后的铸棒上切取金相试样,经机械研磨和抛光后,在2 ml HF、3 ml HCl、5 mlHNO3、250 mlH2O 腐蚀液中腐蚀10 s,用清水冲洗干净,然后用酒精擦净吹干,制得的试样采用扫描电子显微镜观察微观组织形貌。将铸态及均

铝合金显微组织图册

显微组织图册 1、4032挤压棒:500X下共晶硅(灰色相)尺寸---正常组织状态:H112 腐蚀时间:15-25S 2、4032铸棒: 铸态(共晶硅呈灰色条状,成团簇状)均质(共晶硅灰色圆形均匀分散在样品上 初晶硅一般>20um 2、合金:3003 状态:均质腐蚀时间:20-30S 200X 正常组织500X 正常组织正常组织(抛痕严重)

3、合金:6005 /6005A 状态:均质腐蚀时间:30-40S 200X 正常组织500X正常组织正常组织(抛光效果不好)4、合金:6061 状态:均质腐蚀时间:30-40S 200X正常组织500X正常组织 200X均质效果不佳500X均质效果不佳腐蚀时间过短,境界不明显5、合金:6063 状态:均质腐蚀时间:30-40S

200X正常组织500X正常组织 拖尾严重---抛一段时间后旋转180度,可避免此类事件发生磨痕(研磨效果不佳)6、合金:6088B 状态:均质腐蚀时间:30-40S

200X正常组织500X正常组织 200X均质效果不佳200X均质效果不佳7、合金:6B10 状态:均质腐蚀时间:30-40S 200X正常组织

200X正常组织500X正常组织 腐蚀时间过长腐蚀时间过短,晶界不明显9、合金:YF66C(同时测量晶粒尺寸)状态:均质腐蚀时间2-3min

YF66F 200X正常组织YF66F 500X正常组织 YF66H 100X 过烧组织YF66H 200X 过烧组织YF66H 200X 过烧组织11、合金:7032 状态:均质腐蚀时间:40-50S

工艺参数对3003铝合金组织与 性能的影响

Material Sciences 材料科学, 2018, 8(5), 603-608 Published Online May 2018 in Hans. https://www.doczj.com/doc/5916973172.html,/journal/ms https://https://www.doczj.com/doc/5916973172.html,/10.12677/ms.2018.85071 Effect of Process Parameters on Microstructure and Properties of 3003 Aluminum Alloy Yitan Wang1, Qingsong Dai1,2, Ping Fu1, Mingwei Zhao1 1Guangxi Liuzhou Yinhai Aluminum Co., Ltd., Liuzhou Guangxi 2School of Materials Science and Engineering, Central South University, Changsha Hunan Received: May 4th, 2018; accepted: May 20th, 2018; published: May 29th, 2018 Abstract Taking 3003 aluminum alloy as the research object, the effects of cold rolling rate and annealing temperature on the microstructure and properties of the sheet were studied. The results show that the work hardening of 3003 alloy sheet is significant. With the increasing of cold rolling de-formation, the tensile strength and yield strength of alloy plates increase gradually, while the elongation decreases. And during the annealing of the finished product, recovery and recrystalli-zation occur within the alloy. As the annealing temperature increases, the tensile strength and yield strength gradually decrease, and the elongation gradually increases. Keywords 3003 Aluminum Alloy, Cold Rolling Deformation, Annealing Temperature, Microstructure and Properties 工艺参数对3003铝合金组织与 性能的影响 王绎潭1,戴青松1,2,付平1,赵明伟1 1广西柳州银海铝业股份有限公司,广西柳州 2中南大学材料科学与工程学院,湖南长沙 收稿日期:2018年5月4日;录用日期:2018年5月20日;发布日期:2018年5月29日

