当前位置:文档之家› 并联三自由度运动平台动力学分析

并联三自由度运动平台动力学分析

并联三自由度运动平台动力学分析
并联三自由度运动平台动力学分析

六自由度运动平台方案设计报告

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

3自由度并联机床的运动学和动力学研究(翻译)

3自由度并联机床的运动学和动力学研究 摘要:中国东北大学已经研制出一种用于钢坯研磨的新型3自由度并联机床。它具有结构简单,刚度大的优点,更高的力量重量比,较大的工作空间,简单的运动学方程,没有运动的奇异位姿。在使用相应刀具情况下该机器人可用于磨削,研磨,抛光等加工过程。在本文中,介绍了简单的机器人的结构和自由度,运动学和工作空间,精度分析,静态和动态的分析及其相关参数。 关键词:并联机床;运动学;动力学;3自由度 1.前言 与传统机床相比,并联机床具有更高的精度,高刚度的优点,和更高的刚度质量比,所以近些年它得到了行业和机构大量的研究和评估。由美国Giddings & Lewis公司研制的“六足虫”并联机床被认为是21世纪机床领域中的革命性理念。然而这个Stewart平台存在运动耦合的缺点,并且具有复杂的运动学和构件要求十分严格。这类少于六自由度并联机床在行业和机构也因此受到越来越多的关注。意大利Comau研制出了一种命名为Tricept的四条腿的的三自由度并联机床。东北大学已经开发出了一种新型三自由度的三腿平行磨削机床(图1)。与“六足虫”并联机床相比,此三腿平行磨削并联机床具有以下优点:(1)结构简单且具有更大工作空间;(2)动力学方程简单便于控制操作;(3)在工作空间没有运动耦合状态。

图1 2.并联机床 2.1 3自由度系统的布局 该三自由度并联机构由一个移动平台,基础平台,一个平行的联动和三条腿的连接两个平台。中间腿支链控制的移动平台的三个自由,如图2所示。移动平台的转换是由平行连杆机构控制。 图2 2.2 运动学和工作空间 移动平台平行于基础平台,一个坐标系统(O- X,Y,Z)选择如图2所示,这种机制的逆向运动学正解方程可以表示为:

基于六自由度并联平台的模拟目标追踪

基于六自由度并联平台的模拟目标追踪系统设计 摘要 六自由度并联(Stewart)平台具有承载能力强、结构刚度大、精度高、系统动态响应快、累计误差小、反解容易等优点,经年来已被广泛应用于运动模拟器、并联机床、精密定位平台及各种娱乐场合。在此发展趋势下,将六自由度并联平台应用于模拟目标追踪,设计出了一套新型、高效的系统。上位机应运Visual Basic编程语言,通过Modbus协议实现PC机与PAC控制器的通讯,运用基于神经网络整定的PID控制算法,从而控制液压系统实现对平台的控制,完成目标追踪任务。 关键词:六自由度并联平台 Visual Basic编程 PAC控制器神经网络PID Abstract Six degrees of freedom parallel (Stewart) platform with strong bearing capacity, stiffness, high precision, fast dynamic responses of the system, the cumulative error is small, and easy in the solution, the years have been widely applied in motion simulator, a parallel machine tool, precision positioning platform and various kinds of entertainment places. Under this development tendency, six degree-of-freedom parallel platform is first used to simulate target tracking, designed a set of new and efficient system. PC use Visual Basic programming language, through the Modbus protocol implementation PC communications with PAC controller, using PID control algorithm based on neural network setting, so as to control hydraulic system to realize the control of the platform, target tracking task. Keywords: six degree-of-freedom parallel Visual Basic programming PAC controller Neural network PID 0引言 目标追踪在现代化战争、民用、工业、科研等领域都具有重要的影响。由于其广泛的应用前景,目标追踪问题一直备受关注。 目标追踪对机械执行系统的精度及响应速度要求甚高。而六自由度并联平台相对于六自由度并联平台相对串联平台具有以下特点: (1)刚度大、结构稳定。这是由于上运动平台经由6个液压缸的支撑。 (2)承载能力强。由于刚度大,较串联式机构在相同的自重或体积的情况下,具有高得多的承载能力。 (3)误差小、位姿精度高。这是因为没有串联机构的误差累积和放大。 (4)动力性能好。串联式机构的驱动电动机及传动系统大都放在运动着的大小臂上,增加了系统的惯性,恶化了动力性能,并联式机构将动力源放在机座上,减小了运动负载。 (5)反解容易。多自由度机构运动过程中,需要进行实时反解计算。串联机构的反解十分困难,而对并联机构反解非常容易。 由上述特点可以看出六自由度并联平台更能满足其要求。 1.六自由度并联平台的总装设计 1.1六自由度并联平台的机械部分 Stewart平台由上、下两个平台、六个驱动关节和连接球铰组成,上平台为运动平台,下平台为基座,上、下平台的六个铰点分别组成一个六边形,连接6个液压缸作为驱动关节,每个液压缸两端各连接一个球铰。六个驱动关节的伸缩运动是独立的,由液压比例压力阀控制各液压缸作伸缩运动,从而改变各个驱动缸的长度,使动平台在空间的位置和姿态发生变化。因此该平台是通过六个驱动杆的协调动作来实现三个线性移动及三个转动共六个自由度的运动。

