当前位置:文档之家› 太阳能光伏电池及其应用-----填空题

太阳能光伏电池及其应用-----填空题

太阳能光伏电池及其应用-----填空题
太阳能光伏电池及其应用-----填空题

太阳能光伏电池及其应用填空题

1.人们生活所必需的能源可分为维持个人生命的(生理能源)和日常生活、社会活动及生产活动中使用的(生活能源)两部门。

2.目前,占现有一次能源45%的电力能源包括煤炭火力发电和重油火力发电。人类文明的进步与人类社会工业化、近代化的变迁,都称为动力来源的一次能源的形态和变迁。

3.伴随着能源工业化的进展,人们选择更方便、更经济性的能源形态,也就是说,这一技术革新也是基于经济大原理而产生的。

4.不同于化石能源的消费的原子能发电,称之为生态发电的太阳能发电、风力发电的应用。

5.在化学能源枯竭之前找到清洁的替代能源。

6.3E三重矛盾是在经济发展的过程中,伴随着能源的消费,以化石能源为主体的资源需求结构会造成对环境的破坏。

7.到达地球表面的太阳能,是通过几乎接近真空的宇宙空间,以电磁波的形式辐射过来。

8.太阳能到达地球的总辐射能量应该是太阳常数与地球表面投影面积的乘积。

9.太阳能电池的转换效率几乎是恒定的,与其所利用的装置规模与大小无关。

10.光发电是对废弃能源有效利用。

11.光和物质的相互作用有:吸收、反射、折射、偏转漫射等现象。引起这些现象的本质过程,可以理解为物质内存在的载流子和电磁波之间的相互作用。

12.光引起的电子跃迁门槛值所需的能量,是由原子规则排列产生的结晶结构中的禁带宽度所决定的。

13.迁移前后电子动量不发生变化,垂直移动叫直接跃迁;而在跃迁前后动量变化时,所表示的结晶空穴振动能量的移出、移入、称为间接跃迁。

14.半导体的界面或表面被光照射产生载流子后,生成的电子和空穴由于载流子的作用向相反的方向漂移,引起载流子的极化,从而产生了因光照射引起的电流。

15.太阳能电池由于要接收太阳辐射光,所以具有很大面积的PN结二极管,引起光电效应必要的内建电场,就是利用了PN结的界面诱导电场。

16.太阳能电池的能量转换效率是从太阳能电池的端子输出的电力能力与输入的太阳能辐射光能量的比。

17.以标称效率为基础,用于计算太阳能电池的输出测定法,可以求得实用太阳能电池的性能指数。

18.光电流与照射的光强度有关系,与所加的电压无关,是一个固定值。

19.太阳能电池的输入光与波长有相关性。

20.太阳能电池处于开路状态,与辐射光强度相对应会产生一个电压,此时的电压称为开路电压。

21.填充因子是表示太阳能电当好坏的重要指标。

22.结晶硅的理论极限为28%,其研究阶段为24%,

23.大量生产规模为18%~20%。

24.存在具有最低禁带宽度εɡ的Hω-QVOC 的损失,此损失叫做电压因子损失。

25.目前实用化的太阳能电池中98%使用的是硅材料。

26.为了发挥太阳能转换因子的作用,将光生成的电能有效输出到输出端的电极配置的设计也是重要的因素,这就是D。

27.利用两种半导体的异质结串联太阳能电池,称为叠层太阳能电池。

28.光的吸收系数a被定义为单位距离光强度的

衰减比。

29.决定半导体光学特性最重要是波段是红外光到可见光范围。

30.标称效率:太阳光线通过的空气气量条件为AM1.5,输入光的功率为100mW/cm2 ,在负荷变化的最大电力输出与其的比值。

31.单晶硅太阳能和多晶硅太阳能电池的产量合计约占世界太阳能产量的80%左右。

32.单晶硅棒和PN结的制造技术等,与IC以及LSI等半导体制造技术有较多共同部分,且历史悠久,实际业绩突出。

33.单晶硅太阳能电池制造工程由电池片工程

和模板工程组成。

34.原材料用硅砂,先将其还原为纯度为97%

-98%的金属硅,为了进一步提高纯度,将金属硅与盐酸反应,生成三氯氢硅,再将其还原、热分解得到纯度为99.99999%以上的多晶硅。

35.将得到的多晶硅进行溶解,做成单晶硅,其方法有乔克莱尔斯基法(CZ)和浮游带熔融法(FZ)两种。

36.目前太阳能电池用的铸模,仍以生产性能高的线性锯切割的为主。

37.由于线切割面是被机械冲击过,因此会残留结晶变形,使电气特性变坏,因此需用HF+HNO3

进行腐蚀,使表面减薄10~20um的程度,最终约为300um厚的硅片。

38.气体扩散法是将含P 的气体在高温

(800~900)下向硅片进行扩散,形成PN结,一般都用这一方法。

39.涂层扩散法是用含有磷的溶液代替气体进行涂层和加热,使磷向硅片中扩散形成PN结,具有简单易于大型化生产的优点。

40.电池高效率化技术说明已被规模生产所采用的材料蚀刻及BSF结构。

41.用碱性溶液,利用单晶表面蚀刻速度的差异性,可以对单晶硅片表面进行棱状的凹凸加工处理。