快速凝固铝合金的组织与性能

快速凝固铝合金的组织与性能摘要:速凝固技术;过去对凝固过程的模拟只考虑在熔融状态下的热传导和凝固过程中潜热的释放,很少考虑金属熔体在型腔内必然存在的流动以及金属熔 体在凝固过程中存在的流动,目前,快速凝固技术作为一种研制新型合金材料的 技术一开始研究合金在凝固时的各种组织形态的变化以及如何控制才能到符合 实际生活,生产要求的合金着重研究高的温度梯度和快的凝固速度的快速凝固技术正在走向逐步完善阶段。 快速凝固原理及凝固组织:快速凝固是指通过对合金熔体的快速冷却(≥104-106k/s)或非均质形核备遏制,是合金在很大过冷度下,发生高生长速率(≥1-100cm/s)凝固。由于凝固过程的快冷,起始形核过冷度大,生长速率高是古冶界面偏离平衡,因而呈现出一系列于常规合金不同的组织和结构特征,加快冷却速度和凝固速率所应起的组织及结构特征可以近似用表来表示。 本实验利用真空系统下的金属熔液快速凝固装置,获得高真空后,充入一定压力的惰性气体,熔炼铝合金在熔融状态下以细直径金属液柱方式喷射到铜模具中,液流发生横向铺展并在纯铜模具中快速凝固。由于整个过程的浇注时间在很大程度上被分散、延迟,热耗散可以快速、充分进行,从而可获得层状铝合金。关键词:铜模具;射流沉积;亚稳块体材料;层状复合材料 The Study on the Aluminum Alloy by Rapid Solidification Based on Reciprocate Motion Cooling Model Abstract:Rapid solidification is the way to get the non-steady state metal by the rapid cooling much more fast than the cooling rate for the equilibrium materials, and amorphous, nano-crystalline and some limiting structural or functional materials can be obtained. In this work, jet solidification in the cooling model with the computer controlled reciprocating motion protected under vacuum or inert gas was used to obtain the layer Al alloys. After the Al alloy was molten in a quartz tube, the alloy liquid was jet out of

A356铝合金显微组织及断口分析

A356铝合金显微组织及断口分析目录 1 绪论1 1.1断口分析的意义 1 1.2 对显微组织及断口缺陷的理论分析1 1.3研究方法和实验设计3 1.4预期结果和意义 3 2 实验过程4 2.1 生产工艺4 2.1.1 加料4 2.1.2 精炼4 2.1.3 保温、扒渣和放料5 2.1. 4 单线除气和单线过滤5 2.1. 5连铸6 2.2 实验过程6 2.2. 1 试样的选取6 2.2.2 金相试样的制取7 2.2.3 用显微镜观看 8 2.3 观看方法9 2.3.1显微组织的观看9 2.3.2 对断口形貌的观看10 3 实验结果及分析10 3.1对所取K模试样的观看10 3.2 金相试样的观看及分析11 3.2.1 对显微组织的观看11 3.2.2 断口缺陷13 结论17 致谢17

参考文献 18附录21

1 绪论 1.1断口分析的意义 随着现代科技的进展以及现代工业的需求,作为21世纪三大支柱产业的材料科学正朝着高比强度,高强高韧等综合性能等方向进展。长久以来,铸造铝合金以其价廉、质轻、性能可靠等因素在工业应用中获得了较大的进展。专门随着近年来对轨道交通材料轻量化的要求日益迫切[1],作为铸造铝合金中应用最广的A356铝合金具有铸造流淌性好、气密性好、收缩率小和热裂倾向小,通过变质和热处理后,具有良好的力学性能、物理性能、耐腐蚀性能和较好的机械加工性能[2-3],与钢轮毂相比,铝合金轮毂具有质量轻、安全、舒服、节能等,在汽车和航空工业上得到了日益广泛的应用[4]。 然而,由于其凝固收缩,同时在熔融状态下专门容易溶入氢,因此铸造铝合金不可幸免地包含一定数量的缺陷,例如间隙、氧化物、孔洞和非金属夹杂物等[5-7]。这些缺陷对构件的力学性能阻碍较大,如含1%体积分数的间隙将导致其疲劳50%,疲劳极限降20%[8-9]。因此研究构件中缺陷的性质、数量、尺寸和分布位置对力学性能的阻碍具有重要意义[10]。而这些缺陷往往是通过显微组织和断口分析来研究的。 另外,通过显微组织和断口分析所得到的结果能够分析这些缺陷产生的缘故,研究断裂机理,比结合工艺过程分析缺陷产生的缘故,从而对改进工艺提出一定的有效措施,确定较好的生产工艺,以提升铝合金铸锭的性能。 但关于该合金的微观组织及其断口分析研究较少,研究内容深但不够综合,每篇论文多研究其部分缺陷,断口的获得多为拉伸端口。因此,期望对A356铝合金的断口缺陷有一个较为全面的研究。 1.2 对显微组织及断口缺陷的理论分析 铸件的力学性能与其微观组织有紧密联系[11]。A356合金是一个典型的Al-Si-Mg系三元合金,它是Al-Si二元合金中添加镁、形成强化相Mg2 Si,通过热处理来明显提升合金的时效强化能力,改善合金的力学性能。A 356合金处于α-Al+Mg2Si+Si三元共晶系内,其平稳组织为初生α-Al

