当前位置:文档之家› 三角形中位线定理的几种证明方法及教学中需要说明的地方[1]

三角形中位线定理的几种证明方法及教学中需要说明的地方[1]

三角形中位线定理的证明及其教学说明

以下内容作者为:青岛第四中学杨瀚书老师

一、 三角形中位线定理的几种证明方法

法1: 如图所示,延长中位线DE 至F ,使

,连结CF ,则

,有AD

FC ,所以FC

BD ,则四边形BCFD 是平行四边

形,DF BC 。因为 ,所以DE

BC 2

1

法2C 作

交DE 的延长线于F ,则

有FC

AD ,那么FC

BD ,则四边形BCFD 为平行四边形,DF

BC 。

因为 ,所以DE

BC 2

1

法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形

ADCF 为平行四边形,有AD

CF ,所以FC

BD ,那么四边形BCFD 为平

行四边形,DF BC 。因为 ,所以DE

BC 2

1

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE

BC 2

1

法5:如图所示,过三个顶点分别向中位线作垂线.

二、教学说明

1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维”

在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系?

A

B C

图⑴:

⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗?

C

图⑵:

说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜.

2、教学重点:本课重点是掌握和运用三角形中位线定理。

第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。

第二,要知道中位线定理的使用形式,如:

∵ DE 是△ABC 的中位线

∴ DE ∥BC ,BC DE 2

1

第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理。 题1 如图4.11-7,Rt△ABC,∠BAC=90°,D 、E 分别为AB ,BC 的中点,点F 在CA 延长线上,∠FDA=∠B.

(1)求证:AF =DE ;(2)若AC =6,BC =10,求四边形AEDF 的周长

.

分析 本题是考查知识点较多的综合题,它不但考查应用三角形中位线定理的能力,而且还考查应用直角三角形和平行四边形有关性质的能力。

(1)要证AF =DE ,因为它们刚好是四边形的一组对边,这就启发我们设法证明AEDF 是平行四边形.因为DE 是三角形的中位线,所以DE∥AC.又题给条件∠FDA=∠B,而在Rt△ABC 中,因AE 是斜边上的中线,故AE =EB.从而∠EAB=∠B.于是∠EAB=∠FDA.故得到AE∥DF.所以四边形AEDF 为平行四边形.

C

(2)要求四边形AEDF 的周长,关键在于求AE 和DE ,AE =21BC =5,DE =21

AC

=3.

证明:(1)∵D、E 分别为AB 、BC 的中点, ∴DE∥AC,即DE∥AF

∵Rt△ABC 中,∠BAC=90°,BE =EC

∴EA=EB =21

BC ,∠EAB=∠B

又∵∠FDA=∠B, ∴∠EAB=∠FDA

∴EA∥DF,AEDF 为平行四边形 ∴AF=DE

(2)∵AC=6,BC =10,

∴DE=21AC =3,AE =21

BC =5

∴四边形AEDF 的周长=2(AE+DE)=2(3+5)=16

题2 如图,在四边形ABCD 中,AB =CD ,E 、F 分别是BC 、AD 的中点,延长BA 和CD 分别与EF 的延长线交于K 、H 。求证:∠BKE=∠CHE.

分析 本题考查三角形中位线的构造方法及应用、平行线的性质.由中点想到中位线,又要把结论联系起来,既要使中位线的另一端点处一理想的位置,又使需证明的角转移过来,可考虑,连BD ,找BD 中点G ,则EG 、FG 分别为△BCD、△DBA 的中位线,于是得到了解题方法.考虑到结论辅助线不要乱作,取中点比作平行线好.

证明:连BD 并取BD 的中点G ,连FG 、GE 在△DAB 和△BCD 中

∵F 是AD 的中点,E 是BC 的中点

∴FG∥AB 且FG =21AB ,EG∥DC 且EG =21

DC

∴∠BKE=∠GFE,∠CHE=∠GEF ∵AB=CD ∴FG=EG

∴∠GFE=∠GEF ∴∠BKE=∠CHE

题3 如图, ABCD 为等腰梯形,AB∥CD,O 为AC 、BD 的交点,P 、R 、Q 分别为AO 、DO 、BC 的中点,∠AOB=60°。求证:△PQR 为等边三角形.

