当前位置:文档之家› 营养物质氮磷与藻类的关系

营养物质氮磷与藻类的关系

营养物质氮磷与藻类的关系
营养物质氮磷与藻类的关系

氮、磷与藻类间的相互关系

摘要:主要介绍了营养元素氮、磷与藻类间的相互关系,包括:氮、磷对藻类生长氮的重要作用;氮磷比对藻类生长的影响,以及藻类增殖的限制因子;藻类的过度增殖与水体富营养化。

关键词:氮;磷;限制因子,水体富营养化

藻类是原生生物界一类真核生物(有些也为原核生物,如蓝藻门的藻类)。主要水生,无维管束,能进行光合作用。体型大小各异,小至长1微米的单细胞的鞭毛藻,大至长达60公尺的大型褐藻。一些权威专家继续将藻类归入植物或植物样生物,但藻类没有真正的根、茎、叶,也没有维管束。藻类分布的范围极广,对环境条件要求不严,适应性较强,在只有极低的营养浓度、极微弱的光照强度和相当低的温度下也能生活。不仅能生长在江河、溪流、湖泊和海洋,而且也能生长在短暂积水或潮湿的地方。从热带到两极,从积雪的高山到温热的泉水,从潮湿的地面到不很深的土壤内,几乎到处都有藻类分布。

藻类生长受物理、化学、生物等多方面因素的影响[1]。大量营养元素可以促进叶绿素a和浮游藻类生物量的剧增,其中氮、磷是影响水中藻类生长的主要因素,在水生生态系统中,氮磷比作为关键因子,常被用来预测藻细胞密度的变化和季节演替[2]。它同时作为一项指标,能代表营养盐对藻类生长的限制水平。有研究表明,适当的营养盐可以控制藻类的生长,生物量以及种群结构,但就氮或磷哪种营养元素作为浮游植物生长的限制因子,目前尚没有统一的结论。在南太平洋,初级生产者通常被认为是氮限制因子[3]。越来越多的研究表明,在其它生态系统中,如东、西地中海,磷可能是最主要的限制因子[3]。在中国,据调查已经有相当数量的湖泊已处于富营养化水平,如巢湖、太湖等。

1.藻类与营养物质N、P

丹麦著名生态学家Jorgensen(1983年)指出浮游藻类的生长是富营养化的关键过程,因此着重研究氮磷负荷与浮游藻类生产力的相互作用和关系,是揭示湖泊富营养化形成机理的主要途径[4]。通常认为,营养元素P和N能够促进藻类的增殖。而大量的研究也表明,总氮、总磷浓度在一定的范围内,叶绿素a浓度与总氮、总磷浓度呈正相关[5]。

1.1 藻类与P

磷是生命活动绝对必须的元素,存在于一切核苷酸结构中,三磷酸腺苷(ATP)与生物体内能量转化密切相关。自然界中的磷主要来源于磷酸盐矿、动物粪便以及化石等天然磷酸盐沉积物中。众所周知,自然界的磷循环只是一个单向流动过程,由于过度的人为活动(如矿山开采、土地开发等),储藏在地球表面的磷通过食物链进入水循环中,使水体中的磷负荷增加。由于环境因素造成磷浓度的增加又通过藻类生物量表现出看来,当环境中供给的磷总量减少时,则水体中磷浓度降低影响藻类的生长,相反,当环境中连续不断地增加磷的供给时藻类便大量的迅速繁殖。在生物圈内, 磷主要以3种状态存在, 即以可溶解状态存在于水溶液中;在生物体内与大分子结合;不溶解的磷酸盐大部分存在于沉积物内。微生物对磷的转化着重要作用。天然水体中可溶性磷酸盐浓度过大会造成水体富营养化[6]。由于天然水体中的磷含量不高,因此它往往是限制水体生产者发展的因素之一。

1.2 藻类与N

氮也是生物生长必须的元素。与磷不同的是,自然界中的氮主要储存在大气中。大气中的氮气为具有固氮作用的植物与藻类提供了丰富的氮源。由于水体中有一些藻类具有固氮能力,可以把大气中的氮转化为能被水生植物吸收利用的硝酸盐类,从而使藻类能够获得充足的氮源。已有研究表明,生物固氮作用在氮素的自然循环中扮演着重要角色,它甚至是很多氮限制水体(例如海洋和贫营养湖泊) 中氮素的重要来源[7]。另外,由于化肥的大量使用,使排入水体的氮素大大的增加。从一定程度上来说,水体富营养化形成的一个重要原因就是由于自然界中氮素循环的固氮过程被强化而造成水体中氮负荷的增加。与磷元素相比,氮素作为水体富营养化的限制因素处于次要地位。

1.3 藻类与N/P

在研究氮、磷物质的过程中,大量的研究还表明,氮磷比值与藻类增值有密切的关系。根据Redfield的假设[8],一个典型藻类的分子式应为C106H263O110N16P,这就是说,临界的氮磷比按元素计应为16:1,按重量计应为7.2:1从理论上讲,如果氮磷比小于该比值,氮将限制藻类的增长;如果氮磷比大于该比值,则可认为磷是藻类增长的限制因素。

在实际应用中,藻类增长所需的氮磷均为可溶性的NO3—、NH4+或PO43—,按照Redfield分子式计算出来的比值并不实际。有人认为,藻类生长对氮磷比的

要求是10-17最为合适[9]。而唐汇娟在比较了国内35个湖泊(23个发生蓝藻“水华”)后发现,发生蓝藻“水华”的湖泊中N/P在13-35间,而没有发生蓝藻“水华”的湖泊中N/P则<13[10]。这说明在合适的N/P比值范围内,有利于藻类的增殖,而大超出这个范围将不利于藻类的生长。

2 藻类生长的限制因子

相关研究表明,限制藻类植物生长的主要营养元素为N、P[11]。关于氮磷营养限制对藻类生长的影响已有许多研究,但就氮或磷哪种营养元素作为浮游植物生长的限制因子,目前尚没有统一的结论。如Michael Neill研究表明,在盐度低的水体中,P对浮游植物的生长起限制作用,在盐度为35‰左右时,N、P同时会限制浮游植物生长,而在盐度大于30‰时,N对浮游植物生长起限制作用[12]。

虽然目前众多学者对此的观点不完全相同,但大部分人认为磷元素为藻类生长的限制因子。OECD(国际经济合作与发展组织)的研究结果表明,80%的湖泊富营养化是受磷元素的制约,大约10%的湖泊与氮元素有关,余下的10%的湖泊与其他因素有关[7]。在合适的光照、温度、pH值、硅以及其它营养物质充分的条件下,植物的生长取决于外界供给它们养分最少的一种或两种,从藻类分子式C106H263O110N16P及遵循李比希最小定律可以得知道,显然氮磷是限制因子。因此,要想控制水体富营养化,必须控制水体中氮磷等营养盐的含量及其比例。袁博宇通过研究发现官厅水库氮磷比远远大于藻类生长所需的氮磷比,磷是控制性因子[13]。郑杰等研究表明藻类生长对于氮磷元素的消耗首先是对氨氮和正磷酸盐的吸收,当氨氮和正磷酸盐消耗到一定值时,硝酸盐氮和非正磷酸盐则为氮磷元素的储备库;在适合藻类生长的培养水体中,磷而不是氮是限制藻类生长的主要因素[14]。毛成责等2006年10月~2007年9月,对西湖5个主要湖区的8个样点水体的温度、溶解氧、pH、悬浮物总氮总磷、叶绿素a浓度等理化因子和藻类生物量进行测定和分析,结果表明,优势种藻类及藻类总量的平均浓度与总氮呈极显著负相关(P<0.01),与总磷呈显著正相关(P<0.05),总磷为西湖藻类增殖的主要限制因子[15]。此外,中国科学院水生生物研究所王洪铸和王海军以及加拿大和美国的科学家基于对湖泊富营养化多年的研究基础上得出,湖水总磷浓度都是限制浮游藻类生长的最重要因素,在野外条件下控制总氮并不能减少藻类总量。只要有足够的磷和充足的时间,蓝藻的固氮作用就可以使藻类的总量维持较高水平,从而使湖泊保持高度富营养化状态[16]。