42.单晶硅太阳能电池的基本结构是PN结,在背场将不纯物进行喷雾处理,形成P+层,可以改善收集效率。

43.BSF型电池片的收集效率,P+层形成,可以在更长波长范围内改善收集效率。

44.太阳能电池是由单晶硅和非晶硅进行叠层得到的新型太阳能电池。

45.HIT电池片是在n型单晶电池片的两面形成

α层制造的。

-

Si

46.由于入射光也可以发电,具有两面发电的可能性是漫射光和地面来的反射光进行发电。

47.一般的太阳能电池模板只有电池片的表面一侧是透明的,而HIT太阳能电池在背面也采用透明材料,可以利用漫射光和从地面来反射光进行发电。

48.两面发电型最特别的有效应用垂直安装。

49.太阳能电池模板有超级直线型、玻璃包装型、次直线型三种结构。

50.压模可分为两部分,真空室和加热装置。

51.一般的太阳能电池的模板,为了提高填充率,需尽量减少电池片和电池片之间的间隙,而采光型太阳能电池的模板却相反,在电池片和模板周围开数CM的缝隙,由此处让太阳光透过。

52.由于单晶硅基片的制造技术和LSI等的半导体技术有很多的共同点,因此新技术从半导休整上导入是有右能的,最近引人注目的技术之一是快速热处理(RTP)技术。

53.在多晶硅薄膜制造装置中可使用RTP,将得到的灯光用聚光镜聚光,然后缓慢地移动位置,使多晶硅薄膜再结晶化。

54.大部分的多晶硅基片都是用所谓的铸造法生

产的。基片广泛使用10~15cm的角。目前是用众所周知的固液界面的温度分布、固液速度等许多知识的累积来生产铸模。

55.电解液的高度微细喷射到铸模上,喷射流中夹有激光束。喷射流到了光纤维的作用,激光束在铸模上与电解液一同被切照射。

56.目前世界上,用铸造法制造基片得到的小面积电池片的最高转换效率可达到19.8%。

57.由于有漏电电流流动,使所谓的反向饱和电流密度变大,从而减少了开路电压。

58.第四章

59.多晶硅表面的结晶面是多重的,因此不能像单晶硅基片那样,使用KOH产生的不同方向腐蚀的化学蚀刻方法。

60.干式法由于应力自由,因此即可以适用于切割大面积基片,又可以适用于高斜率的过程。

61.结晶硅具有间接跃迁型能带结构,因此吸收系数较小,有必要进行光封闭,活性层的厚度为数um 的薄膜太阳能电池也可得到高的转换效率。

62.广泛采用光电导率衰减测定法测定少数载流子在基片内的寿命分布,以此来对该过程进行评价。

63.基本技术中最引人注目的是基片的薄形化技

术。

64.结晶硅具有间接跃迁型能带结构,因此吸收系数较小。

65.异质基片上高品质叠层的多晶硅型薄膜技术有:化学气相沉积(CVD)法、液相外延(LPE)法和固相结晶(SPC)法。

66.清洁且无限的太阳能发电将成为支撑21世纪社会文明的重要能源技术之一。

67.目前太阳能电池的主流是单晶以及多晶硅,占世界太阳能电池总产量的70%。

68.a-Si:H以及合金材料,用等离子体CVD、热CVD、反应活性喷涂、光CVD等气相生长法可以制造薄膜。

69.薄膜化是通过弥补无合金金属材料较差的载流子输送特性,得到太阳能电池的性能,同时也有利于节约资源、降低成本。

70.非晶半导体材料,是失去了像结晶型那样的长距离晶格结构的材料,可以认为其原子周围的化学键状态与结晶时保持相同的状态。

71.由于不纯物的掺入,可能将p、n控制在导电率为10-11~10-2S/cm。

72.a-Si是四面体结合的非晶体,a-Si系薄膜的

制作方法有:等离子化学气相沉积法(PECVD)、光化学气相沉积法(Photo-CVD)、热丝化学气相沉积(HW-CVD)法、真空蒸发法、溅射法等。

73.uc-Si是由结晶粒相+结晶粒相界+非晶相组成的。

74.关于载流子移动速度,目前使用由TOF(膜垂直)以及变调光电流片(膜平行、垂直)进行评价的方法。

75.作为太阳电池的特性因素的短路电流J sc可视为光电流J ph,曲线因子FF可视为二极管电流J d (V),开路电压V oc与最大功率点的比值。

76.转换效率和与扩散有关的膜厚度有最大值,这是由于伴随膜厚度的增加而增加的吸收光量与由于偏压电压的下降引起的载流子输送特性变差

共同作用的结果。

77.MIS型a-Si太阳能电池的问题是,光的入射一侧由于有Pt的薄膜,所以有竞价的光被吸收掉了,从而限制了电流。

78.为了降低太阳能电池的成本,必须尽可能地提高生产效率。

79.a-Si太阳能电池是大面积制膜,但透明电层的阻力引起的损失使电池无法得到高的效率。

80.a-Si太阳能电池是由形成正极和负极的二个导电层、作为活性部分的半导体层这三层基本结构构成的,为了实现大面积、高效率化,能够使a-Si层重复性好、均匀、均一膜厚的制膜技术,对大面积化是非常重要的。