分析 本题考查三角形中位线定理、等边三角形判定方法、直角三角形斜边

中线定理。利用条件可知PR =21

AD ,能否把PQ 、RQ 与AD(BC)联系起来成为解题

的关键,由于∠AOB=60°,OD =OC ,则△ODC 为等边三角形,再由R 为OD 中点,则∠BRC=90°,QR 就为斜边BC 的中线.

证明:连RC ,∵四边形ABCD 为等腰梯形且AB∥DC ∴AD=BC ∠ADC=∠BCD

又∵DC 为公共边 ∴△ADC≌△BCD ∴∠ACD=∠BDC ∴△ODC 为等腰三角形 ∵∠DOC=∠AOB=60° ∴△ODC 为等边三角形 ∵R 为OD 的中点

∴∠ORC=90°=∠DRC(等腰三角形底边上的中线也是底边上的高)

∵Q 为BC 的中点 ∴RQ=21BC =21

AD 同理PQ =21BC =21

AD

在△OAD 中 ∵P、R 分别为AO 、OD 的中点

∴PR=21

AD ∴PR=PQ =RQ

故△PRQ 为等边三角形

3、教学难点:本课难点是三角形中位线定理的证明,证明方法的关键在于如何添加辅助线.

教师可以在证明思路上进行引导、启发,避免生硬地将辅助线直接作出来让学生接受。例如,教师可以启发学生:要证明一条线段的长等于另一条线段的长的一半,可将较短的线段延长一倍,或者截取较长的线段的一半。

上面的这种辅助线的作法可以概括为“短延长、长截短”,这种辅助线的作法还可以用于证明线段和、差、倍、分等方面。

证明线段的和、差、倍、分常用的证明策略:

1,长截短:要证明一条线段等于另外两条线段的和与差,可在长线上截取一部分等于另两条线段中的一条,然后再证明另一部分等于剩下的一条线段的长。(角也亦然)

2,短延长:要证明一条线段等于另外两条线段的和与差,可先延长较短的一条线段,得到两条线段的和,然后再证明其与长的线段相等。(角也这样)

3,加倍法:要证明一条线段等于另一条线段的2倍或1/2,可加倍延长线段,延长后使之为其2倍,再证明与另一条线段相等。(角也这样)

4,折半法:要证明一条线段等于另一条线段的2倍或1/2,也可取长线段的中点,再证明其中之一与另一条线段相等。(角也可用)

5,代数运算推理法:这种方法是利用代数运算证明线段或角的和、差、倍、分。

6,相似三角形及比例线段法:利用相似三角形的性质进行推理论证。

题1(短延长):如图所示,在正方形ABCD中,P、Q分别为BC、CD上的点。

(1)若∠PAQ=45°,求证:PB+DQ=PQ。

(2)若△PCQ的周长等于正方形周长的一半,求证:∠PAQ=45°

Q

证明:(1)延长CB 至E ,使BE=DQ ,连接AE 。 ∵四边形ABCD 是正方形

∴∠ABE=∠ABC=∠D=90°,AB=AD 在△ABE 和△ADQ 中

∵AB=AD ,∠ABE=∠D ,BE=DQ

∴?∴=∠=∠∠=∴∠+∠=∴∠+∠=∠=∠=??ABE ADQ

AE AQ BAE QAD PAQ BAP QAD BAP BAE EAP PAQ ,°°°,即°

45454545

在和中

,,即????AEP AQP AE AQ EAP PAQ AP AP AEP AQP EP PQ

EP EB BP DQ BP PQ

PB DQ PQ =∠=∠=∴?∴=∴=+=+=+=

Q

(2)延长CB 至E ,使BE=DQ ,连接AE 由(1)可知??ABE ADQ ?