3 藻类的过度增殖与水体富营养化

水体富营养化(eutrophication)是指在人类活动的影响下,氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。这种现象在河流湖泊中出现称为水华,在海洋中出现称为赤潮。自然水体发生富营养化是近年来水体污染的一个重要方面。而营养物向水体的输入是促使富营养化发生的一个关

键因子。因此研究营养物水平与富营养化之间的关系对防治自然水体的污染具有重要意义。

生命周期理论认为,含氮和含磷的化合物过多排入水体,破坏了原有的生态平衡,引起藻类大量繁殖,过多的消耗水中的氧,使鱼类、浮游生物缺氧死亡,它们的尸体腐烂又造成水质污染。根据这一理论,氮磷的过量排放是造成富营养化的根本原因,藻类是富营养化的主体,它的生长速度直接影响水质状态。

大量研究结果证明,水体富营养化的发生主要是因为N、P等营养盐含量超过了水体本身的白净能力,加上缓慢的水流流态和适宜的温度及光照条件等。由于水流流态和局部水域的气候条件目前尚无力通过人工措施予以调节,而只能通过降低水体中的营养盐浓度来控制富营养化的发生[17]。

富营养化水体中的氮磷主要包括外部进入水体的氮磷,以及水体内部自身底泥等沉积物释放进入水中的氮磷。大多数情况下,氮主要通过面源进入水体,磷主要通过点源进入水体,有研究表明,湖泊、水库中磷的80% 来自于污水排放。而磷的主要来源是家庭洗涤剂的使用,其磷的污染强度均占总的磷污染负50% 左右[18]。因此要控制水体的富营养化,最重要的是减少水体中氮磷等营养物质的输入。

4 结语

影响藻类生长的因素很多[19],有自然因素如地理位置、气候条件;有环境因子如光照、温度、pH值、氮、磷等;也有微量元素如Fe、Mn、Mo等;还与水体中的其他生物有关。一般情况下,藻类会随着水体中氮磷浓度的增加而快速增殖,在合适的氮磷比值范围内,藻类的增殖速度与水体氮磷含量呈正相关关系。地表水体中常发生的富营养化往往与营养因素特别是氮和磷有关[20]。因此控制藻类生长的限制因子(大多情况下是磷元素),抑制藻类的过度增殖,是预防和解决水体富营养化的最重要的基本途径之一。

参考文献

[1] GUNNEL A. Phosphorus as growth-regulating factor relative to other environmental factors in

culturedalgae[J]. Hydrobiologia, 1988,170:191-210.

[2] HOSUB K,SOONJIN H,JAEKI S,et al.Effects of lim iting nutrients and N:P rat ios

on the phytoplankton grow th in a shallow hypertrophic reservoir[J].Hydrobiolog ia, 2007,581:255-267.

[3] 丰茂武,吴云海,冯仕训,吴云影.不同氮磷比对藻类生长的影响[J].生态环境,2008,17(5):

1759-1763.

[4] 饶群,苪孝芳.富营养化机理及数学模拟研究进展[J].水文,2001,2(21):15-24.

[5] 胡晓镭. 湖、库富营养化机理研究综述[J]. 水资源保护,2009,25(4):44-47.

[6] 周启星,俞洁,陈剑.某城市湖泊中磷的循环特征及富营养化发生潜势[J].环境科学,2004,

25(5).

[7] Karl D,Letelier R,Tupas L,et al. The role of nitrogen fixation in biogeochemical cycling in the

subtropical North Pacific Ocean[J].Nature,1997,388:533-538.

[8] V ollenweider R A. Elemental and biochemical compestion of lanktion biomass, some

comments and explorations Arch Hydrobiol, 1985,105:11-29.

[9] 顾岗.太湖蓝藻爆发成因及其富营养化控制[J].环境监测管理与技术,1996,8(6):17-19.

[10] 陈奥密.湖泊富营养化产生的原因和机理[J].广东水利水电,2008,23(3):5-13.

[11] 王淑娟..水体的富营养化及其防治[J]. 锦江师范学院学报:自然科学版,2003,24(2):16-18.

[12] 冯宝荣,徐婷. 氮磷比对藻类生长影响的研究[J]. 现代商贸工业,2010,15:375-376.

[13] 袁博宇.官厅水库富营养化分析及对策探讨[J]. 北京水利,2004,6:17-20.

[14] 郑杰,黄显怀,尚巍,黄鹏. 不同氮磷比对藻类生长及水环境因子的影响[J].工业用水与废

水, 2011,1(42):12-16.

[15] 毛成责,余雪芳,邵晓阳.杭州西湖总氮、总磷周年变化与水体富营养化研究[J]. 水生态学

杂志,2010,3(4):1-6.

[16] 王洪铸,王海军.2008.蓝藻水华治理应放宽控氮、集中控磷以大幅度降低污水处理成本

[J].科技导报,2008,26(22):10.

[17] 况琪军,马沛明,胡征宇,周广杰. 湖泊富营养化的藻类生物学评价与治理研究进展[J]. 安

全与环境学报,2005,5(2):87-91.

[18] 杨桢奎等译.水域的富营养化及其防治对策[M].北京:中国环境科学出版社,1989.:71-73.

[19]] Moore J W,Sc h ind ler D E,Sc h eu ere ll M D,et https://www.doczj.com/doc/5916964853.html,k e Eutrup h ieat ion at th e

Ur ba n Fring e,Se att le Reg io n,US A[J].AMBI O:A Jour na l of th e Hum an En v iron me nt.2003,32(1):13-18.

[20] 张冬鹏,武宝歼.几种赤潮藻对温度、氮、磷的响应及藻问相互作用的研究[J].暨南大

学学报(自然科学版),2000,21(5):82-87.