两自由度机械手动力学问题

两自由度机械手动力学问题 1题目 图示为两杆机械手,由上臂AB、下臂BC和手部C组成。在A处和B处安装 有伺服电动机,分别产生控制力矩M 1和M 2 。M 1 带动整个机械手运动,M 2 带动下臂 相对上臂转动。假设此两杆机械手只能在铅垂平面内运动,两臂长为l 1和l 2 , 自重忽略不计,B处的伺服电动机及减速装置的质量为m 1 ,手部C握持重物质量 为m 2 ,试建立此两自由度机械手的动力学方程。 图1 图2

2数值法求解 拉格朗日方程 此两杆机械手可以简化为一个双摆系统,改双摆系统在B 、C 出具有质量m 1,m 2,在A 、B 处有控制力矩M 1和M 2作用。考虑到控制力矩M 2的作用与杆2相对杆1的相对转角θ2有关,故取广义力矩坐标为 2211,θθ==q q 系统的动能为二质点m 1、m 2的动能之和,即 由图2所示的速度矢量关系图可知 以A 处为零势能位置,则系统的势能为 由拉格朗日函数,动势为: 广义力2211,M Q M Q == 求出拉格朗日方程中的偏导数,即

代入拉格朗日方程式,整理得: 给定条件 (1)角位移运动规律 ()231*52335.0*1163.0t t t +-=θ,()232*52335.0*1163.0t t t +-=θ 21θθ和都是从0到90°,角位移曲线为三次函数曲线。 (2)质量 m 1=4㎏ m 2=5kg (3)杆长 l 1= l 2= MATLAB 程序 t=0::3; theta1=*t.^3+*t.^2; w1=*t.^2+*t; a1=*t+; theta2=*t.^3+*t.^2; w2=*t.^2+*t; a2=*t+; m1=4; m2=5; l1=; l2=;

结构动力学复习 新

结构动力学与稳定复习 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力; (2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。 阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假

二自由度机械臂动力学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日(Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