81.光照所引起的大部分特性的变化是在最初的一年中,以后其特性是稳定的。这时的光电转换效率叫做稳定效率。

82.用等离子体CVD法得到的微晶硅,在1980年前后就有报道,由于微晶化带来的低电阻,主要用于a-Si太阳能电池的n层。

83.在带边缘附近的光吸收系数是间接吸收形式,在很上的薄膜uc-Si电池片中,光封闭

技术是 uc-Si太阳能电池提高效率的核心技术。

84.CIS:CuInSe2太阳能电池,CIGS:Cu (InGa)Sn2薄膜太阳能电池。

85.随着太阳能电池片逐渐向薄膜化发展,目前正在研究开发的是薄膜多晶材料。CIS的禁带宽度为1.0ev,与太阳能电池最适宜的禁带宽度1.4ev偏小的值。

86.CIGS系太阳电池的特点是多样的结晶相

和固有缺陷。

87.在一般的半导体中,通过不纯物添加,进行p型、n型的控制,CIS系用Cu/In比进行控制,也就是固有缺陷控制,才有可能控制PN。

88.Mo和Se的反应活性高,Mo/CIS界面状态对膜的致密性有很大影响。

89.在CIGS光吸收层上,用溶液成长法可以产生CdS。

90.硒化法主要用于大面积模板制造。

91.与硅系薄膜不同,由于CIGS是软材料,因此不能用激光加工,可以用机械扫描。

92.CIGS系太阳能电池,小面积电池片的转换效率已经达到大于18% 的程度,而大面积模板的转换效率为12%~14%。

93.为了实现串联太阳能电池,有必要开发迟缓的宽禁带宽度的材料的高品质化加快进程。

94.为了实现串联结构,有必要隧道结合部开发禁带宽度更广的P型透明导电膜。

95.CIGS系太阳能电池的制造方法中,广泛使用蒸镀法、硒化法外,还有喷雾法、镀金法。

96.多晶薄膜太阳电池中,开路电压(V oc)是禁带宽度(Eg)的函数,通常经验性地表示为

V oc=Eg/e-0.5(V)。

97.CIGS系太阳能电池是以高转换效率

为特征的。

98.不使用青板玻璃时,也可以使用Na2O2、NaS2、Na2Se、Na2F等Na的化合物进行Na参加。

99.太阳能电池材料是由元素周期表中的Ⅲ族元素镓(Ga)、铟(In)和Ⅴ族P、As元素组成的半导体,如用GaAs、InP等由Ⅲ-Ⅴ族化合物组成的半导体所构成的太阳能电池。

100.GaAs或InP太阳能电池由于高效率且有优良的耐放射性能,作为空间太阳能电池已经被实用化。

101.太阳能电池材料的禁带宽度Eg为1.4~1.5ev 左右,认为是最合适的,Eg为1.42ev的GaAs及1.35ev 的InP等应该是合适的。

102.化合物半导体太阳能电池有高效率化、轻量化、低成本化的种种优点,对于电池片结构,也在进行许多尝试。

103.对于太阳能电池的制作,历来都是用常用的液相外延(LPE)法,但现在有可能多层生长的大面积化、规模化生产的有机金属气相生长法已成为主流。

104.由于大多数化合物半导体能带结构都是直接跃迁型的,因此不想间接跃迁型的那样容易产生太阳能电池特性的放射线衰退现象。

105.化合物半导体由于有直接跃迁型能带结构,且光吸收系数大,因此作为薄膜太阳能电池显示出了可用性。

106.Ⅲ-Ⅴ族在Si结构上的第一课题是,由于Si 基片.Ⅲ-Ⅴ族化合物的晶格常数的不整合(在Si上的GaAs的不整合率约为4%)引起的异质界面的高密度不整位错的发生和热膨胀系数的差别引起的热应力诱导位错的发生。第二课题是,由两者的膨胀系数的差别引起的异质延伸膜内的裂缝的发生,因此试图降低了残留应力的方法是必要的吧。

107.外延生长技术,也可从LPE到MOCVD,化学束外延生长法逐渐进行着变迁。

108.GaAs以及 InP的禁带宽度分别为1.42ev,1.35ev与高效率最适合的1.4 eV~1.5 eV相近,故具有高效率的特点。

109.MOCVD有机金属气相生长,LED发光二级管,LPE液相外延,Jsc短路光电流密度,V oc开路电压。

110.自1991年瑞士EPFL的Graetael教授开发出转换效率为7.9% (AM1.5)的新型色素增感型太阳电池问世以来,色素增感型太阳能电池在全世界开始研究和应用起来,这种电池又叫格蕾茨尔电池。

111.色素增感型太阳电池就是所谓的湿式太阳

能电池,很早以前就已开始研究。

112.色素增感型太阳电池的理论可达到效率为32.4%。

113.构成色素增感型太阳电池的TiO2 等无机氧化物及色素的原材料硅等比金属价格便宜。

114.目前报道的色素增感型太阳能电池的最高转换效率的使用N3色素、N719色素及黑色色素

的TiO2色素增感型太阳能电池。

115.由氧化物半导体和色素进行组合, 可以制

造出光吸收范围不同的多种多样的色素增感型太阳能电池。

116.由于使用有机色素增感型太阳能电池可通过色素的脱除及燃烧除去, 帮氧化物半导体光电极是有可能实现资源再利用的。

117.为了将增感色素上的跃迁电子有效地注入TiO2,层中, 增感色素激发态的能极必须不小于半导

体导带(Ec)的能级。

118.TiO2光电极的准能级, 相对于NHE为

-0.5V,I-/I-3的氧化还原电位相对于NHE被评价为

+0.4V ,因此,将其组合起来得到0.9V的最大电位。

119.Greatzel Cell的一个特点就是根据选择不

同的色素可以制造各种不同的透明太阳能电池。

Greatzel Cell是由于2个导电性玻璃电极和由电极包围的电解质溶液所构成的。

120.为了提高光吸收效率,通过将更大的TiO2

微粒子作为散乱中心混入, 或者为使微孔的容积增大从而使电解质溶液容易通过, 而采用添加聚乙烯基

锌等有机基片,使其在焙烧过程中能残留一些大的孔等方法。

121.为了实现光在TiO2微粒子的表面进行吸收和光电转换这一基本作用, 需将Ru增感色素固定在表面上。

122.Ru增感色素的吡啶系配位具有羧酸基

(-COOH基), 此吡啶酸基与TiO2表面的羟基(-OH 基)结合形成酯, 这样Ru色素就在TiO2表面以单一层的形式被紧紧地固定。由于这种酯结合的形成, 电子移动就可以从Ru增感色素到TiO2有效地进行。