062.湖泊氮磷赋存形态和分布研究进展

湖泊氮磷赋存形态和分布研究进展 许萌萌1,2张毅敏2高月香2彭福全2汪龙眠2吴晗2,3 (1.河海大学环境学院,南京210098,2.环境保护部南京环境科学研究所,南京210042,3. 常州大学环境与安全工程学院213164) 摘要:湖泊水体和沉积物中氮磷等营养盐的生物地球化学循环直接影响着湖泊的富营养化。所以全面了解氮磷等营养盐的含量分布特征及其来源,为湖泊富营养化的成因及氮磷迁移转化提供了科学的依据。目前,很多研究学者采用了野外采样、实验室分析和收集文献资料相结合的方法,研究了氮磷营养盐的形态含量及分布差异。 关键词:湖泊氮磷赋存形态分布特征 Advances in chemical speciation and distribution of nitrogen and phosphorus in lakes Xumeng Meng1,2Zhang Yimin2,Gao Yue Xiang2,Peng Fu Quan2,Wang Long Mian2,Wu Han2,3 Environment Department of Hohai University,Nanjing210098,2.Nanjing Institute of Environmental Sciences of,Ministry of Environmental Protection,Nanjing210042,3.Environmental and Safety Engineering Department of Changzhou University213164) Abstract:The biogeochemical cycles of nitrogen and phosphorus in the lake water and sediment directly affect the eutrophication of the lake.Therefore,a comprehensive understanding of the content distribution and source of nitrogen and phosphorus can provide a scientific basis for the cause of eutrophication and the migration and transformation of nitrogen and phosphorus.Currently,many researchers using a field sampling, laboratory analysis and the collection method of combining literature studied the content and distribution differences of morphology of nitrogen and phosphorus. Keywords:Lakes Nitrogen and phosphorus Chemical speciation Distribution characteristics 随着社会和经济发展,人为活动导致的湖泊污染已经成为当今世界面临的一个严重的环境问题,尤其是浅水湖泊的富营养化日益成为各国的主要环境问题。工农业废水大量排放,湖泊流域的水体及沉积物的污染问题日益突出,养殖水体尤为严重。水体氮磷营养盐含量过高易引发自身及外部水域的富营养化,严重时导致赤潮或水华频发。 沉积物承载着湖泊营养物质循环的中心环节,一方面对上覆水体起到净化水质的作用,另一方面又不断向上覆水释放营养盐发挥着营养源作用。沉积物氮磷主要来源于水体中颗粒有机物的沉降积累。水体中的氮磷进入沉积物都是要经过“沉降-降解-堆积”的3个阶段,自上而下呈现逐渐变小的趋势。但是由于各个地方物质来源组成、水动力环境、生物化学条件及生物种群等不同,使其含量在垂直分布变化上产生波动,从而反映出不同区环境的不同变化。上覆水的氮磷进入到沉积物中后,会发生明显的形态转化和再迁移作用,其“活性”取决于氮磷在沉积物中的形态[1]。当外源负荷受到控制后,沉积物作为内源污染源,其氮磷还可通过间隙水和上覆水进行物理、生物化学交换[2]。因此了解沉积物中的氮磷赋存和分布对防治富营养化,控制内负荷具有重要意义。养殖水域氮磷的赋存形态分布比较复杂,相关的研究很少。由于过量的污染物的排放,在低水位时期会超过洞庭湖湖自身净化的能力而对栖息于湖内的生物造成严重影响并危害到其生存[3]。 根据国内外调查研究的相关文献资料,湖泊流域的氮磷形态研究不仅仅局限在湖泊中,湖泊

氮磷钾肥在植物营养中的作用及现状

《植物营养研究方法》课程论文 氮磷钾肥在植物营养中的作用及现状 学院:资源环境学院 专业:农业资源环境 班级:资环081 姓名:傅菁晶 学号:10

氮磷钾肥在植物营养中的作用及现状 摘要:植物正常生长需要有一个良好的生态环境,而养分条件是其中重要的因素之一。为了获得农产品丰收,施肥是一项不可缺少的措施。但是,正确的施肥必须有所依据,必须在了解植物对养分需求及吸肥规律的基础上才有可能。而氮磷钾肥是现今我国常用的肥料,因此掌握氮磷钾肥对植物的作用与我们息息相关。 关键词:氮;磷;钾;农作物;研究现状;植物营养;施肥; 农作物在其生命活动中,和一切生物一样也需要“食物来满足其生长、发育和繁殖”的需要。但是,作物的特殊功能是除了吸收水分和空气中二氧化碳以获得碳、氢、氧等元素外,还必须从土壤在吸收氮素和其他矿质养分,并在太阳能的帮助下合成有机物质,以建造自己的有机机体。 农作物从土壤在吸收矿物质养分是作物生长发育的物质基础和土壤肥力的核心,也是评价土壤生产力高低的重要标志之一。作物品种不同,发育阶段不同,对土壤矿质养分的种类、数量的要求是不同的。这些矿质养分有的是作物体的组成部分,有的可以调节作物的生命活动,有的或兼备这两方面的作用。因此,了解作物对土壤矿质养分的需要和掌握土壤矿质养分的存在状况和变化规律,对农业生产有重要的意义。 1氮肥对植物的作用 1.1氮的来源 在20世纪以前,土壤中的氮都是在自然氮循环过程中来自大气。大气中含氮78%,主要通过固氮和大气放电固氮进入土壤,被植物吸收利用,还可能进一步成为动物的食粮。动物粪便和植物秸秆是大气—土壤—植物—动物氮循环的环节。现在通过人工合成氨固氮,制造出尿素、碳酸氢铵等一系列含氮肥料,通过土壤施用和叶面喷施加入这一循环中。 动物粪便和植物秸秆这些有机物质进入土壤后,在一系列土壤微生物的作用下,经过一系列分解转化过程。如果碳氮比小于25,会释放出铵态氮在消化细菌的作用下,经过两步变为硝态氮。土壤温度、湿度、通气状况、pH值、微生物种群数量扥条件决定其转化速率和数量。这需要一段较长的时间。碳氮比大于30的有机物质在土壤中要吸收一部分土壤中原有的矿质氮用于微生物分解活动,待碳氮比小于25后再释放氮。有机肥中鸡粪含氮量最高,猪粪次之,植物秸秆含氮量最低。 化肥中的铵态氮也要转化为硝态氮,与有机肥无异。 铵与钾相近,容易被土壤吸附。硝酸根则比较容易随水流失,进入地下水或河流湖海中会造成环境污染。在通气不良、湿度过大的土壤中,硝酸根会产生反硝化作用生成氮氧化物释放到空气中损失掉。 这就形成了土壤和大气中的氮循环。 1.2氮在农作物营养中的作用 氮是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。