∴=∠=∠∴∠+∠=∠+∠=∴++=+∴=-+-=+=+====∴?∴∠=∠=AE AQ BAE

QAD

DAQ BAQ BAE BAQ PCQ PC QC QP BC CD

PQ BC PC CD QC BP DQ BP EB EP AEP AQP AE AQ EP PQ AP AP AEP AQP EAP PAQ ,°的周长等于正方形周长的一半

在和中

,,°

9045 ?????()()

题2(长截短):如图,在△ABC 中,∠B=2∠C ,∠A 的平分线AD 交BC 于D 。求证:AC=AB+BD

证明:在AC上截取OA=AB,连接OD,∵∠3=∠4,AD=AD

∴△ABD≌△AOD,∴BD=DO

∴∠B=∠1=∠2+∠C= 2∠C

∴∠2=∠C

∴OD=OC=BD

∴AC=OA+OC=AB+BD

三角形中位线定理的证明

备课偶得—— 三角形中位线定理的再证明 王贵林 皖南陵县烟墩镇烟墩中心初级中学 241313 三角形中位线定理:三角形的中位线平行第三边且等于第三边长的半。 关于它的证明方法,课本上给出了一种证法。笔者在备课中发现它的证法有8种之多,而且非常有趣,这里写出来与同仁共享,企斧正。 已知:如图1,△ABC 中,D 、E 分别为AB 、AC 的中点,求证:D E ∥BC 且 证法一、(构造法)如图2,延长DE 到F ,使EF=DE ,连结AF 、CF 、 DC ∵E 为AC 中点 ∴AE=CE ∵EF=DE ∴四边形ADCF 为平行四边形 ∴CF AD ∵D 为AB 中点 ∴AD=BD ∴BD CF ∴四边形DBCF 为平行四边形 ∴DF BC ∴DE=EF ∴DE ∥BC 且 证法二、(构造法)如图3,过CF 作CF ∥AB 交DE 的延长线于F ,则 ∠A=∠ACF ∵E 为AC 中点 ∴AE=CF ∴△AD E ≌△CFE (ASA ) ∴CF=AD ∵D 为AB 中点 ∴AD=BD ∴CF=BD ∵CF ∥BD ∴CF BD ∴四边形DBCF 为平行四边形 ∴DF BC ∴△ADE ≌△CFE ∴DE=EF ∴D E ∥BC 且 证法三、(同一法)如图4,过D 作D E ′∥BC ,交AC 于E ′,过E ′作E ′F ∥AB ,交BC 于F ,则 ∠B=∠ADE ′=∠E ′FC ,∠AE ′D=∠C 四边形DBFE ′是平行四边形 ∴E ′F=BD ∵D 为AB 中点 ∴AD=BD ∴E ′F=AD ∴△ADE ′≌△E ′FC (AAS ) ∴AE ′=CE ′即E ′为AC 中点 ∵E 为AC 中点 ∴E 与E ′重合即DE ∥BC ,△ADE ≌△EFC ,四边形DBFE 为平行四边形 ∴DE=CF DE=BF 即 ∴DE ∥BC 且 图1 B C A D E 图2 B C A D E F 图3 B C A D E F C 图4 B A D E F E ′ 图5 B C A D E 1 2 DE BC =1 2 DE BC =1 2DE BC =12 DE BC =1 2DE BC =

正弦定理的几种证明

正弦定理的几种证明 内蒙古赤峰建筑工程学校 迟冰 邮编(024400) 正弦定理是解决斜三角形问题及其应用问题(测量)的重要定理,而证明它们的方法很多,展开的思维空间很大,研究它们的证明,有利于培养学生的探索精神,体验数学的探索活动过程,也有利于教师根据不同的教学质量要求和学次,进行适当的选择。 C c B b A a C B A c b a ABC sin =sin =sin ,,,,:则:和中的三边和三角分别是 在正弦定理的内容: ? 一向量法 C c B b A a B b A a C c C CB i A CB AC i AB i AC i ABC sin sin sin :sin sin sin sin ||||sin | ) (,⊥=== ==+?=??即正弦定理可证 同理可证:,则:中做单位向量 证明:在

即正弦定理可证 同理可证:即中 和则在中做高线证明:在, sin =sin ,sin =s sin =sin sin =, sin =, C c A a B b inA a B a A b B a CD A b CD BDC Rt ADC Rt CD ABC ??? 三外接圆法 C c B b A R C c R A a R B b B R b B D a D R b Rt CAD R AD D C O ABC sin sin sin a ∴2sin ,2sin :2sin ,sin 2∴∠∠,sin ,∴, ,,========???同理即且且为设圆的半径为连接连接圆心与圆交于点过点的外接圆证明:做

四面积法 C c B b A a B ac C ab A bc S ABC sin sin sin ∴sin 21sin 2 1 sin 21=====?正弦定理可证:

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明 以下内容作者为:青岛第四中学杨瀚书老师 一、 三角形中位线定理的几种证明方法 法1: 如图所示,延长中位线DE 至F ,使 ,连结CF ,则 ,有AD FC ,所以FC BD ,则四边形BCFD 是平行四边 形,DF BC 。因为 ,所以DE BC 2 1. 法2: 如图所示,过C 作 交DE 的延长线于F ,则 , 有FC AD ,那么FC BD ,则四边形BCFD 为平行四边形,DF BC 。 因为 ,所以DE BC 2 1. 法3:如图所示,延长DE 至F ,使 ,连接CF 、DC 、AF ,则四边形 ADCF 为平行四边形,有AD CF ,所以FC BD ,那么四边形BCFD 为平 行四边形,DF BC 。因为 ,所以DE BC 2 1.

法4:如图所示,过点E 作MN ∥AB ,过点A 作AM ∥BC ,则四边形ABNM 为平行四边形,易证CEN AEM ???,从而点E 是MN 的中点,易证四边形ADEM 和BDEN 都为平行四边形,所以DE=AM=NC=BN ,DE ∥BC ,即DE BC 21。 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。

⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A C 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? C 图⑵: 说明:学生观察(几何画板制作的)课件演示:当△ABC的顶点A运动到直线B C上时,中位线DE也运动到BC上,这样由“二维”转化为“一维”,学生就不难猜想性质的两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成.如果教师直接叫学生去度量角度和长度,是强扭的瓜不甜. 2、教学重点:本课重点是掌握和运用三角形中位线定理。

三角形中位线定理 知识讲解

三角形中位线定理 【学习目标】 1. 理解三角形的中位线的概念,掌握三角形的中位线定理. 2. 掌握中点四边形的形成规律. 【要点梳理】 要点一、三角形的中位线 1.连接三角形两边中点的线段叫做三角形的中位线. 2.定理:三角形的中位线平行于第三边,并且等于第三边的一半. 要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个 小三角形的周长为原三角形周长的1 2 ,每个小三角形的面积为原三角形 面积的1 4 . (3)三角形的中位线不同于三角形的中线. 要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状 (1)顺次连接平行四边形各边中点得到的四边形是平行四边形. (2)顺次连接矩形各边中点得到的四边形是菱形. (3)顺次连接菱形各边中点得到的四边形是矩形. (4)顺次连接正方形各边中点得到的四边形是正方形. 要点诠释:新四边形由原四边形各边中点顺次连接而成. (1)若原四边形的对角线互相垂直,则新四边形是矩形. (2)若原四边形的对角线相等,则新四边形是菱形. (3)若原四边形的对角线垂直且相等,则新四边形是正方形. 【典型例题】 类型一、三角形的中位线 1、(优质试题?北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN. (1)求证:BM=MN; (2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长. 【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.

三角形的证明-知识点汇总

三角形的证明知识点汇总 知识点1 全等三角形的判定及性质 判定定理简称 判定定理的内容 性质 SSS 三角形分别相等的两个三角形全等 全等三角形对应边相等、对应角相等 SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL (Rt △) 斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容 几何语言 条件与结论 等腰三角形的性质定理 等腰三角形的两底角相等。简述为:等边对等角 在△ABC 中,若AB=AC ,则∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠ C 推论 等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC ,AB=AC ,AD ⊥BC , 则AD 是BC 边上的中线,且 AD 平分∠BAC 条件:等腰三角形中已知顶点的平分线,底边上的中线、底边上的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理 等边三角形的三个内角都相等,并且每个角都等于60度 解读 (1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容 几何语言 条件与结论 等腰三角形的判定定理 有两个角相等的三角形是等腰三角形,简述为:等校对等边 在△ABC 中,若∠B=∠C 则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读 对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展 判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念 证明的一般步骤