A356铝合金的组织与性能研究

A356铝合金的组织与性能研究 目录 摘要 (2) Abstract (2) 1 绪论 (1) 1.1 引言 (1) 1.2 铝及其合金概述 (1) 1.3 热处理工艺 (2) 1.4 A356铝合金研究现状 (3) 1.5 主要内容 (4) 2 实验方法及过程 (4) 2.1 合金成分 (4) 2.2 试样制备和热处理方法 (4) 2.2.1 试样切割 (4) 2.2.2 热处理 (5) 2.3 金相观察 (6) 2.3.1 金相试样的制备 (6) 2.3.2 金相观察 (7) 2.4 力学性能的测试 (7) 2.4.1 硬度测试 (7) 2.4.2 拉伸性能测试 (7) 3 实验结果及分析 (8) 3.1 金相组织观察结果 (8) 3.1.1 热处理前的微观组织 (8) 3.1.2 热处理后的微观组织 (10) 3.2 力学性能分析 (11) 3.2.1 表面硬度 (11) 3.2.2 拉伸性能 (14) 4 结论 (15) 致谢 (16) 参考文献 (17) 百色学院本科毕业论文(设计)诚信保证书 (19)

{TC “摘要”l 1 }摘要:对A356铝合金分别进行金相观察和力学试验,研究其微观组织及性能,同时探讨热处理方式对A356铝合金组织与性能的影响,结果发现枝状晶比较粗大,分布松散,表面硬度、抗拉强度和屈服强度都较低,塑性较好。经一定热处理后,粗大共晶硅熔断形成分布均匀、趋于球化的细小颗粒,除了塑性有所降低外,其他力学性能都有了显著提高。最佳热处理工艺为(560℃+6h)固溶+(180℃+4h)人工时效。 关键词:A356铝合金;固溶处理;时效处理;力学性能;微观组织 Research on Microstructure and Properties of A356 Aluminum Alloy {TC “Abstract”l 1 }Abstract:The microstructures and properties of A356 aluminum alloy were investigated by means of optical metallography and tensile test. Meanwhile, the effects of heat treatment on microstructure were analyzed. The results show that the more coarse dendrites are evenly distributed, the lower hardness, tensile strength, yield strength and the greater plastic are obtained. The coarse dendrites are broken off, uniform distribution and granular after heat treatment. The mechanical properties have significantly improved except for ductility. The optimized solution treatment for 6 hours at 560℃ and aging treatment for 4 hours at 180℃ are recommended. Key words:A356 aluminum alloy; Solid solution treatment; Aging treatment; Mechanical properties; microstructure