氮磷钾元素作用

氮磷钾营养元素的作用 氮 氮是蛋白质、叶绿素、酶等物质的重要组成部分。蛋白质是构成植物细胞原生质的基本物质,原生质是新陈代谢的活动中心。没有蛋白质就没有生命活动。酶是一种生物催化剂,植株体内的生物化学反应都有酶的参与。叶绿素是进行光合作用必不可少的物质,充足的氮能使叶色浓绿,提高光合作用效率,生长健壮,茎叶繁茂。另外,植株体内的核酸、磷脂和某些激素也都含有氮,这些物质也是许多生理生化过程所不可缺少的。可见氮的生理作用是多方面的。 氮不足,叶色转黄,生育延迟,植株瘦弱,抽穗晚,雌穗发育不良,穗小粒少,严重时不结实,形成空杆。缺氮症状先由叶尖变黄开始,沿着中脉向内扩展,严重时叶片变褐枯死,从全株看,先由下部老叶开始变黄,然后扩展到中部和上部叶片,这是因为缺氮时老叶中的氮转移到上部正在生长的幼叶和其它器官的缘故。 玉米对氮的需要量是诸多营养元素之中最大的,占茎叶子实及根系在内的干重的百分比达到1.46%,明显高于其它营养元素,所以在生产中一定要注意氮元素的施用。 磷 磷在植株体内含量虽比氮、钾少(仅占植株干重的0.2%)。但其生理作用确是非常重要的。磷是核蛋白的重要组成成分,核蛋白是原生质、细胞核和染色体的重要组成物质。磷也是核苷酸的主要成分之一。核苷酸的衍生物在新陈代谢中具有极重要的作用,与玉米植株的正常生命活动密切相关。磷在碳水化合物代谢及氮代谢中也都有重要作用,与脂肪代谢的关系也较密切。 磷对玉米植株发育及各生理过程均有促进作用,尤其是在苗期,能促进根的发育,如果供给适量的磷,根系干重可比缺磷的高1倍。对提高粒重、提高品质也有重要作用。 如果缺磷,影响玉米正常生长发育,产量降低。如果发现缺磷,即使再供给充足的磷也难以弥补前期所造成的损失。早期缺磷、幼苗生长缓慢,根系发育差,叶片呈紫红色,严重时叶尖及叶片边缘变成褐色并枯死。中、后期缺磷,花丝抽出晚,雌、雄间隔时间长,影响授粉,果穗缺粒秃尖,成熟延迟,产量降低。在生产中一定注意从苗期开始就供给充足的磷,确保一生对磷的需要。 钾 钾在幼苗植株中的含量较高,仅次于氮(占植株总干重的0.92%),它在玉米生长发育过程中的生理作用是多方面的。 钾能增强植株的抗旱性主要是由于钾是调节植株水分状况的重要元素。气孔开闭与K+含量有很大关系。施钾使叶肉K+细胞充足,气孔开放程度大,使细胞间隙进入的CO多,从而使光合速率增大,能增强光合产物的运输,提高光合速率,使碳氮代谢加强,有更多的碳水化合物往籽粒中输送。增施钾肥能增强作物的抗旱力,是由于钾离子有调节原生质的胶体特性,使胶体保持一定的分散度、水化度和粘滞性等。钾离子可增强原生质的水合作用,而钙能促使原生质浓缩,降低细胞的渗透性。当它们同时存在时,由于拮抗作用,可使胶体保持一定的分散度,又有一定的粘滞性和透性,使水分能顺利地进入细胞,加强了细胞的持水能力,从而增强了作物抗旱能力。 钾素能增强作物的抗病抗倒伏能力,因为钾对茎部纤维素合成有关。钾营养充足时,作物茎叶中纤维素含量增加,促进了作物维管束的发育,厚角组织细胞加厚,茎秆强度增加,植株生长健壮,不仅抗倒伏,也增强对病虫的抵抗能力。

氮磷钾对植物作用

目录 1. 1 氮 2. 2 磷 3. 3 钾 氮磷钾氮 编辑 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在 0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 编辑

营养物质氮磷与藻类的关系

氮、磷与藻类间的相互关系 摘要:主要介绍了营养元素氮、磷与藻类间的相互关系,包括:氮、磷对藻类生长氮的重要作用;氮磷比对藻类生长的影响,以及藻类增殖的限制因子;藻类的过度增殖与水体富营养化。 关键词:氮;磷;限制因子,水体富营养化 藻类是原生生物界一类真核生物(有些也为原核生物,如蓝藻门的藻类)。主要水生,无维管束,能进行光合作用。体型大小各异,小至长1微米的单细胞的鞭毛藻,大至长达60公尺的大型褐藻。一些权威专家继续将藻类归入植物或植物样生物,但藻类没有真正的根、茎、叶,也没有维管束。藻类分布的范围极广,对环境条件要求不严,适应性较强,在只有极低的营养浓度、极微弱的光照强度和相当低的温度下也能生活。不仅能生长在江河、溪流、湖泊和海洋,而且也能生长在短暂积水或潮湿的地方。从热带到两极,从积雪的高山到温热的泉水,从潮湿的地面到不很深的土壤内,几乎到处都有藻类分布。 藻类生长受物理、化学、生物等多方面因素的影响[1]。大量营养元素可以促进叶绿素a和浮游藻类生物量的剧增,其中氮、磷是影响水中藻类生长的主要因素,在水生生态系统中,氮磷比作为关键因子,常被用来预测藻细胞密度的变化和季节演替[2]。它同时作为一项指标,能代表营养盐对藻类生长的限制水平。有研究表明,适当的营养盐可以控制藻类的生长,生物量以及种群结构,但就氮或磷哪种营养元素作为浮游植物生长的限制因子,目前尚没有统一的结论。在南太平洋,初级生产者通常被认为是氮限制因子[3]。越来越多的研究表明,在其它生态系统中,如东、西地中海,磷可能是最主要的限制因子[3]。在中国,据调查已经有相当数量的湖泊已处于富营养化水平,如巢湖、太湖等。 1.藻类与营养物质N、P 丹麦著名生态学家Jorgensen(1983年)指出浮游藻类的生长是富营养化的关键过程,因此着重研究氮磷负荷与浮游藻类生产力的相互作用和关系,是揭示湖泊富营养化形成机理的主要途径[4]。通常认为,营养元素P和N能够促进藻类的增殖。而大量的研究也表明,总氮、总磷浓度在一定的范围内,叶绿素a浓度与总氮、总磷浓度呈正相关[5]。

植物缺少氮磷钾等营养元素的症状 (2)

植物缺少氮磷钾等营养元素的症状 (一)氮 根系吸收的氮主要就是无机态氮,即铵态氮与硝态氮,也可吸收一部分有机态氮,如尿素。 氮就是蛋白质、核酸、磷脂的主要成分,而这三者又就是原生质、细胞核与生物膜的重要组成部分,它们在生命活动中占有特殊作用。因此,氮被称为生命的元素。酶以及许多辅酶与辅基如NAD+、NADP+、FAD等的构成也都有氮参与。氮还就是某些植物激素如生长素与细胞分裂素、维生素如B1、B2、B6、PP等的成分,它们对生命活动起重要的调节作用。此外,氮就是叶绿素的成分,与光合作用有密切关系。由于氮具有上述功能,所以氮的多寡会直接影响细胞的分裂与生长。 当氮肥供应充足时,植株枝叶繁茂,躯体高大,分蘖(分枝)能力强,籽粒中含蛋白质高。植物必需元素中,除碳、氢、氧外,氮的需要量最大,因此,在农业生产中特别注意氮肥的供应。常用的人粪尿、尿素、硝酸铵、硫酸铵、碳酸氢铵等肥料,主要就是供给氮素营养。 缺氮时,蛋白质、核酸、磷脂等物质的合成受阻,植物生长矮小,分枝、分蘖很少,叶片小而薄,花果少且易脱落;缺氮还会影响叶绿素的合成,使枝叶变黄,叶片早衰甚至干枯,从而导致产量降低。因为植物体内氮的移动性大,老叶中的氮化物分解后可运到幼嫩组织中去重复利用,所以缺氮时叶片发黄,由下部叶片开始逐渐向上,这就是缺氮症状的显著特点。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,植株体内含糖量相对不足,茎秆中的机械组织不发达,易造成倒伏与被病虫害侵害。 (二)磷 磷主要以H2PO4-或HPO42-的形式被植物吸收。吸收这两种形式的多少取决于土壤pH。pH<7时,H2P O4-居多;pH>7时,HPO42-较多。当磷进入根系或经木质部运到枝叶后,大部分转变为有机物质如糖磷脂、核苷酸、核酸、磷脂等,有一部分仍以无机磷形式存在。植物体中磷的分布不均匀,根、茎的生长点较多,嫩叶比老叶多,果实、种子中也较丰富。 磷就是核酸、核蛋白与磷脂的主要成分,它与蛋白质合成、细胞分裂、细胞生长有密切关系;磷就是许多辅酶如NAD+、NADP+等的成分,它们参与了光合、呼吸过程;磷就是AMP、ADP与ATP的成分;磷还参与碳水化合物的代谢与运输,如在光合作用与呼吸作用过程中,糖的合成、转化、降解大多就是在磷酸化后才起反应的;磷对氮代谢也有重要作用,如硝酸还原有NAD+与FAD的参与,而磷酸吡哆醛与磷酸吡哆胺则参与氨基酸的转化;磷与脂肪转化也有关系,脂肪代谢需要NADPH、ATP、CoA与NAD+的参与。 由于磷参与多种代谢过程, 而且在生命活动最旺盛的分生组织中含量很高,因此施磷对分蘖、分枝以及根系生长都有良好作用。由于磷促进碳水化合物的合成、转化与运输,对种子、块根、块茎的生长有利,故马铃薯、甘薯与禾谷类作物施磷后有明显的增产效果。由于磷与氮有密切关系,所以缺氮时,磷肥的效果就不能充分发挥。只有氮磷配合施用,才能充分发挥磷肥效果。总之,磷对植物生长发育有很大的作用,就是仅次于氮的第二个重要元素。 缺磷会影响细胞分裂,使分蘖分枝减少,幼芽、幼叶生长停滞,茎、根纤细,植株矮小,花果脱落,成熟延迟;缺磷时,蛋白质合成下降,糖的运输受阻,从而使营养器官中糖的含量相对提高,这有利于花青素的形成,故缺磷时叶子呈现不正常的暗绿色或紫红色,这就是缺磷的病症。