六自由度并联机器人基于外文翻译、中英对照、英汉互译讲解

基于Grassmann-Cayley代数的 六自由度三足并联机器人的奇异性条件 Patricia Ben-Horin,Moshe Shoham,IEEE准会员 关键词:指数,Terms-Grassmann-Cayley代数,奇异性条件,六自由度三足机器人 摘要 本文研究了每一个腿上都有一个球形接头的大多数六自由度并联机器人的奇异性条件。首先,应该确定致动器螺丝位于腿链中心,然后在使用基于Grassmann-Cayley代数和相关的分解方法来确定这些螺丝包含的哪些条件是导数刚度等级不足的。这些工具是非常有用,因为他们可以方便的表示坐标-并用简单的表达式来表示几何实体,从而使用几何解释奇异性条件是更容易获得。利用这些工具, 这类奇异性条件的144种组合被划定在四个平面所相交的一个点上。这四个平面被定义为这个零距螺丝球形关节的位置和方向。 一、介绍 在过去的二十年里,许多研究人员一直在广泛地研究并联机器人的奇异性。不像串联机器人, 尽管并联机器人失去了在奇异配置中的自由度,而且执行器都是锁定的,但是他们的的自由度还是可以获得的。因此,对这些不稳定姿势的机器人的全面研究对于提高机器人的设计和确定机器人的路径规划是至关重要的。 用于寻找并联机器人奇异性的主要的方法之一,是基于计算雅可比行列式进行计算。Gosselin和安杰利斯的分类奇异性的闭环机制是通过考虑两个雅克比定义输入速度和输出速度之间的关系。圣鲁克和Gosselin减少了定义的雅可比行列式算术操作要求,从而通过数值计算得到多项式。 另一个重要的工具,是用螺旋理论分析奇异性,在1900的论文中中开发机器人的相关应用程序,有几项研究已经应用这个理论找到并联机器人的奇异性。在论文中,特别注意到情况是执行机构是线性和代表螺丝是零投的。在这些情况下,

六自由度运动平台正解(几何法)

六自由度运动平台正解(几何法) 1. 对上平台(运动平台)进行扩展,示意如下: Pic 1 上平台示意图 由于确定一个平面状态只需要三个点,因此获得C1,C2,C3坐标,即可确定平面状态。 如图,h1,h2均为已知量,设L h k /1=,212*h h L +=,),,(i i i i z y x C =。 设下平台各点坐标为),,(i i i i s n m B =,设各轴长为i i i l B A =。 于是问题简化为:已知:L k l B i i ,,,,求解i C 。 2. 建立方程组 2.1 i l 相关 对于1l ,分析如下:

Pic 2 单轴示意图 由图可知:向量3111111111*C C k C B A C C B A B +=+=, 即,1111111131313),,(),,(l s z n y m x z z y y x x k =---+--- 所以: )1......(0])1([])1([])1([21211321132113=---++--++--+l s z k kz n y k ky m x k kx 同理有: ) 6......(0])1([])1([])1([)5......(0])1([])1([])1([)4......(0])1([])1([])1([) 3......(0])1([])1([])1([) 2......(0])1([])1([])1([2626312631263125253225322532242423242324232323212321232122221222122212=---++--++--+=---++--++--+=---++--++--+=---++--++--+=---++--++--+l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx l s z k kz n y k ky m x k kx 2.2 L 相关 ) 9......(0)()()()8......(0)()()()7......(0)()()(222322322322312312312221221221=--+-+-=--+-+-=--+-+-L z z y y x x L z z y y x x L z z y y x x 3. 求解 3.1 联立方程组(1)-(9),牛顿迭代法解方程组,即可求的i C , 取0>i z ,可得唯一解。 3.2 由i C 求出平台姿态 根据实际情况,建立坐标系如下

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

三自由系统的动力学分析

石家庄铁道大学SHIJIAZHUANG TIEDAO UNIVERSITY 《振动理论》课程论文 培养单位_ 机械工程学院 学科专业_ 机械电子工程 课程名称振动理论 任课教师李韶华 学生姓名赵 学号 提交日期 2010.01.17

三自由系统的动力学分析 摘要 工程上较复杂的振动问题多数需要用多自由度系统的振动理论来解决。我们熟悉的教材上给出的都是理论求解的方法,本文旨在进行三自由系统的动力学分析。本文将先分析三自由系统的固有振动,其中采用大家熟悉的振型叠加法研究系统的响应,关键是利用Matlab软件求解三自由系统的理论解与数值解,绘图并分析两者的差异和规律。 关键词:三自由系统 Matlab 理论解数值解 Abstract On the engineering ,more complicated vibration problem need to use multi-freedom degree system to solve. The teaching material that we acquaint with offer the theory method. This text aims at carrying on the dynamics analysis of three-free systems. This text will analyze the proper vibration of three free systems first and adopt fold responding to research system, the key is the theory solution and number-solution that makes use of Matlab software to solve three free systems, paint and analyze the difference and regulation. Key words:three-freedom degree system Matlab number-solution theory solution 1