Ti元素对7072铝合金显微组织与性能的影响_冯静

第34卷第1期2013年03月 上海有色金属 SHANGHAI NONFERROUS METALS Vol.34,No.1Mar.2013 文章编号:1005- 2046(2013)01-0001-06+0014收稿日期:2012-11-10作者简介:冯静(1988-),女,硕士研究生,主要从事微电子材料的研究. 通讯作者:丁冬雁,男,副教授,主要从事微电子材料的研究.E- mail :dyding@sjtu.edu.cn.Ti 元素对7072铝合金显微组织与性能的影响 冯 静1,丁冬雁1,张俊超1,高勇进2,陈国桢2,陈为高2,尤小华 2 (1.上海交通大学材料科学与工程学院,上海200240; 2.华峰日轻铝业股份有限公司,上海201506) 摘 要:通过透射电镜、扫描电镜、拉伸试验和电化学测试等方法,系统研究了Ti 元素的添加 对模拟钎焊态7072铝合金热传输材料的显微组织、不同条件下力学性能与电化学性能的影响规律.透射电镜分析表明,Ti 元素的添加对晶粒尺寸的影响微弱,且对析出相的析出有抑制作 用.力学试验结果表明, Ti 元素对钎焊态合金的高温力学性能有很大的影响.常温下含Ti 合金的拉伸力学性能与无Ti 合金相近.但在150?测试时, 屈服强度可提高5.5MPa ,抗拉强度和延伸率基本不变.在200?测试时,抗拉强度可提高近10MPa ,屈服强度和延伸率略有下降.电化学试验结果表明,添加Ti 元素能提高钎焊态7072铝合金的抗腐蚀性能,可使7072铝合金在0.5%NaCl 溶液、3.5%NaCl 溶液和1M NaCl +0.3M H 2O 2溶液中的腐蚀电位分别正移8.3mV 、11mV 和8.5mV.关键词:Ti ;7072铝合金;显微组织;力学性能;电化学 中图分类号:TG146.2+ 1文献标识码:A The Effects of Titanium Addition on Microstructure and Performances of 7072Aluminum Alloy FENG Jing 1,DING Dongyan 1,ZHANG Junchao 1,GAO Yongjin 2, CHEN Guozhen 2,CHEN Weigao 2,YOU Xiaohua 2 (1.School of Materials Science and Engineering ,Shanghai Jiao Tong University ,Shanghai 200240,China ;2.Huafon NLM Al Co.,Ltd.,Shanghai 201506,China ) Abstract :In the present work ,the effect of Ti addition on the microstructure ,mechanical properties and electrochemical properties of simulated-brazing 7072Al alloy was investigated.Transmission electron microscopy (TEM )observations revealed that ,in simulated-brazing state ,there was no much difference in the grain size of the Ti-containing alloy and the Ti-free alloy and Ti-containing alloy had less dense precipitates.Tensile testing results indicated that the room-temperature tensile properties of Ti-containing alloy were close to those of Ti-free alloy.Ti addition could have great influence on the comprehensive mechanical properties of the simulated-brazing alloys tested at elevated temperatures.At 150?the yield strength increased by 5.5MPa due to Ti alloying.Whereas ,the tensile strength increased by nearly 10MPa at 200?.Electrochemical testing results revealed that ,with Ti addition ,the corrosion resistance of the simulated-brazing alloy was improved by showing a positive shift of the DOI:10.13258/https://www.doczj.com/doc/5916973172.html,ki.snm.2013.01.005

铝合金金相组织观察

铝合金金相组织观察 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

北京工业大学 实验报告 模块(课程)名称:材料工程基础综合实验 实验名称:铝合金金相组织观察 学号:08090206 姓名:左迎雪

一、实验目的 ⒈了解铸造、固溶处理、轧制及时效处理4种加工条件对铝合金的组织特征的影响; ⒉分析不同材料加工工艺对铝合金力学性能的影响; 3. 深入了解材料四要素之间的内在联系。 二、实验内容 1. 铝合金铸造、固溶处理、轧制及时效处理后金相组织的观察; 2. 不同工艺处理后铝合金静态拉伸实验; 3. 实验报告撰写。 三、实验过程 1. 制样 每一位同学根据名单选取相应工艺的样品,根据《光学技术实验平台》中对于金相样品制备的学习,按照金相样品制备的一般要求进行。磨光过程经历200、400、600、800等四种牌号的水砂纸,然后抛光、腐蚀。 制样的要点: A 缩短在砂纸上停留的时间(包括全过程及每次接触) B 挡水盘距离盘面1cm,请节约用水 C 样品抛光前必须在粗砂纸上修出倒角 D 抛光膏的使用原则是微量、多次;注水少量、恰当 E 抛光时,用力避免过大,应当适中,可以任意方向抛光 2. 组织观察