富营养化水体中氮磷物质与光谱反射率的相关性分析

第8卷第6期 2009年11月杭州师范大学学报(自然科学版)Journal o f Hangzhou N ormal University(Natural S cience E dition)V ol.8N o.6N ov.2009收稿日期:2009 09 01 基金项目:浙江省教育厅计划资助项目(0686XP67).作者简介:王晓玥(1971 ),女,浙江湖州人,副教授,硕士,主要从事污染生态学研究.E mail:w angxy419@https://www.doczj.com/doc/5916964853.html,.文章编号:1674 232X (2009)06 0453 04 富营养化水体中氮磷物质与光谱反射率的相关性分析 王晓玥 (杭州师范大学生命与环境科学学院,浙江杭州310036) 摘 要:利用F ieldSpec H andH eld 地物光谱仪对不同的富营养化水体进行反射光谱测量和同步水质采样 分析,通过研究水体反射光谱的特征,分析了光谱反射率与总氮、总磷浓度之间的关系.结果表明:光谱反射率比 R 640/R 447与总氮浓度、R 703/R 447与总磷浓度的线性相关程度较好,并以此分别建立了两者的反演模型. 关键词:富营养化水体;氮磷浓度;光谱反射率;反演模型 中图分类号:X832 文献标志码:A 随着经济和城市化的迅速发展,水体富营养化趋势日益严重.及时准确地了解水体富营养化的状况及其变化趋势,对于正确评价水体质量,寻求改善生态环境的途径和措施,具有重要意义.国内外大量实践表明,遥感监测因其监测范围广、速度快、成本低、便于长期动态监测等特点,逐渐成为水质监测的有效手段[1 6] . 水质遥感监测是通过研究水体反射光谱特征与水质参数浓度之间的关系,建立水质参数反演算法进行的[7].目前可遥感的水质参数包括叶绿素、悬浮物及与之相关的水体透明度、浑浊度,但对可溶性有机物、化学需氧量、总氮、总磷等富营养化表征参数的光谱特性分析和定量遥感监测研究较少[8].在此选取总氮(T N)、总磷(TP)作为研究对象,旨在通过分析水体光谱反射率特征,建立水体反射率与TN 、T P 浓度之间的反演模型,为水体污染的遥感分析及监测提供理论基础和方法依据.1 采样与分析 研究区域位于杭州市下沙经济开发区.此处汇集造纸、橡塑、食品、制药等众多工厂企业,水体富营养化比较严重.经前期大量采样及水质分析,选取了水质比较稳定的7个采样点,进行水体反射光谱测量和同步水质采样分析.光谱测量采用美国ASD 公司的FieldSpec H andheld 地物光谱仪,在每个采样点进行水面离水辐射率的测定.该光谱仪光谱范围为325~1075nm,光谱采样间隔为1.6nm,分辨率为3.5nm.测量时天气阴,无风,水面基本平静.水面离水辐射率由仪器在距离水面约60cm 处测得,观测平面与太阳入射平面的角度为90度,仪器与水面法线方向的夹角为45度,每一水样在同一波长处扫描15次.每一采样点分别测定水面、天空和参考板的反射率. 在每一采样点使用标准采样器,从水面至水下20cm 处同步进行水质采样.在实验室中分析水样参数,其中TN 采用碱性过硫酸钾消解紫外分光光度法、TP 采用钼酸铵分光光度法[9].结果显示,各采样点 TN 浓度变化较大,从1.49~6.95mg /L,T P 浓度为0.22~2.13mg/L,已达中度至重度富营养状态 [10].

氮磷钾的功能

N、P、K在植物生长中的功能 在各种营养元素之中,氮、磷、钾三种是植物需要量和收获时带走量较多的营养元素,而它们通过残茬和根的形式归还给土壤的数量却不多。因此往往需要以施用肥料的方式补充这些养分。 氮 氮是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是叶绿素的组成成分,叶绿素a和叶绿素?都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长炔,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,从右图可知,我国大部分耕地的土壤全氮含量都在0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于 0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 磷

主要作物所需氮磷钾比例

主要作物所需氮磷钾比例(2013-05-15 12:38:00)转载▼ 一、葡萄1、营养特性 据研究,一般成年葡萄园每生产1000千克果实需吸收氮6.0千克、磷3.0千克、钾7.2千克,其吸收比例为1:0.5:1.2,钾>氮>磷。葡萄对氮的需要量前、中期较大,而磷、钾吸收高峰偏中、后期,尤其是开花、授粉、坐果以及果实膨大对磷、钾的需要量很大。另外,葡萄对微量元素硼的需要量也较多。一般亩施高浓度复合肥90-100千克/亩(以产量1000千克/亩计)。 2、施肥建议 基肥:以有机肥为主,配施化肥。幼龄树每株施有机肥20-30千克,成龄果树50-100千克,每100千克有机肥混入总养分≥45%(15-15-15)复合肥1-2千克。基肥以葡萄收获后施入为宜,而且越早越好。 追肥:一般2-3次。新梢萌芽至开花前进行第一次追肥,一般每株施总养分≥40%(16-16-8)复合肥1-1.5千克,开小沟施入。第二次追肥在浆果生长前,每株施总养分≥40%(16-8-16或14-6-20)或总养分≥45%(15-10-20)复合肥1千克左右;第三次在进入浆果生长期,此时果实膨大增重和新的花芽分化,均要消耗大量养分,需肥量大,且以氮、钾养分为主,可施用总养分≥40%(16-8-16)复合肥,每株2千克左右。 二、番茄 1、营养特性 番茄,又名西红柿,其采收期比较长,需要时边采收,边供给养分,才能满足不断开花结果的需要.具体施肥量应根据土壤供肥能力,养分利用率,蔬菜吸收养分量等参数来确定。据研究,番茄每生产1000千克鲜果,需吸收氮3.18千克、磷0.74千克、钾4.83千克、钙3.35千克、镁0.62千克。以中等肥力的土壤为例,若目标产量为亩产6000千克,则需N17千克,P2O59千克,K2O11千克。一般亩施高浓度复合肥90-110千克/亩。番茄对钙、镁的需要量也比较大,缺乏易产生脐腐病。这是番茄的生育与营养特点,也是茄果类蔬菜生育与营养的共性。 2、施肥建议 基肥:番茄产量高,需肥量大,施肥应以基肥为主,亩施优质有机肥3000-5000千克,配施总养分≥40%(18-8-14)40-45千克/亩或(16-8-16)45-50千克。 追肥:在定植后5~6天追施一次“催苗肥”,每亩施尿素5千克左右;第一穗果开始膨大时,追施“催果肥”每亩施总养分≥40%(18-8-14)复合肥10千克左右;进入盛果期,当第一穗果发白,第二、三穗果迅速膨大时,应继续追肥2-3次(在每次采果后追施),每次每亩施用总养分≥40%(18-8-14)或(16-8-16)复合肥15-20千克;进入盛果期后,根系吸肥能力下降可采用喷施尿素、硝酸钙、硼砂等水溶液,有利于延缓衰老,延长采收期以及改善果实品质。 (三)辣椒 1、营养特性 辣椒耐肥能力强,据研究,每生产1000千克辣椒,需吸收氮3.5-5.5千克、磷0.7-1.4千克、钾5.5-7.2千克、钙2.0-5.0千克、镁0.7-3.2千克。一般亩施高浓度复合肥90-120千克/亩。辣椒在不同生育阶段对养分吸收不同,其中氮素随生育进展稳步提高,果实产量增加,吸收量增多;磷德吸收量在不同阶段变幅较小;钾的吸收量在生育初期较少,从果实采收初期开始明显增加,一直持续到结束;钙的吸收量也随生长期而增加,在果实发育期供钙不足,易出现脐腐病;镁的吸收高峰在采果盛期。 2、施肥建议 基肥:每亩施优质有机肥3000-5000千克,总养分≥40%(16-8-16)或(14-6-20)复