123.色素增感型太阳电池的电解质溶液由溶剂和I-/I-3的redox系构成, 除了碘(I2)外,还使用KI、(C3H7)4NI及(DMPImI)(CH3)2(C3H7)C5H2NI。

124.色素增感型太阳电池对电极使用在导电性玻璃上喷铂(Pt)的方法。

125.色素增感型太阳电池由固定有Ru增感色素、TiO2光电极、电解质溶液、对电极所构成的.。

126.新开发的新型高性能增感色素有呋喃托林Ru色素和捷克特纳Ru色素, 以及高性能的有机色素(苯并呋喃系色素、多烯烃系色素)。

127.作为光电极一般多使用TiO2, 此外还有Nb2O5、ZnO、SnO2以及这些物质的复合化都在研究中。

128.AM-1.5 ,MLCT ,IPCE光电转换效率,TAB四丁基阳离子。

光电池的应用设计论文

第一部分摘要引言 一、摘要 光电传感器作为“为机器安装眼睛与大脑工程”的重要环节,目前已深入到国民经济各个部门,成为跨行业应用的器件。本文根据传感器原理不同,从工作原理、结构及基本特性参数介绍了几种光电传感器,并以光电池为例介绍了和分析了两种实用电路,最后介绍了光电池电路的拓展功能以及光电传感器的应用前景。 关键词:光电传感器光电池光控换向 二、引言 目前,光电传感器已经深入到国民经济各个部门,成为跨行业应用的器件,它被广泛应 用到工业生产的许多方面,凡是需要观察和检测的场所都有应用的可能。它的非接触性、无损害、不受电磁干扰、能远距离传送信息以及远距离操纵控制等优点是得到广泛应用的保障。它在航天、航空、石油、化工、国防、安全、旅游、交通、城市建设和农业生产等领域都得到广泛的应用。 光电传感器使人类有效地扩展了自身的视觉能力,使视觉的长波限延伸到亚毫米波(THz波),短波限延伸到紫外线、X射线、Y射线,乃至高能粒子,响应速度达到纳秒级,能够到人们无法达到的场所,将那里发生的瞬间变化过程与长时间历史经历过程记录下来,供人们使用。

第二部分设计目的 课程设计目的 传感器技术课程设计的目的是使学生能够将《传感器技术》课程的内容与实际应用有机的联系起来,形成测量控制系统的概念,掌握智能检测(或仪表)系统设计的基本思想和方法。培养学生综合运用基础及专业知识的能力,提高解决实际工程技术问题的能力;加强查阅相关图书资料、产品手册和各种工具书的能力;提高书写技术报告和编制技术资料的能力。 第三部设计过程 一、光电池简介 1、概述 光电池是一种用途很广的光敏器件,其优点是体积小、重量轻、寿命长、性能稳定、光照灵敏度较高、光谱响应频带较宽且本身不耗能,是小型化、微功耗仪器中常见的换能器件。当光电池受到光照时不需要外加其他形式的能量即可产生电流输出,电流大小反映了光照强度大小。 2、光电池原理与结构 光电池是利用光生伏特效应吧光能直接转变成电能的光电器件。由于它能够把太阳能直接转变为电能,因此又称为太阳电池,其实质就是一个电压源。光电池的种类有硒光电池、氧化亚铜光电池、砷化镓光电池、硅光电池(本次设计所使用到的光电池传感器)、硫化铊光电池等。目前应用最广、最有发展前途的是硅光电池和硒光电池。硅光电池价格便宜,转化效率高,寿命长,适合于接受红外光,硒光电池的光电转换效率低。寿命短,适合接受可见光。 2.1 相关元件;感光元件,LED指示灯,电容,电阻,二极管等 3、硅光电池的基本结构 按硅光电池衬底材料不同科分为2DR型和2CR型。如图a所示为2DR型硅光电池,它是以P型硅材料为衬底(即在本征型硅材料中渗入三价元素或镓等)然后再衬底上扩散而形成N型层并将其作为受光面。 硅光电池的受光面的输出电极多做成如图b所示为硅光电池的外形,图所示的梳齿状或“E”字型电极,其目的是减小硅光电池的内阻。