3. 结果分析 (1)请同学写出自己制备样品(铸造、固溶、轧制或轧制时效处理)的简要生产工艺过程; (2)观察图片,分析铸造、固溶处理、轧制、轧制时效工艺处理后,形成的组织的特点、原因(注意放大倍数的影响); (3)分析自己制备样品的质量。 图中所示为铝合金铸态组织,主要由α-Al固溶体 与晶界上和枝晶间的低熔点共晶组成。晶粒基本 呈等轴状,在晶界处和晶内均分布有大量的第二 相颗粒,并且在晶界上还能看到存在一些显微疏松组织,可能是由于铸造过程中的收缩或气体含量过高造成的。此外, 由于铸造过程中的过冷度很大,成分偏析十分严重,这种偏析在会在晶 界处富铸造组织50× 集,越靠近晶界附近合金元素含量越高区域偏析越严重。晶粒细小。 图中所示为铝合金固溶处理组织,可以明显看出合 金晶粒粗化,再结晶组织增多,粗大的第二相组织 基本溶解。同时成分偏析得到一定消除,组织趋于 均匀。

有色合金的显微组织

有色金属的显微组织观察 一、实验目的 1. 观察和研究各种有色金属的显微组织特征。 2. 熟悉常用的铝合金、钛合金、铜合金及巴比合金的显微组织。 二、观察下列合金试样的组织 三、实验内容讨论 有色金属 1.铝合金 ①铸造铝合金:应用最广泛的铸造铝合金为含有大量硅的铝合金,即所谓硅铝明。典型的硅铝明牌号为ZL102。含硅11~13%,成分在共晶成分附近,因而具有优良的铸造性能——流动性好,铸件致密,不容易产生铸造裂纹。铸造后几乎全部得到共晶组织即灰色的粗大针状的共晶硅分布在发亮的铝的α固溶体的基体上,这种粗大的针状硅晶体严重降低合金的塑性。 为提高硅铝明的力学性能,通常进行变质处理,即在浇注前向合金溶液中加入占合金重量2~3%的变质剂(常用2/3NaF+1/3NaCl)。处理后使共晶点从11.6%Si右移,故使原来的合金变为了亚共晶组织,其组织为初生α固溶体枝晶(亮底)及细的共晶体(α+Si)(黑底),由于共晶中的硅呈细小圆形颗粒,因而使合金的强度与塑性提高。 (a)未经变质处理(100X)(b)已变质处理(100X) 浸蚀剂:0.5%HF溶液浸蚀剂:0.5%HF溶液