藻类对氮磷的吸收作用综述

湖南农业大学课程论文 学院:资源环境学院班级:08级环境工程一班姓名:潘玲学号:200840408114 课程论文题目:藻类对氮磷吸收作用的综述 课程名称:课程论文设计(环工) 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

藻类对氮磷吸收作用的综述 学生:潘玲 (资源环境学院环境工程一班,学号200840408114) 摘要:利用藻类处理污水具有低成本、高效率、无二次污染等特点,具有广阔的前景。本文归纳分析国内外利用藻类吸收氮磷的相关研究数据和结果,综述了国内外利用藻类吸收氮磷的现状和发展方向,为以后的研究提供借鉴作用。 关键词:发展及现状藻类发展前景去除 前言 本文针对各种藻类对氮磷的吸收效果进行总结概括,为以后该方面的研究奠定一定的基础。随着工业进步和社会发展,水污染现象日趋严重。目前,废水二级处理后出水的进一步脱氮和除磷问题已成为国内外研究的热点。传统的生化二级处理除磷工艺使大量的磷从污水中转移到剩余污泥中,不能从根本上消除磷对生态环境的影响。藻类为自养型生物,其生长对废水中的营养要求较低,主要以光能为能源,利用N、P等营养物质合成复杂的有机质,因此藻类可降低水体中氮磷的含量[1]。 一、藻类技术的发展及现状 引用藻类进行水质净化的研究,自20世纪50年代起,至今已有近60年的历史[2],早期主要是应用微型藻悬浮培养技术进行污水处理,相关技术有藻菌氧化塘、高效藻类塘,活性藻[3]等。由于微型藻悬浮培养技术在实际应用中不易捕捞,仍在水体有残余,更多的焦点集中在固着藻类的研究与应用上,如固定化藻类技术[4]与藻菌生物膜技术。 DaCosta[5] 的研究结果证明,固定化藻类不但能有效去除污水中的氮磷营养,对去除镉和锌等重金属离子也效果显著。由于受限于固定藻类用载体的成本较高,以致该项技术仅停留在实验室规模的研究和探索阶段,至今未见大规模实际应用的报道。 二、典型性的藻类 (一)小球藻 小球藻是一种理想的蛋白质资源,富含蛋白质、氨基酸、不饱和脂肪酸、维生素、矿物质和色素等,是一种重要的微藻资源,具有增强免疫力、降血脂和抗原微生物等保健作用。

氮磷钾对植物分别有什么作用

氮磷钾对植物分别有什么作用 氮肥:能使植物叶子大而鲜绿,使叶片减缓衰老,营养健壮,花多,产量高。生产上常使用氮肥是植物快速生长。所以我们对于叶菜(吃叶子的菜)要多施氮肥。主要磷肥品种有过磷酸钙(普钙)、重过磷酸钙(重钙,也称双料、三料过磷酸钙)、钙镁磷肥,此外,磷矿粉、钢渣磷肥、脱氟磷肥、骨粉也是磷肥,但目前用量很少,市场也少见 磷肥:能使作物代谢正常,植株发育良好,同时提高作物的抗旱性以及抗寒性,提早成熟。我们要使作物提前收获,一般多施用磷肥。 钾肥:能使植物的光合作用加强,茎秆坚韧,抗伏倒,使种子饱满 主要钾肥品种有硫酸钾、氯化钾、盐湖钾肥、窑灰钾肥和草木灰。其中硫酸钾和氯化钾成分较纯,主要成分是化钾,窑灰钾肥和草木灰成分很复杂,市场上流通量较前三种钾肥少。 资料来源《植物生理学》 (1)氮肥:即以氮素营养元素为主要成分的化肥,包括碳酸氢铵、尿素、销铵、氨水、氯化铵、硫酸铵等。 (2)磷肥:即以磷素营养元素为主要成分的化肥,包括普通过磷酸钙、钙镁磷肥等。 (3)钾肥:即以钾素营养元素为主要成分的化肥,目前施用不多,主要品种有氯化钾、硫酸钾、硝酸钾等。

(4)复、混肥料:即肥料中含有两种肥料三要素(氮、磷、钾)的二元复、混肥料和含有氮、磷、钾三种元素的三元复、混肥料。其中混肥在全国各地推广很快。 (5)微量元素肥料和某些中量元素肥料:前者如含有硼、锌、铁、钼、锰、铜等微量元素的肥料,后者如钙、镁、硫等肥料。 (6)对某些作物有利的肥料:如水稻上施用的钢渣硅肥,豆科作物上施用的钴肥,以及甘蔗、水果上施用的农用稀土等。作物必需的营养元素有16种,除碳氢氧是从空气中吸收,其余均不同程度地需要施肥来满足作物正常生长的需要。按照作物对养分需求量的多少分为大量元素肥料,包括氮肥、磷肥和钾肥;中量元素肥料,包括钙、镁、硫肥;微量元素肥料,包括锌、硼、锰、钼、铁、铜肥;此外,还有一些有益元素肥料如含硅肥料、稀土肥料等。 1、氮素化肥氮是蛋白质构成的主要元素,蛋白质是细胞原生质组成中的基本物质。氮肥增施能促进蛋白质和叶绿素的形成,使叶色深绿,叶面积增大,促进碳的同化,有利于产量增加,品质改善。在生产上经常使用的氮素化肥有:①硫酸铵(硫铵):白色或淡褐色结晶体。含氮20%一21%,易溶于水,吸湿性小,便于贮存和使用。硫铵是一种酸性肥料,长期使用会增加土壤的酸性。最好做追肥使用,一般每667平方米施用量为15—20千克。②碳酸氢铵(碳铵):白色细小结晶,含氮17%,有强烈的刺激性臭味,易溶于水,易被作物吸收,易分解挥发。可作基肥或追肥使用,追肥时要埋施,及时覆土,以免氨气挥发烧伤秧苗。 ③尿素:白色圆粒状,含氮量为46%。尿素不如硫铵肥效发挥迅速,追肥时要比硫铵提前几天施用。尿素是固体氮肥中含氮量最高的一种,尿素为中性肥料,不含副成分,连年施用也不致破坏土壤结构。