正弦定理证明

一、正弦定理的几种证明方法
1.利用三角形的高证明正弦定理
(1)当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据锐角三角函数的定义,
有CD ?asinB ,CD ? b sin A 。
C
由此,得
a sin A
b ? sinB
同理可得 ,
c sinC
?
b sin B

b
a
A
B
故有
a
b
sinA ? sinB
c ? sinC .从而这个结论在锐角三角形中成立.
D
(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有CD ?asin?CBD ?asin?ABC ,CD ? b sin A 。由此,

a sin A
b ? sin?ABC
同理可得 ,
c sinC
b ? sin?ABC
C
故有
a
b
sinA ? sin?ABC
c ? sinC .
b
a
A
由(1)(2)可知,在
?
ABC
中,
a sin
A
?
b sin
B
c ? sinC
成立.
BD
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
b
c
sinA ? sinB ? sinC .
2.利用三角形面积证明正弦定理
已知△ ABC,设 BC=a, CA=b,AB=c,作 AD⊥BC,垂足为 D. 则 Rt△ ADB
中, sin B ? AD , ∴AD=AB·sinB=csinB.
A
AB
∴S△ ABC= 1 a ? AD ? 1 acsin B . 同理,可证 S△ ABC= 1 absin C ? 1 bcsin A.
2
2
2
2
∴ S△ ABC= 1 absin C ? 1 bcsin A ? 1 acsin B . ∴absinc=bcsinA=acsinB, C
2
2
2
D
B
在等式两端同除以 ABC,可得 sin C ? sin A ? sin B . 即 a ? b ? c .
c
a
b
sin A sin B sin C
3.向量法证明正弦定理
(1)△ ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与 AB 的夹角为
90°-A,j 与 CB 的夹角为 90°-C. 由向量的加法原则可得 AC ? CB ? AB ,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量
第1页共5页

三角形中位线定理_练习题

三角形的中位线定理 1.三角形中位线的定义: 2.三角形中位线定理的证明: 如图,在△ABC 中,D 、E 是AB 和AC 的中点,求证:DE ∥BC ,DE=2 1 BC . 方法一: 方法二: 3.归纳:(1)几何语言: (2) 条中位线, 对全等, 个平行四边形 (3)面积 4.拓展:如图,在△ABC 中,D 是AB 的中点,DE ∥BC ,求证: DE= 2 1 BC . 【巩固练习】 1.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC . 2.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF= 1 2 BD . 3.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 是平行四边形. 4.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC . 5.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.

求证:四边形DEFG 是平行四边形. 6.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE 分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF . 7.如图,在四边形ABCD 中,AD=BC ,点E ,F ,G 分别是AB ,CD ,AC 的中点. 求证:△EFG 是等腰三角形。 8.如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.求证:四边形EGFH 是平行四边形; 9.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点. 求证:四边形EFGH 是平行四边形. 10.已知:如图,DE 是△ABC 的中位线,AF 是BC 边上的中线, 求证:DE 与AF 互相平分 11.如图所示,在四边形ABCD 中,DC∥AB,以AD ,AC 为边作□ACED ,延长DC?交EB 于. 求证:EF=FB .(多种方法)

三角形的证明知识点汇总

百度文库- 让每个人平等地提升自我 1 三角形的证明知识点汇总 判定定理简称判定定理的内容性质SSS 三角形分别相等的两个三角形全等 全等三角形对 应边相等、对 应角相等SAS 两边及其夹角分别相等的两个三角形全等 ASA 两角及其夹边分别相等的两个三角形全等 AAS 两角分别相等且其中一组等角的对边相等的两个三角形全等 HL(Rt△)斜边和一条直角边分别相等的两个直角三角形全等 知识点2 等腰三角形的性质定理及推论 内容几何语言条件与结论 等腰三角形的性质定理等腰三角形的两底角相等。 简述为:等边对等角 在△ABC中,若AB=AC,则 ∠B=∠C 条件:边相等,即AB=AC 结论:角相等,即∠B=∠C 推论等腰三角形顶角的平分线、 底边上的中线及底边上的 高线互相垂直,简述为:三 线合一 在△ABC,AB=AC,AD⊥BC, 则AD是BC边上的中线,且 AD平分∠BAC 条件:等腰三角形中已知顶点的 平分线,底边上的中线、底边上 的高线之一 结论:该线也是其他两线 等腰三角形中的相等线段:1、等腰三角形两底角的平分线相等;2、等腰三角形两腰上的高相等;3、两腰上的中线相等;4、底边的中点到两腰的距离相等 知识点3 等边三角形的性质定理 内容 性质定理等边三角形的三个内角都相等,并且每个角都等于60度 解读(1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质 (2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一” 【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形 知识点4 等腰三角形的判定定理 内容几何语言条件与结论 等腰三角形的判定定理有两个角相等的三角形是等腰 三角形,简述为:等校对等边 在△ABC中,若∠B=∠C则AC=BC 条件:角相等,即∠B=∠C 结论:边相等,即AB=AC 解读对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中” 拓展判定一个三角形是等腰三角形有两种方法:1、利用等腰三角形;2、利用等腰三角形的判定定理,即“等角对等边” 知识点5 反证法 概念证明的一般步骤