②形变铝合金:硬铝Al—Cu—Mg系时效合金,是重要的形变铝合金。由于它的强度大和硬度高,故称为硬铝。在国外又称为杜拉铝。近代机器制造和飞机制造业中得到广泛应用。在合金中形成了CuAl2(θ相)和CuMgAl2(S相)。这两个相在加热时均能溶入合金的固溶体内,并在随后的时效热处理过程中通过形成“富集区”、“过渡相”而使合金达到强化。而后者(S相)在合金强化过程中的作用更大,因之,常把它称为强化相。 硬铝的自然时效组织与淬火组织毫无区别。由不同方位的固溶体晶粒组成(在光学显微镜下G、P区是无法辨认的),只能通过X—光线结构分析及电子衍射来证实。 2.黄铜 ①α单相黄铜:含锌在36%以下的黄铜属单相α固溶体,典型牌号有H70(即三七黄铜)。铸态组织:α固溶体呈树枝状(用氯化铁溶液腐蚀后,枝晶主轴富铜,呈亮色,而枝间富锌呈暗色),经变形和再结晶退火其组织为多边形晶粒,有退火变晶。由于各种晶粒方位不同,所以具有不同的颜色。退火处理后的α黄铜能承受极大的塑性变形,可以进行冷加工。 ②α+β两相黄铜:含锌为36—45%的黄铜为α+β′两相黄铜,典型牌号有H62。在室温下β′相较α相硬得多,因而只能承受微量的冷态变形,但β′相在600℃以上即迅速软化,因此可以进行热加工。 3.巴比合金 ①锡基巴比合金:主要有ZChSnSb11—6,含11%Sb,6%Cu。合金含11%Sb可以形成软的α固溶体(锑在锡中的α固溶体)基体及少量镶嵌在基体上的β′(以合物SnSb为基的β′固溶体)两相组织,铜加入可形成Cu3Sn,避免比重偏析产生。黑色基体α(软基)和具有方形和三角形的白色粗晶为β′固溶体(硬质点),白色针状和星状的是化合物Cu3Sn晶体,也是硬质夹杂。这种轴承合金摩擦系数小,硬度适中,疲劳抗力高,是一种优良的轴承合金。但价格较贵,只用于最重要的轴承上。 ②铅基巴比合金:ZChPbSn16—16—2是最常用的铅基轴承合金,属于过共晶合金,其组织:白色方块为初生相β相(SnSb),花纹状软基体是α(Pb)+单 相黄铜(H70)的显微组织两相黄铜(H62)的显微组织 放大倍数:100X 放大倍数:100X 浸蚀剂:3%FC2+10%HC溶液浸蚀剂:3%FC2+10%HC溶液 ZChSnSb11—6轴承合金 的显微组织 浸蚀剂:4%硝酸酒精溶液

二元合金显微组织分析

实验四二元合金显微组织分析 组织和结构是有区别的,主要表现在它的尺度不同。组织是显微尺度,结构是原子尺度。组织是指用肉眼和显微镜观察到的金属内部情景,如晶粒尺寸和形状以及组成物的特点等。而结构是指组成金属的同类或异类原子在三维空间的排列情况。目前一般是用X射线衍射分析才能确定。 合金在室温下可以同时存在几种晶体结构,即可以多相共存,因而组织比纯金属复杂很多。 合金的组织,既可由单相组成,也可由两相甚至多相组成。不同的相可以构成不同的组织。单相合金是以金属为溶剂的固溶体。 两相或多相合金的组织中,数量较多的一相,称为基体相,大多是以金属为溶剂的固溶体。其余的相可以是合金的另一组元为基体形成的固溶体或另一组元的纯金属;也可是合金各组元形成的化合物或以化合物为溶剂的固溶体。合金的相组成是说明合金由几种相和那几种相组成。合金的显微组织分析就是进一步分析相组成、相分布和相形态,即研究各相的生成条件、数量、形状、大小以及它们之间的相互分布状态。 1.实验目的 根据凝固理论,利用二元相图,在金相显微镜下,识别二元合金组织特征,进行显微组织分析。 二.合金中的基本组织特征 合金成份不同时,二元合金可构成不同的组织,成份相同、但凝固及处理条件不同时,也可构成不同的组织。合金的显微组织与合金的成份、组成相的性质、冷却速度及其他处理条件、组成相相对量等因素有关,一般可有以下几种形貌: 2.1 单相固溶体 固溶体结晶时,先从溶体中析出的固相成分与后从溶体中析出的固相成份是不同的。冷却速度慢(平衡凝固)时,固相原子经过充分扩散,因而可以得到成份均匀的单相固溶体;冷却快时,固相原子来不及扩散均匀,从而使凝固结束后晶粒内各部分存在浓度差别,故各处耐腐蚀性能不同,浸蚀后在显微镜下呈现树枝状特征。下面以Cu-20%Ni合金为例进行说明。 C u-20%Ni的铜合金铸态组织图所示为热力学不平衡组织,在固态均匀化退火后,则出现类同纯金属一样的多边形晶粒,Cu-20%Ni的铜合金均匀化退火组织图所示为单相固溶

相关主题
文本预览
相关文档 最新文档