太湖大气氮_磷营养元素干湿沉降率研究

第38卷 第2期 海 洋 与 湖 沼 Vol.38, No.2 2007年 3月 OCEANOLOGIA ET LIMNOLOGIA SINICA Mar., 2007 * 国家自然科学基金委与香港资助局联合资助项目, 40110734号, N-HKUST612/01号资助。杨龙元, 副研究员, E-mail: lyyang@https://www.doczj.com/doc/5916964853.html, 收稿日期: 2004-12-15, 收修改稿日期: 2005-12-02 太湖大气氮、磷营养元素干湿沉降率研究* 杨龙元 秦伯强 胡维平 罗潋葱 宋玉芝 (中国科学院南京地理与湖泊研究所 南京 210008) 提要 分析了2002年7月—2003年6月太湖周边地区太湖站、拖山岛、东山站、无锡、苏州、湖州、常州、金坛等8个站、点大气TN 、TP 沉降通量和降水化学组成观测资料, 测定和计算了水气界面TN 、TP 的表观总沉降率(R T )、湿沉降率(R W ) 和干沉降率(R D )。太湖大气TN 的年平均R T 为4226 kg/(km 2.a), TP 的年平均R T 为306 kg/(km 2.a)。大气TN 、TP 的年沉降负荷分别占由环湖河道等点污染源输入的N 、P 总负荷的48.8%和46.2%。指出形成太湖大气TN 污染的主要途径是湿沉降, 而大气TP 污染则主要来自气溶胶等固体物质的干沉降; 小雨携带入湖的大气TN 、TP 污染物通量高于中雨和大雨。TN 总沉降率曲线在春季 3—5月出现高峰值的现象对太湖水体的富营养化具有潜在的促进影响。 关键词 太湖, 大气污染, 干湿沉降, 水气界面 中图分类号 P731 氮(N)、磷(P)等营养元素经大气传输进入海洋、湖泊是水体生态系统生物地球化学物质循环研究的重要组成内容。 研究资料表明, 大气传输过程不仅能使大量陆源物质进入水体, 而且其通量可能接近于由河流等点污染源输送注入水体的污染物质通量, 从而对海洋、湖泊水体的富营养化产生重大影响(高原等, 1997; 王保栋等, 2002; 宋金明等, 2006)。太湖湖泊面积为2428km 2, 实际水面面积为2338 km 2, 平均水深1.89m, 最大深度仅4m 。是典型的大型碟型浅水湖泊。由流域内大气污染引发的水气界面N 、P 污染物的干、湿沉降对湖泊水质的影响更为突出。太湖水体的富营养化污染已经危及到湖泊周边地区国民经济的稳定、持续发展(秦伯强, 1998)。杨龙元等(2001)曾就大气酸性沉降对太湖水环境的潜在影响进行了初步的观测研究, 指出太湖流域大气N 化合物的污染对太湖水体富营养化的影响较大。 但是N 、P 等营养元素经大气传输途径进入太湖水体生态系统的相关研究资料报道尚不多。作者参照Peter 等(1995)和Akkoyunlu 等(2003)介绍的采样分析方法, 测定了2002年7月—2003年6月中 国科学院南京地理与湖泊研究所设立在太湖岸边的中国科学院太湖湖泊生态系统研究站(简称太湖站)、东太湖水体农业实验站(简称东山站)和太湖北部梅梁湾口拖山岛3个站点的大气TN 、TP 沉降率。结合太湖周边无锡、苏州、湖州、常州、金坛等5市提供的大气沉降物质观测资料, 计算了太湖周边地区大气TN 、TP 表观总沉降率、湿沉降率和干沉降率等参数与太湖水体经由水气界面受纳的TN 、TP 年污染负荷通量, 分析了影响太湖水体大气干、湿沉降率的环境因子和时空变化特征及其对湖泊水体富营养化污染的影响。为太湖富营养化污染的治理提供了基础资料和新思路。其中有关太湖流域大气降水化学组成及其时空变化特征等研究成果另文发表。 1 实验和方法 1.1 采样点 在太湖站、拖山岛、东山站及无锡、苏州、湖州、常州、金坛等市设立了8个降尘、降雨采样站点(图1)。无锡、苏州、湖州、常州、金坛等市的降尘、降雨采样、化学组成测定分别由各市环境保护局组织人员按国家环保总局相关标准进

氮磷钾的作用

植物生育过程中,常有一个时期,对某种养分的要求在绝对数量上虽不多,但很敏感,需要迫切,此时如缺乏这种养分,对植物生育的影响极其明显,并由此而造成的损失,即使以后补施该种养分也很难纠正和补充,这一时期就叫植物营养临界期。 大多数植物的磷素营养临界期都在幼苗期,棉花在出苗后10-20天,玉米在出苗后一星期左右(三叶期)。作物氮素营养临界期则常比磷稍向后移,通常在营养生长转向生殖生长的时期,冬小麦在分蘖和幼穗分化期,棉花在现蕾初期,玉米在幼穗分化期。 植物生长发育过程中,另一个时期,植物需要养分的绝对数量最多,吸收速率最快,所吸收的养分能最大程度地发挥其生产潜能,增产效率最高,这就是植物营养最大效率期。此期往往在作物生长的中期,此时作物生长旺盛,从外部形态上看,生长迅速,作物对施肥的反应最为明显。玉米氮素最大效率期在大喇叭口期到抽雄初期,小麦在拔节到抽穗期,棉花在开花结铃期,苹果结果树在花芽分化期,大白菜在结球期,甘蓝在莲座期。 作物营养临界期和最大效率期是作物营养和施肥的两个关键时期,在这两个阶段内,必须根据作物本身的营养特点,满足作物养分状况的要求,同时还必须要注意作物吸收养分的连续性,才能合理地满足作物的营养要求。 植物对氮、磷、钾三种元素需要量最多,其次是钙、镁、硫以及铁、锰、锌、硼、铜、钼等微量元素。 1 氮肥 氮肥主要是促使树木茂盛,增加叶绿素,加强营养生长。氮肥太多会导致组织柔软、茎叶徒长,易受病虫侵害,耐寒能力降低。缺少氮肥则植株瘦小,叶片黄绿,生长缓慢,不能开花。氮肥有动物性氮肥和植物性氮肥:人粪尿,马、牛、羊、猪等粪便,鱼肥、马掌等属动物性氮肥。芝麻渣、豆饼、菜籽饼、棉籽饼等属植物性氮肥。以上两类均系有机肥料。矿物质氮肥亦即无机肥或称化。硫酸氨、硝酸氨、尿素、氨水等,均为速效氮肥,通常用作根外追肥,如经常用作根部施肥易使土壤板结。 2 磷肥 磷肥能使树木茎枝坚韧,促使花芽形成,花大色艳,果实早熟,并能使树木生长发育良好,多发新根,提高抗寒、抗旱能力。磷肥不足树木生长缓慢,叶小、分枝或分蘖减少,花果小,成熟晚,下部叶片的叶脉间先黄化而后呈现紫红色。缺磷时通常老叶先出现病症。 含磷较多的有机肥有骨粉、米糠、鱼鳞、家禽粪便等。无机磷肥有过磷酸钙、磷矿粉、钙镁磷肥等。其中最常用的过磷酸钙常与有机肥混合后用作基肥,亦可用作花果盆景的根外追肥。 3 钾肥 钾肥能使树木茎杆强健,提高抗病虫、抗寒、抗旱和抗倒伏的能力,促使根部发达,球根增大,并能促使果实膨大,色泽良好。缺钾会导致树木叶缘出现坏死斑点,最初下部老叶出现斑点,叶缘叶尖开始变黄,继之发生枯焦坏死。钾肥过量,会引起树木节间缩短,全株矮化,叶色变黄,甚至枯死。 最具代表性的有机钾肥首推草木灰,用作追肥和基肥均可。其含速效钾(K2O)5~10%|磷(P2O5)2~3%,还含有其他微量元素。草木灰是一种碱性肥料。无机钾肥有氯化钾、硫酸钾等均属酸性肥料,可用作基肥和追肥。 还有一些肥料,如磷酸二氢钾既含磷又含钾;硝酸钾含氮和钾,均可用于树木盆景的叶面喷施。 至于其他稀有元素只要注意用土、及时换盆,一般不必额外补充。 自制肥料方法很简单: 将用来制肥的有机物加水所装入广口容器,如瓶、罐后加盖,经两个月左右的腐熟发酵即成