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B =, 故有 sin sin a b A B =sin c C =.从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 =∠sin sin a b A ABC , 同理可得 =∠sin sin c b C ABC 故有 =∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B =sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C =. 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C === sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

三角形中位线定理证明

三角形中位线定理证明 性质1中位线平行于第三边 性质2等于第三边的一半 1定理 2证明 3逆定理 1定理三角形的中位线平行于第三边(不与中位线接触),并且等于第三边的一半。[1] 三角形的中位线 2证明 如图,已知△ABC中,D,E分别是AB,AC两边中点。 求证DE平行于BC且等于BC/2 方法一:过C作AB的平行线交DE的延长线于G点。 ∵CG∥AD ∴∠A=∠ACG ∵∠AED=∠CEG、AE=CE、∠A=∠ACG(用大括号) ∴△ADE≌△CGE (A.S.A) ∴AD=CG(全等三角形对应边相等) ∵D为AB中点 ∴AD=BD ∴BD=CG 又∵BD∥CG ∴BCGD是平行四边形(一组对边平行且相等的四边形是平行四边形) ∴DG∥BC且DG=BC ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立. 方法二:相似法: ∵D是AB中点 ∴AD:AB=1:2 ∵E是AC中点 ∴AE:AC=1:2 又∵∠A=∠A ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2

∠ADE=∠B,∠AED=∠C ∴BC=2DE,BC∥DE 方法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为:根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半 方法4: 延长DE到点G,使EG=DE,连接CG ∵点E是AC中点 ∴AE=CE ∵AE=CE、∠AED=∠CEG、DE=GE ∴△ADE≌△CGE (S.A.S) ∴AD=CG、∠G=∠ADE ∵D为AB中点 ∴AD=BD ∴BD=CG ∵点D在边AB上 ∴DB∥CG ∴BCGD是平行四边形 ∴DE=DG/2=BC/2 ∴三角形的中位线定理成立[2] 方法五:向量DE=DA+AE=(BA+AC)/2=BC/2[3] ∴DE//BC且DE=BC/2 3逆定理 逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点。 证明:∵DE∥BC ∴△ADE∽△ABC ∴AD:AB=AE:AC=DE:BC=1:2 ∴AD=AB/2,AE=AC/2,即D是AB中点,E是AC中点。 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 三角形的中位线 证明:取AC中点E',连接DE',则有 AD=BD,AE'=CE' ∴DE'是三角形ABC的中位线 ∴DE'∥BC 又∵DE∥BC

三角形的重心定理及其证明

三角形的重心定理及其证明 积石中学王有华 同学们在学习几何时,常常用到三角形的重心定理.但很多同学不会证明这个定理?下面给出三种证明方法,你阅读后想一想,哪一种证明方法最好. 已知:(如图)设ABC V 中,L 、M 、N 分 别是BC 、CA 、AB 的中点. 求证:AL 、BM 、CN 相交于一点G ,且 AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1. 证明1(平面几何法):(如图1)假设中 线AL 与BM 交于G ,而且假设C 与G 的连线与AB 边交于N ,首先来证明N 是AB 的中点. 现在,延长GL ,并在延长线上取点D ,使GL=LD 。因为四边形BDCG 的对角线互相平分,所以BDCG 是平行四边形.从而,B G ∥DC ,即GM ∥DC.但M 是AC 的中点,因此,G 是AD 的中点. 另一方面,GC ∥BD ,即NG ∥BD.但G 是AD 的中点,因此N 是AB 的中点. 另外,G 是AD 的中点,因此AG ﹕GL=2﹕1.同理可证: BG ﹕GM=2﹕1, CG ﹕GN=2﹕1. 这个点G 被叫做ABC V 的重心. 证明2(向量法):(如图2)在ABC V 中,设AB 边上的中B C