六自由度并联机构设计说明书

( 需微要信 swan165 本科毕业设计说明书 题 目:六自由度伸缩式并联机床结构设计 学生姓名: 学 院:机械学院 系 别:机械系 专 业:机械电子工程 班 级:机电10-4班 指导教师:讲师

摘红字要 并联系联机微床信,也可叫获取做整套并联结构机床(Parallel Structured Machine Tools)、虚拟轴机床(Virtual Axis Machine Tools),曾经被称为六条腿机床、六足虫(Hexapods)。并联机床是近年来国内外机床研究的方向,它具有多自由度、刚度高、精度高、传动链短、制造成本低等优点。但其也不足之处,其中位置正解复杂就是关键的一条。6-THRT伸缩式并联机床是Stewart 机床的一种变形结构形式,它主要构成是运动和静止的两个平台上的6个关节点分别分布在同一个平面上,且构成的形状相似。 并联机床是一种气动机械,集气(液),在一个典型的机电一体化设备的控制技术,它是很容易实现“六轴联动”,在第二十一世纪将成为主要的高速数控加工设备。本次毕业设计题目结合本院实验室现有的六自由度并联机床机构进行设计,使其能根据工艺要求进行加工。提高学生的工程素质、创新能力、综合实践及应用能力。 此次毕业设计的主要内容是对并联机床结构设计,其内容主要包括机器人结构设计总体方案的确定,机器人机构设计的相关计算,以及滚珠丝杠螺母副、步进电机、滚动轴承、联轴器等主要零部件的计算选用,并利用CAXA软件绘制各相关零部件的零件图和总装配图,以期达到能直观看出并联机床实体机构的效果。 关键词:并联机床;步进电动机;空间变换矩阵;滚珠丝杠螺母副

六自由度运动平台的仿真研究

六自由度运动平台的仿真研究 天津工程机械研究院 杨永立 摘要:本文分析了六自由度运动平台分别采用球铰链和万向节铰链进行连接时的自由度,运用欧拉角、旋转变换的方法推导出位置反解方程,介绍了数值迭代法进行位置正解的过程。 关键词:并联,局部自由度,位置反解,位置正解。 1. 简介 运动平台按结构形式可分为串联和并联两大类。与串联形式相比,并联形式具有刚度大、承载能力强、结构简单、运动负荷小、能实现包括横移、纵移、升沉等多个自由度运动等特点。同时,串联形式的优点也很明显,其具有运动空间大,测量精度高,运动、受力分析相对简单、控制、测量的实现相对容易,且每个自由度都能独立运动等特点。 六自由度运动平台(如图1所示)是由六条油缸通过万向节铰链(或球铰链)将上、下两个平台连接而成,下平台固定在基础上,借助六条油缸的伸缩运动,完成上平台在三维空间六个自由度(X, Y,Z,α,β,γ)的运动,从而可以 模拟出各种空间运动姿态。 2. 自由度的确定 若在三维空间有n个完全不受约束 的物体,任选其中一个作为固定参照物, 因每个物体相对参照物都有6个运动自 由度,则n个物体相对参照物共有6(n-1) 个运动自由度。若在所有物体之间用运 动副联接起来组成机构,设第i个运动副 的约束为u i(1到5之间的整数),如果 运动副的总数为g,则机构的自由度M为:

∑=--=g i i u n M 1)1(6 利用上述公式计算一下如图1所示运动平台(采用球铰链)的自由度数。将油缸分解为缸筒和活塞杆,则总的构件数n=14,油缸与上下平台之间的连接为12个球铰链(约束为3),缸筒和活塞杆构成6个既可以相对移动,又可以相对转动的运动副(约束为4),则平台的自由度M 为: ∑=--=g i i u n M 1)1(6=6 (14-1)-(3×12+4×6)=18 计算结果出人意料,平台似乎无法只通过六条油缸进行驱动。但是,如果保持上平台和缸筒固定不动,由球铰链的特性可知,活塞杆仍然可以相对其轴线转动;同理,缸筒也具有同样的效应。实践证明,这种转动并不影响上平台的空间运动姿态,因此属于局部自由度。 在六自由度运动平台的实际设计中,由于球铰链 的刚度差,结构不稳定,所以一般采用万向节铰链(如 图2所示,约束为4)来代替图1中的球铰链,则自由 度M 为: ∑=--=g i i u n M 1)1(6=6 (14-1)-(4×12+4×6)=6 3. 六自由度运动平台空间姿态的解算 要实现对平台空间姿态的控制和测量,必须掌握它两个方向上的解算方法,即位置反解和位置正解。 3.1 位置反解(逆向解): 已知输出件的位置和姿态,求解输入件的位置称为机构的位置反解。在运动平台的实际应用当中,用户所给定的一般都是平台的六个空间姿态参数X ,Y ,Z ,α,β,γ,然而要实现对平台的控制,需要的是六条油缸的长度L 1、L 2…L 6,这正好是已知输出求输入,属于位置反解。也就是说,要实现对平台空间姿态的控制,就必需推导出平台的位置反解方程。 如图1所示,在上平台建立动坐标系o-xyz ,在下平台建立静坐标系O-XYZ , 图2 万向节铰链

武汉理工大学《结构动力学》2013年期末试卷及标准答案

武汉理工大学《结构动力学》2013年期末试卷 一、填空题。(11分) 1、右图所示振动体系不计杆件的轴向变形,则 动力自由度数目是 。(3分) 2、单自由度体系只有当阻尼比ξ 1时才会产生振动现象。( 3、已知结构的自振周期s T 3.0=,阻尼比04.0=ξ,质量m 在0,300==v mm y 的初始条件下开始振动,则至少经过 个周期后振幅可以衰减到mm 1.0以下。(3分) 4、多自由度框架结构顶部刚度和质量突然变 时,自由振动中顶部位移很大的现象称 。(3分) 二、判断以下说法是否正确,对错误的说法加以改正。(6×3分=18分) 1、凡是大小、方向、作用点位置随时间变化的荷载,在结构动力计算中都必须看作动力荷载。( ) 2、超静定结构体系的动力自由度数目一定等于其超静定次数。( ) 3、为了避免共振,要错开激励频率和结构固有频率,一般通过改变激励频率来实现。( ) 4、求冲击荷载作用下结构的反应谱曲线时一般不计阻尼的影响。( ) 5、求静定的多自由度体系的频率和振型,一般采用刚度法比采用柔度法方便。( ) 6、用瑞利法时若取重量作用下的静变形曲线为试函数,求得的基频的精度不高。( ) 三、选择题。(6×3分=18分) 1、对单自由度体系的自由振动,下列说法正确的是( ) A C 、振幅和初相角仅与初始条件有关 2、图示(a )、(b A 、b a ωω< B 、∞→EA 时b a ωω≈ C 、0→EA 时b a ωω≈ D 、b a ωω= 3、(1)无阻尼的自由振动 (2)不计阻尼,零初始条件下t P θsin 产生的过渡阶段的振动 (3)有阻尼的自由振动 (4)突加荷载引起的无阻尼强迫振动 A 、(1)(2)(3) B 、(1)(2)(4) C 、(2)(3) D 、(1)(4)