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验 太阳能是一种新能源,对太阳能的充分利用可以解决人类日趋增长的能源需求问题。目前,太阳能的利用主要集中在热能和发电两方面。利用太阳能发电目前有两种方法,一是利用热能产生蒸气驱动发电机发电,二是太阳能电池。太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。 为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍太阳能电池的电学性质和光学性质,并对两种性质进行测量。该实验作为一个综合设计性的普通物理实验,联系科技开发实际,有一定的新颖性和实用价值,能激发学生的学习兴趣。 【实验目的】 1. 无光照时,测量太阳能电池的伏安特性曲线 2. 有光照时,测量电池在不同负载电阻下,I 对U 变化关系,画出U I -曲线图;并测量太阳能电池的短路电流SC I 、开路电压OC U 、最大输出功率max P 及填充因子FF 3. 测量太阳能电池的短路电流SC I 与相对光强0J J 的关系,求出它们的近似函数关系。 【实验仪器】 光具座、滑块、白炽灯、太阳能电池、光功率计、遮光罩、电压表、电流表、电阻箱 【实验原理】 太阳能电池能够吸收光的能量,并将所吸收的光子的能量转化为电能。在没有光照时, 可将太阳能电池视为一个二极管,其正向偏压U 与通过的电流I 的关系为 ? ?? ? ??-=10nKT qU e I I (1) 其中0I 是二极管的反向饱和电流,n 是理想二极管参数,理论值为1。K 是玻尔兹曼常量,q 为电子的电荷量,T 为热力学温度。(可令nKT q =β ) 由半导体理论知,二极管主要是由如图所示的能隙为V C E E -的半导体所构成。C E 为半导体导电带,V E 为半导体价电带。 当入射光子能量大于能隙时,光子被半导体所吸收,并产生电子-空穴对。 电子-空穴对受到二极管内电场的影响而产生光生电动势,这一现象称为光伏效应。

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

非晶硅太阳能电池研究毕业论文

非晶硅太阳能电池 赵准 (吉首大学物理与机电工程学院,湖南吉首 416000) 摘要:随着煤炭、石油等现有能源的频频告急和生态环境的恶化.使得人类不得不尽快寻找新的清洁能源和可再生资源。其中包括水能、风能和太阳能,而太阳能以其储量巨大、安全、清洁等优势使其必将成为21世纪的最主要能源之一。太阳是一个巨大的能源,其辐射出来的功率约为其中有被地球截取,这部分能量约有的能量闯过大气层到达地面,在正对太阳的每一平方米地球表面上能接受到1kw左右的能量。 目前分为光热发电和光伏发电两种形式。太阳能热发电是利用聚光集热器把太阳能聚集起来,将一定的工质加热到较高的温度(通常为几百摄氏度到上千摄氏度),然后通过常规的热机动发电机发电或通过其他发电技术将其转换成电能。光伏发电是利用界面的而将光能直接转变为电能的一种技术。目前光—电转换器有两种:一种是光—伽伐尼电池,另一种是光伏效应。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件,将光伏组件串联起来再配合上功率控制器等部件就形成了光伏发电装置。因为光伏发电规模大小随意、能独立发电、建设时间短、维护起来也简单.所以从70年代开始光伏发电技术得到迅速发展,日本、德国、美国都大力发展光伏产业,他们走在了世界的前列,我国在光伏研究和产业方面也奋起直追,现在以每年20%的速度迅速发展。 关键词:光伏发电;太阳能电池;硅基太阳能电池;非晶硅太阳能电池

1.引言 1976年卡尔松和路昂斯基报告了无定形硅(简称a一Si)薄膜太阳电他的诞生。当时、面积样品的光电转换效率为2.4%。时隔20多年,a一Si太阳电池现在已发展成为最实用廉价的太阳电池品种之一。非晶硅科技已转化为一个大规模的产业,世界上总组件生产能力每年在50MW以上,组件及相关产品销售额在10亿美元以上。应用范围小到手表、计算器电源大到10Mw级的独立电站。涉及诸多品种的电子消费品、照明和家用电源、农牧业抽水、广播通讯台站电源及中小型联网电站等。a一Si太阳电池成了光伏能源中的一支生力军,对整个洁净可再生能源发展起了巨大的推动作用。非晶硅太阳电他的诞生、发展过程是生动、复杂和曲折的,全面总结其中的经验教训对于进一步推动薄膜非晶硅太阳电池领域的科技进步和相关高新技术产业的发展有着重要意义。况且,由于从非晶硅材料及其太阳电池研究到有关新兴产业的发展是科学技术转化为生产力的典型事例,其中的规律性对其它新兴科技领域和相关产业的发展也会有有益的启示。本文将追述非晶硅太阳电他的诞生、发展过程,简要评述其中的关键之点,指出进一步发展的方向。 2.太阳能电池概述 .太阳能电池原理 太阳能电池是通过光电效应或者光化学效应把光能转化成电能的装置。太阳能电池以光电效应工作的结晶体太阳能电池和薄膜式太阳能电池为主流,而以光化学效应工作的湿式太阳能电池则还处于萌芽阶段。太阳能电池工作原理的基础是半导体PN结的光生伏特效应。所谓光生伏特效应就是当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。 为了理解太阳能电池的运做,我们需要考虑材料的属性并且同时考虑太阳光的属性。太阳能电池包括两种类型材料,通常意义上的P型硅和N型硅。在纯净的硅晶体中,自由电子和空穴的数目是相等的。如果在硅晶体掺杂了能俘获电子的硼、铝、镓、铟等杂质元素,那么就构成P型半导体。如果在硅晶体面中掺入能够释放电子的磷、砷、锑等杂质元素,那么就构成了N型半导体。若把这两种半导体结合在一起,由于电子和空穴的扩散,在交接面处便会形成PN结,并在结的两边形成内建电场。太阳光照在半导体 p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n 区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应,也是太阳能电池的工作原理。 太阳能电池种类 太阳能电池的种类有很多,按材料来分,有硅基太阳能电池(单晶,多晶,非晶),化合物半导体太阳能电池(砷化镓(GaAs),磷化铟(InP),碲化镉(CdTe), 铜铟镓硒(CIGS)),有机聚合物太阳能电池(酞青,聚乙炔),染料敏化太阳能电池,纳米晶太阳能电池;按结构来分,有体结晶型太阳能电池和薄膜太阳能电池。

(整理)大物实验太阳能电池.