氮磷营养高效型小麦品种鉴定

氮磷营养高效型小麦品种鉴定 袁园园1,2董贝1 (1山东省济南市农业科学研究院,济南250316;2山东农业大学农学院,泰安271018)摘要:为了快速筛选氮素和磷素营养高效型小麦品种,以山东省近年来育成的25个小麦品种(系)为材料,通过大田试验,对不同品种的籽粒氮素和磷素利用效率及产量性状进行统计分析。结果表明,在正常氮肥和磷肥水平下,以济麦22为对照,氮素利用效率、磷素利用效率和产量高出10%以上的品种(系)分别有13个、9个和11个;其中山农24、泰农18、山农32(SH5099)和山农29(LS6109)在这3个指标上均比对照高出10%,是营养高效型小麦品种,在生产上具有较高的推广价值。 关键词:小麦;营养高效;产量 小麦是我国主要的粮食作物,2015年种植面积达2.44亿公顷,产量达1.18亿吨。但是在实际生产中,小麦的氮肥和磷肥的利用效率很低,仅有10%左右[1];不能被植物吸收的氮素会污染地下水、增加氧化亚氮等温室气体排放,而过量的磷素也会随雨水冲刷造成水体富营养化[2]。因此,从改善小麦自身对矿质营养的利用效率出发,筛选和培育营养高效型的作物品种,是解决上述问题更经济环保的途径。 作物的营养效率包括吸收效率和利用效率2个方面[3]。而营养利用效率反映了作物内部矿质营养元素的循环再利用能力,通常用作物单位矿质营养含量所产生的生物学产量或经济产量或CO2固定量来评价,即营养元素浓度的倒数[4]。与作物外部营养吸收效率相比,内部的营养利用效率在培育营养高效型品种方面更有价值[8]。很多研究表明,在矿质营养效率方面,小麦存在着显著的基因型差异。张锡州等[5]发现,同一供氮水平下供试小麦在氮素积累量、氮素利用效率等方面均存在基因型差异;杜宝见等[6]发现,扬麦16和鉴76为正常供氮和高氮条件下的氮高效型品种,皖麦68、F60501-4、鉴62和安农1026为高氮条件下的氮高效型品种。在磷素利用效率方面,柏栋阴等[7]筛选出徐麦856、徐麦270、徐麦3-54、小偃54等4个磷高效品种。但是,同时鉴定小麦氮素和磷素利用效率品种差异的研究却很少。 近年来,各育种单位积极作为,育成了一批高产、抗倒、优质小麦品种和优良品系。特别是小麦主推品种济麦22,全国累计推广面积已达2亿多亩。但是,这些品种(系)的氮素和磷素利用效率如何,却鲜有报道。本研究选用山东省近年来育成的25个小麦品种(系),以济麦22为对照品种,采用大田随机区组试验,在正常氮营养水平下,对氮素和磷素利用效率及产量等农艺性状进行了综合鉴定和评价,拟筛选出氮磷高效型小麦品种,以指导生产。 基金项目:济南市农业科技创新项目(201313,201404);济南市科技计划项目(201401103) 1材料与方法 1.1试验材料以山东省近年来育成的25个小麦品种或品系为材料,其中以济麦22为对照(表1)。

主要作物所需氮磷钾

主要作物所需氮磷钾 一、葡萄 1、营养特性 据研究,一般成年葡萄园每生产1000千克果实需吸收氮6.0千克、磷3.0千克、钾7.2千克,其吸收比例为1:0.5:1.2,钾>氮>磷。葡萄对氮的需要量前、中期较大,而磷、钾吸收高峰偏中、后期,尤其是开花、授粉、坐果以及果实膨大对磷、钾的需要量很大。另外,葡萄对微量元素硼的需要量也较多。一般亩施高浓度复合肥90-100千克/亩(以产量1000千克/亩计)。 2、施肥建议 基肥:以有机肥为主,配施化肥。幼龄树每株施有机肥20-30千克,成龄果树50-100千克,每100千克有机肥混入总养分≥45%(15-15-15)复合肥1-2千克。基肥以葡萄收获后施入为宜,而且越早越好。 追肥:一般2-3次。新梢萌芽至开花前进行第一次追肥,一般每株施总养分≥40%(16-16-8)复合肥1-1.5千克,开小沟施入。第二次追肥在浆果生长前,每株施总养分≥40%(16-8-16或14-6-20)或总养分≥45%(15-10-20)复合肥1千克左右;第三次在进入浆果生长期,此时果实膨大增重和新的花芽分化,均要消耗大量养分,需肥量大,且以氮、钾养分为主,可施用总养分≥40%(16-8-16)复合肥,每株2千克左右。

二、番茄 1、营养特性 番茄,又名西红柿,其采收期比较长,需要时边采收,边供给养分,才能满足不断开花结果的需要.具体施肥量应根据土壤供肥能力,养分利用率,蔬菜吸收养分量等参数来确定。据研究,番茄每生产1000千克鲜果,需吸收氮3.18千克、磷0.74千克、钾4.83千克、钙3.35千克、镁0.62千克。以中等肥力的土壤为例,若目标产量为亩产6000千克,则需N17千克,P2O59千克,K2O11千克。一般亩施高浓度复合肥90-110千克/亩。番茄对钙、镁的需要量也比较大,缺乏易产生脐腐病。这是番茄的生育与营养特点,也是茄果类蔬菜生育与营养的共性。 2、施肥建议 基肥:番茄产量高,需肥量大,施肥应以基肥为主,亩施优质有机肥3000-5000千克,配施总养分≥40%(18-8-14)40-45千克/亩或(16-8-16)45-50千克。 追肥:在定植后5~6天追施一次“催苗肥”,每亩施尿素5千克左右;第一穗果开始膨大时,追施“催果肥”每亩施总养分≥40%(18-8-14)复合肥10千克左右;进入盛果期,当第一穗果发白,第二、三穗果迅速膨大时,应继续追肥2-3次(在每次采果后追施),每次每亩施用总养分≥40%(18-8-14)或(16-8-16)复合肥15-20千克;进入盛果期后,根系吸肥能力下降可采用喷施尿素、硝酸钙、硼砂等水溶液,有利于延缓衰老,延长采收期以及改善果实品质。

相关主题
文本预览
相关文档 最新文档