3自由度旋转台的动力学分析

3自由度旋转台的动力学分析 高征1肖金壮1王洪瑞1金振林2 1. 河北大学,保定,071002 2. 燕山大学,秦皇岛,066004 摘要:对3自由度旋转台进行了动力学分析。该旋转台只有3个方向的转动自由度, 由2自由度球面并联机构和串联在其上的旋转电机构成。根据旋转台的几何和运动特性建立了系统的输入输出速度方程, 得出了速度雅克比矩阵和动能方程。利用拉格朗日法和虚功原理, 建立了系统的动力学模型, 解决了特定外载荷和速度、加速度条件下如何求解驱动力矩的问题。给出了动力学的仿真运算实例, 讨论了在匀速和匀加速情况下, 2自由度球面并联机构驱动力矩的变化。最后根据动力学方程, 得出了串联在2自由度球面并联机构上的第三个自由度的力矩与输出转角的运动学方程。 关键词:并联机构;旋转台;动力学;拉格朗日法;虚功原理 中图分类号:TP242 Dynamic Analysis on A 3-DOF Rotational Platform Gao Zheng1Xiao Jinzhuang1Wang Hongrui1Jin Zhenlin2 1. Hebei University, Baoding, 071002 2. Yanshan University, QinHuangdao, 066004 Abstract: Dynamics is analyzed of a 3-DOF (degree of freedom) rotational platform. This rotational platform, which consists of a 2-DOF spherical parallel mechanism and a rotational degree connecting in series to the platform of the 2-DOF mechanism, has only 3 rotation freedoms. System’s input-and-output velocity functions are established according to rotational platform’s geometry and motion characteristics, and then obtain the velocity Jacobian metrics and energy functions. System’s dynamics model is established by Lagrange method and virtual work principle, and then the drive torque is solved when given the external load, velocities and accelerations. The examples are given of dynamics simulation. The drive torques’ changing curves of the 2-DOF spherical mechanism is discussed under the situation of uniform speed and acceleration. Finally, according to the dynamic functions, the third degree’s kinematics equation is obtained respecting to its torque and output angle. Key words: parallel mechanism; rotation platform; dynamics; Lagrange method; virtual work principle 0 前言 稳定平台系统是多学科有机结合的产物,其中精密机械动力学建模设计和仿真就是主要的应用技术之一[1]。机构动力学模型的建立是并联机器人机构研究的一个重要方面,是并联机器人机构进行动力学模拟、动态分析、动力学优化设计及控制的基础[2]。典型的动力学研究方法主要是Newton-Euler法、Lagrange法和Kane法等。其中基于虚功原理的Lagrange 法是以系统的动能和势能建立的,推导过程比较简便,并且总能得到形式较为简洁的动力学方程,既能用于系统动力学模拟,又能用于动力学控制,而且清楚地表示出各构件的耦合特性[3]。Liu[4]等人将机器人的位姿视为广义坐标,以Lagrange方程为依据建立Stewart平台的动力学方程; 白志富[5]等利用Lagrange 法讨论了一种3-HSS并联机构在工作空间内的动力学方程,得出了其显式解,并结合实例对各滑块的驱动力进行了计算机仿真。刘善增,余跃庆[6]等基于有限元理论、运动弹性动力分析方法和Lagrange 方程,建立了3- RRS 柔性并联 基金项目:教育厅河北省高等学校科学技术研究青年基金项目(2010217),科技部国际合作项目(2008DFR10530)

ode45求解多自由度动力学方程实例

Ode45函数调用形式如下: [T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下:参数名称 参数说明odefun 用于存放待求解的方程的m 文件名,方程必须用y’=f(t,y)的形式存放tspan 指定自变量范围的向量,通常用[t0,tf]指定y0函数的边界条件,即y0=y(t0),对于方程组,y0也可以是向量 例:若一三自由度多体动力学系统方程如下: 1121221231233232323 1.510050 2.0sin(3.754t) 2 1.5 3 1.55010050 2.0cos(2.2t) 2 1.5350100 1.0sin(2.8t)x x x x x x x x x x x x x x x x x +-+-=-+--+-=-++-+= 初始条件: 1020301020301 1x x x x x x ====== 由于方程必须用y’=f(t,y)的形式存放,因此需要对方程组进行降阶处理。令11 3253214263y x y x y x y x y x y x ====== 则方程组可化为: 12 2241334 424613556 646350.5*(3 1.510050 2.0sin(3.754t)) 0.5*(1.53 1.55010050 2.0cos(2.2t)) 0.5*(1.5350100 1.0sin(2.8t))y y y y y y y y y y y y y y y y y y y y y y y ==-+-++==-++-+-==--+-+