实验62 太阳能电池特性研究 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 【实验目的】 1. 太阳能电池的暗伏安特性测量 2. 测量太阳能电池的开路电压和光强之间的关系 3. 测量太阳能电池的短路电流和光强之间的关系 4. 太阳能电池的输出特性测量 【实验原理】 太阳能电池利用半导体P-N 结受光照射时的光伏效应发电,太阳能电池的基本结构就是一个大面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由 电子。N 型半导体中有相当数量的自由电子,几乎没有空穴。当两种半导体结合在一起形成P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正 电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输 出电流的乘积。同样的电池及光照条件,负载电 阻大小不一样时,输出的功率是不一样的。若以 输出电压为横坐标,输出功率为纵坐标,绘出的 P-V 曲线如图2点划线所示。 输出电压与输出电流的最大乘积值称为最大 输出功率P max 。 填充因子F.F 定义为: sc oc I V P F F ?=?max (1) 空间电荷区 图1 半导体P-N 结示意图 I V

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳能光伏电池论文中英文资料对照外文翻译文献综述

光伏系统中蓄电池的充电保护IC电路设计 1.引言 太阳能作为一种取之不尽、用之不竭的能源越来越受到重视。太阳能发电已经在很多国家和地区开始普及,太阳能照明也已经在我国很多城市开始投入使用。作为太阳能照明的一个关键部分,蓄电池的充电以及保护显得尤为重要。由于密封免维护铅酸蓄电池具有密封好、无泄漏、无污染、免维护、价格低廉、供电可靠,在电池的整个寿命期间电压稳定且不需要维护等优点,所以在各类需要不间断供电的电子设备和便携式仪器仪表中有着广泛的应用。采用适当的浮充电压,在正常使用(防止过放、过充、过流)时,免维护铅酸蓄电池的浮充寿命可达12~16年,如果浮充电压偏差5%则使用寿命缩短1/2。由此可见,充电方式对这类电池的使用寿命有着重大的影响。由于在光伏发电中,蓄电池无需经常维护,因此采用正确的充电方式并采用合理的保护方式,能有效延长蓄电池的使用寿命。传统的充电和保护IC是分立的,占用而积大并且外围电路复杂。目前,市场上还没有真正的将充电与保护功能集成于单一芯片。针对这个问题,设计一种集蓄电池充电和保护功能于一身的IC是十分必要的。 2.系统设计与考虑 系统主要包括两大部分:蓄电池充电模块和保护模块。这对于将蓄电池作为备用电源使用的场合具有重要意义,它既可以保证外部电源给蓄电池供电,又可以在蓄电池过充、过流以及外部电源断开蓄电池处于过放状态时提供保护,将充电和保护功能集于一身使得电路简化,并且减少宝贵的而积资源浪费。图1是此Ic在光伏发电系统中的具体应用,也是此设计的来源。 免维护铅酸蓄电池的寿命通常为循环寿命和浮充寿命,影响蓄电池寿命的因

素有充电速率、放电速率和浮充电压。某些厂家称如果有过充保护电路,充电率可以达到甚至超过2C(C为蓄电池的额定容量),但是电池厂商推荐的充电率是C/20~C/3。电池的电压与温度有关,温度每升高1℃,单格电池电压下降4 mV,也就是说电池的浮充电压有负的温度系数-4 mV/℃。普通充电器在25℃处为最佳工作状态;在环境温度为0℃时充电不足;在45℃时可能因严重过充电缩短电池的使用寿命。要使得蓄电池延长工作寿命,对蓄电池的工作状态要有一定的了解和分析,从而实现对蓄电池进行保护的目的。蓄电池有四种工作状态:通常状态、过电流状态、过充电状态、过放电状态。但是由于不同的过放电电流对蓄电池的容量和寿命所产生的影响不尽相同,所以对蓄电池的过放电电流检测也要分别对待。当电池处于过充电状态的时间较长,则会严重降低电池的容量,缩短电池的寿命。当电池处于过放电状态的时间超过规定时间,则电池由于电池电压过低可能无法再充电使用,从而使得电池寿命降低。 根据以上所述,充电方式对免维护铅酸蓄电池的寿命有很大影响,同时为了使电池始终处于良好的工作状态,蓄电池保护电路必须能够对电池的非正常工作状态进行检测,并作出动作以使电池能够从不正常的工作状态回到通常工作状态,从而实现对电池的保护。 3.单元模块设计 3.1充电模块 芯片的充电模块框图如图2所示。该电路包括限流比较器、电流取样比较器、基准电压源、欠压检测电路、电压取样电路和逻辑控制电路。 该模块内含有独立的限流放大器和电压控制电路,它可以控制芯片外驱动器,驱动器提供的输出电流为20~30 mA,可直接驱动外部串联的调整管,从