因此建立M函数文件来定义此方程组如下: function dy=func(t,y) dy=zeros(6,1); dy(1)=y(2); dy(2)=0.5*(-3*y(2)+1.5*y(4)-100*y(1)+50*y(3)+2.0*sin(3.754*t)); dy(3)=y(4); dy(4)=0.5*(1.5*y(2)-3*y(4)+1.5*y(6)+50*y(1)-100*y(3)+50*y(5)-2.0*cos(2.2*t)); dy(5)=y(6); dy(6)=0.5*(-1.5*y(4)-3*y(6)+50*y(3)-100*y(5)+1.0*sin(2.8*t)); end 在matlab命令窗口里输入一下命令: y0=[111111]; tspan=[030]; [t,y]=ode45(@func,tspan,y0); figure(1) plot(t,y(:,1),t,y(:,3),t,y(:,5)); legend('x1','x2','x3'); xlabel('时间(s)','FontSize',10); ylabel('振动位移曲线','FontSize',10); figure(2) plot(t,y(:,2),t,y(:,4),t,y(:,6)); legend('v1','v2','v3'); xlabel('时间(s)','FontSize',10); ylabel(‘振动速度曲线’,’FontSize’,10);

Stewart平台是六自由度并联机构

一、设计(论文)目的、意义 设计目的及意义 Stewart平台是六自由度并联机构的基础平台。Stewart平台具有诸多优良特性,它在许多领域得到了广泛应用。六自由度运动平台由于应用场合不同,采用不同的驱动方式。目前,这种并联机构驱动方式主要包括电机驱动滚珠丝杠驱动方式、阀控液压缸驱动方式、气动人工肌肉驱动方式、电动液压混合执行器驱动方式、压电陶瓷驱动方式、电机驱动滑轮钢索驱动方式等。阀控液压缸驱动方式的优点是刚度大、抗干扰能力强、功率-重量比和力矩-惯量比大、响应速度快、系统频带宽。对该平台的驱动机构设计对于深刻理解并联机床和运动模拟器的机理具有重要的意义。 二、设计(论文)内容、技术要求(研究方法) 设计内容: 对Stewart平台的运动学参数进行了理论分析和计算。重点分析了动平台的位置、速度和加速度和支撑杆的相应参数之间的关系。 对Stewart平台的驱动机构进行了设计和校核,并完成了平台的各个组件的设计。 三、设计(论文)完成后应提交的成果 (一)计算说明部分 设计说明书字数在1.5万字以上(说明书一式1份)。 (二)图纸部分 1、装配图A0一张。 2、零件图若干张 3、总折合图纸当量A0三张。

四、设计(论文)进度安排 2015年03月02日-2015年03月20日确定题目,下达任务书;学生调研、收集、查阅资料,完成 开题报告。 2015年03月21日-2015年03月30日平台的方案、总体布局及工作原理分析。 2015年04月01日-2015年05月15日结构组件进行综合性设计,其中包括液压缸组件设计、相 关阀设计等。 2015年05月16日-2015年06月06日整体装配图的绘制以及相关设计计算的整理 2015年06月06日-2015年06月14日准备答辩。 五、主要参考资料 1刘文涛.并联机床性能分析与研究[D]. 哈尔滨工业大学博士学位论文,2010 2 李洪人.液压控制系统[M]. 国防工业出版社,2009 3张尚盈. 液压驱动并联机器人力控制研究[J]. 哈尔滨:哈尔滨工业大学, 2009. 4梁军,付铁. 基于Stewart平台的并联机床刚度分析[J]. 现代制造工程, 2008 5文福安,梁崇高,廖启征. 并联机器人机构位置正解[J]. 中国机械工程, 2009 6黄真,孔令富,方跃法. 并联机器人机构学理论及控制[M]. 北京:机械工业出版社,2007 7熊有伦, 丁汉, 李恩沧. 机器人学[M]. 北京: 机械工业出版社, 2012. 8赵强. 六自由度舰艇运动模拟器的优化设计及性能分析[M]. 哈尔滨工业大学, 2010 9黄真,杜雄. 3 /62SPS型Stewart机器人的一般线性奇异分析[J]. 中国机械工程2010 10吴江宁,骆涵秀,李世伦.并联式六自由度电液平台的控制与应用[J]. 机床与液压,2006年第6期 六、备注 指导教师签字: 年月日教研室主任签字: 年月日

相关主题
文本预览
相关文档 最新文档