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

太阳能电池历史、原理、分类

太阳能电池历史、原理、分类 引言 太阳能作为一种巨量可再生能源,是人类取之不尽、用之不竭的可再生能源,是地球上最直接最普遍也是最清洁的能源。将太阳能转换为电能是大规模利用太阳能的重要技术基础,其转换途径很多,有光电直接转换,有光热电间接转换等。但利用太阳能电池进行光电直接转换是运用最为广泛的方式。 历史: 太阳能电池发展历史可以追溯到1 8 3 9 年,当时的法国物理学家Alexander-Edmond Becquerel发现了光伏特效应(P h o t o v o l t a i ceffect )。直到1883 年,第一个硒制太阳能电池才由美国科学家Charles Fritts 所制造出来。在1930年代,硒制电池及氧化铜电池已经被应用在一些对光线敏感的仪器上,例如光度计及照相机的曝光针上。 而现代化的硅制太阳能电池则直到1946 年由一个半导体研究学者Russell Ohl 开发出来。接着在1954年,科学家将硅制太阳能电池的转化效率提高到6% 左右。随后,太阳能电池应用于人造卫星。1973年能源危机之后,人类开始将太阳能电池转向民用。最早应用于计算器和手表等。1974 年,Haynos 等人,利用硅的非等方性(a n i s o t r o p i c)的蚀刻(etching)特性,慢慢的将太阳能电池表面的硅结晶面,蚀刻出许多类似金字塔的特殊几何形状。有效降低太阳光从电池表面反射损失,这使得当时的太阳能电池能源转换效率达到17%。 1976年以后,如何降低太阳能电池成本成为业内关心的重点。1990年以后,电池成本降低使得太阳能电池进入民间发电领域,太阳能电池开始应用于并网发电。 世界太阳能电池发展的主要节点: 1839年法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。 1876年亚当斯等在金属和硒片上发现固态光伏效应。 1883年制成第一个“硒光电池”,用作敏感器件。 1930年肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。 1931年布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。1932年奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。 1941年奥尔在硅上发现光伏效应。 1954年恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳电池,效率为6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。 1955年吉尼和罗非斯基进行材料的光电转换效率优化设计。同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。 1957年硅太阳电池效率达8%。 1958年太阳电池首次在空间应用,装备美国先锋1号卫星电源。 1959年第一个多晶硅太阳电池问世,效率达5%。 1960年硅太阳电池首次实现并网运行。 1962年砷化镓太阳电池光电转换效率达13%。 1969年薄膜硫化镉太阳电池效率达8%。 1972年罗非斯基研制出紫光电池,效率达16%。 1972年美国宇航公司背场电池问世。 1973年砷化镓太阳电池效率达15%。

太阳能电池论文薄膜太阳能电池论文

太阳能电池论文薄膜太阳能电池论文 论太阳能电池片(晶体硅\非晶硅)在建筑幕墙上的发展趋势摘要:目前用于建筑幕墙上的太阳能电池主要有两种:晶体硅和非晶硅,它们都有各自的优缺点,如何区别选择应用到建筑幕墙上,既能够获得在最小面积具有最大发电量,又能满足建筑幕墙的装饰效果和建筑功能的需要。 关键词:建筑幕墙:太阳能光伏组件:发电量:装饰效果:建筑功能 1 前言 建筑耗能占全部能耗领域在三分之一以上,如何降低建筑物能耗指标成为节能减排和可再生能源的重要课题,而将节能减排和可再生能源两者结合一起应用到建筑物上当数建筑幕墙是最恰当的选择。建筑幕墙是建筑物外围护体之一,是建筑物室内与室外的屏障,它的保温性能好坏,是整个建筑物的关键,做好了它的保温隔热工作,是做好了节能的重要组成部分:建筑幕墙因完全暴露阳光下,接受太阳光的直射,因此如何利用建筑采集太阳能发电,是可再生能源在建筑物外墙利用的重要课题之一,随着中国的建筑幕墙由90年代年产量500.600万m2,迅速增长到现在5000-6000万m2,目前还在以10-20%速度增长,如果我国能够在这个数量基础上推广使用10%左右光电幕墙,全国每年大约将有500-600万m2光电幕墙产生,年产电能约50-70亿KWH,相当于5-10座中型火力发电站,可以减排Co2约30万t,按此推算,如果国家按十一五计划发展太阳能产业,它将在我国的绿色、环

保、节能方面产生巨大的社会效益。还有在建筑幕墙推广太阳能发电是充分利用立体空间,建筑外壳能为光伏发电提供足够的面积,不需 要占用昂贵的土地资源,不需要专项投资电厂(如火力发电站),可在 原地发电、原地使用,减少电力输送的线路损耗及线路架设成本等。怎样让光电幕墙在建筑物上真正做到清洁、完美、使人赏心悦目,容易被专业建筑师、用户和公众接受,真正实现大面积推广光伏发电与建筑一体化工程,也就是本篇文章所要讨论的重点。 2 光伏组件在建筑物应用的现状 2.1 太阳能电池的分类和性能。太阳能电池片经过加工后的产品就是光伏组件,太阳能电池按基本材料分为:晶体硅太阳能电池,非晶硅太阳能电池,微晶硅太阳能电池。硒光电池,化合物太阳能电池,有机半导体太阳能电池等,目前在建筑物使用的主要是晶体硅太阳能电池和非晶硅太阳能电池,晶体硅电池又分为单晶硅和多晶硅电池, 非晶硅电池又分为单结、双结和多结电池。性能方面晶体硅电池电能转换率可达12-17%,但品种和颜色单一,可加工性差,弱光下不能发电,低纬度地区不适宜选择:非晶硅电池转换率较差,只有7-10%,但可加工性好,对弱光和散射光适应度高,适宜在低纬度地区和阴湿天气较 多地区选用(如湖南、湖北、江西等地区)。晶体硅太阳能电池与非晶硅太阳能电池的性能比较如表1。 非晶硅电池主要特点如下:

太阳能光伏发电原理与应用实验报告

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能电池的论文

太阳能电池的论文 The Standardization Office was revised on the afternoon of December 13, 2020

太阳能电池 班级:2012级化学姓名:张芳华学号: 23 摘要: 本文详细阐述了主要几类太阳能电池的原理及发展现状,从材料、工艺与转换效率等方面讨论了它们的优势和不足之处,并对太阳能电池的发展趋势进行了预测。 关键词:太阳能电池;转换效率;材料 人类面临着有限常规能源和环境破坏严重的双重压力,已经成为越来越值得关注的社会与环境问题。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。近年来,太阳能电池快速发展并取得了可喜的成就。太阳能电池,可视为迄今为止最美妙、最长寿和最可靠的发电技术。 1、太阳能电池的原理。 所谓太阳能电池是指由光电效应或光化学效应直接把光能转化为电能的装置。太阳光照在半导体P-N结上,形成新的空穴电子对,在P-N结电场的作用下,空穴由N区流向P区,电子由P区流向N区,接通电路后就形成了电流,这就是光电效应太阳能电池的工作原理。 2太阳能电池的优缺点 太阳能的优点。太阳能作为一种新能源,它与常规能源相比有三大特点:第一:它是人类可以利用的最丰富的能源。据估计,在过去漫的11亿年中,太阳消耗了它本身能量的2%。今后足以供给

地球人类,使用几十亿年,真是取之不尽,用之不竭。第二:地球上,无论何处都有太阳能就可以就地开发利用,不存在运输问题,尤其对交通欠发达的农村、海岛和边远地区更具有利用的价值。第三:太阳能是一种洁净的能源。在开发利用时,不会产生废渣、废水、废气、也没有噪音,更不会影响生态平衡。绝对不会造成污染和公害。 太阳能的缺点。第一:能量密度较低,日照较好时,地面上1平方米的面积所接受的能量只有千瓦左右。往往需要相当大的采光集热面才能满足使用要求,从而使装置占地面积大、用料多,成本增加。第二:天气影响较大,到达某一地面的太阳辐射强度,因受地区、气候、季节和昼夜变化等因素影响,时强时弱,时有时无给使用带来不少困难。 4.各类太阳能电池的发展状况 太阳能电池类型(按材料分)包括[1]:硅系太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极性电池、纳米经化学太阳能电池。下面将分别对这4 类电池从其结构特性、生产应用等方面加以叙述。 硅系太阳能电池[3]单晶硅太阳能电池是当前开发的最快的一种太阳能电池,以高纯的单晶硅棒为原料。其结构工艺已基本定型,产品已广泛应用与空间和地面。在实验室里最高的转换效率是% 是印度物理研究所开发的一种依据内部光陷作用的高效硅太阳电池。

太阳能光伏电池检验测试结果与分析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 近代光学创新实验 实验名称:太阳能光伏电池测试与分析院系: 专业: 姓名: 学号: 指导教师: 实验时间: 哈尔滨工业大学

一、实验目的 1、了解pn结基本结构和工作原理; 2、了解太阳能电池的基本结构,理解工作原理; 3、掌握pn结的IV特性及IV特性对温度的依赖关系; 4、掌握太阳能电池基本特性参数测试原理与方法,理解光源强度、波长、环境温度等因素对太阳能 电池特性的影响; 5、通过分析PN结、太阳能电池基本特性参数测试数据,进一步熟悉实验数据分析与处理的方法,分 析实验数据与理论结果间存在差异的原因。 二、实验原理 1、光生伏特效应 半导体材料是一类特殊的材料,从宏观电学性质上说它们导电能力在导体和绝缘体之间,导电能力随外界环境(如温度、光照等)发生剧烈的变化。半导体材料具有负的带电阻温度系数。从材料结构特点说,这类材料具有半满导带、价带和半满带隙,温度、光照等因素可以使价带电子跃迁到导带,改变材料的电学性质。通常情况下,都需要对半导体材料进行必要的掺杂处理,调整它们的电学特性,以便制作出性能更稳定、灵敏度更高、功耗更低的电子器件。基于半导体材料电子器件的核心结构通常是pn结,pn结简单说就是p型半导体和n型半导体的基础区域,太阳能电池本质上就是pn结。 常见的太阳能电池从结构上说是一种浅结深、大面积的pn结,如图1所示,它的工作原理的核心是光生伏特效应。光生伏特效应是半导体材料的一种通性。当光照射到一块非均匀半导体上时,由于内建电场的作用,在半导体材料内部会产生电动势。如果构成适当的回路就会产生电流。这种电流叫做光生电流,这种内建电场引起的光电效应就是光生伏特效应。 非均匀半导体就是指材料内部杂质分布不均匀的半导体。pn结是典型的一个例子。N型半导体材料和p型半导体材料接触形成pn结。pn结根据制备方法、杂质在体内分布特征等有不同的分类。制备方法有合金法、扩散法、生长法、离子注入法等等。杂质分布可能是线性分布的,也可能是存在突变的,pn结的杂质分布特征通常是与制备方法相联系的。不同的制备方法导致不同的杂质分布特征。

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

太阳能电池工作原理与应用

太阳能电池工作原理及应用 摘要:太阳能电池又称为“太阳能芯片”或光电池,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏。 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向rt型区,空穴被驱向P型区,从而使rt区有过剩的 电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。关键词:太阳能;光伏发电;半导体;电池 太阳能电池的分类简介 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成 本很困难,为了节省硅材料,发展了多晶硅薄膜和 非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10% (截止2011,为17%)。因此,多晶硅薄膜电池 不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换 效率较高,便于大规模生产,有极大的潜力。但受 制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

相关主题
文本预览
相关文档 最新文档