线为CN ,AC 边上的中线为BM ,其交点为 G ,边BC 的中点为L ,连接AG 和GL ,因 为B 、G 、M 三点共线,且M 是AC 的中点, 所以向量BG u u u r ∥BM u u u u r ,所以,存在实数1λ ,使得 1BG BM λ=uuu r uuu u r ,即 1()AG AB AM AB λ-=-u u u r u u u r u u u u r u u u r 所以,11(1)AG AM AB λλ=+-u u u r u u u u r u u u r =111(1)2 AC AB λλ+-u u u r u u u r 同理,因为C 、G 、N 三点共线,且N 是AB 的中点. 所以存在实数2λ,使得 22(1)AG AN AC λλ=+-u u u r u u u r u u u r = 221(1)2 AB AC λλ+-uu u r uuu r 所以 111(1)2AC AB λλ+-u u u r u u u r = 221(1)2 AB AC λλ+-u u u r u u u r 又因为 AB uuu r 、 AC u u u r 不共线,所以 1221112112λλλλ=-=-??? 所以 1223λλ== ,所以 1133AG AB AC =+uuu r uu u r uuu r . 因为L 是BC 的中点,所以GL GA AC CL =++u u u r u u u r u u u r u u r =111()332AB AC AC CB -+++u u u r u u u r u u u r u u u r =121()332AB AC AB AC -++-uuu r uuu r uuu r uuu r =1166 AB AC +uuu r uuu r ,即2AG GL =u u u r u u u r ,所以A 、G 、L 三点共线.故AL 、BM 、CN 相交于一点G ,且AG ﹕GL= BG ﹕GM= CG ﹕GN=2﹕1 C

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等, 即.其中R是三角形外接圆的 半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2=. 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C=. 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, 时,只有一解. (4)已知两边及夹角,用____________定理,必有一解.

相似三角形预备定理证明

课题:相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决 问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点: 预备定理的证明与应用。 教学难点: 预备定理的证明。 教学方法: 启发+探究+讲授 教学手段: 常规教学用具,计算机及课件 教学过程: 教学过程 教师活动 学生活动 设计意图 出示情境问题: 1、 什么叫相似三角形?什么叫相似比? 2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m 宽的小路。小路的内外边缘所围成的 矩形相似吗? □—''~:—:—A ?—'—>:—?—A 3、 如图两个三角形相似吗?若相似,你是若 何判 断的,相似比是多少?若不相似,也请说 明。 4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出: 本节课将研究如何用相似三角形的定义判断 两三角形相似。 板书课题:相似三角形的判定 创 设 情 境 复习相似形 的有关概 思考回答问题: 念,明确否 1、2 口答 定两图形相 3题可能的方法: 似,指出一 ⑴直觉(引导有理有 个不满足的 据); 条件即可, ⑵度量角与边,再计 而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑) 对边成比 ⑶根据格点特性计算 例。 (积极鼓励) 而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定 理,后继学

正弦定理的四种证明方法

正弦定理的四种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

三角形中位线定理的几种证明方法及教学中需要说明的地方

三角形中位线定理的证明及其教学说明一、三角形中位线定理的几种证明方法,则,,使,连结CF法1:如图所示,延长中位线DE至F DF FC BCFD 是平行四边形,BD,则四边形BC有AD FC,所以。因为1DE ,所以.BC 2,有F,则作FC 交DE的延长线于法2C 因为,DF BC。为平行四边形,AD,那么BDFC ,则四边形BCFD1.所以DE BC 2 ,连接CF、DC、AF,则四边形ADCF至法3:如图所示,延长DEF,使BD,那么四边形BCFDCFAD ,所以FC 为平行四边形,为平行四边形,有1BC.DE ,所以BCDF 。因为2 法4:如图所示,过点E作MN∥AB,过点A作AM∥BC,则四边形ABNM为平行四边形,易证,从而点E是MN的中点,易证四边形ADEM和BDEN都

CENAEM 1。DEDE∥BC,即DE=AM=NC=BN为平行四边形,所以,BC 2 法5:如图所示,过三个顶点分别向中位线作垂线. 二、教学说明 1、三角形中位线定理的另外一种猜想过程:“二维”转化为“一维” 在引导学生探索三角形中位线定理时,由于学生画出中位线后,就不难直观地发现平行关系,难的是发现数量关系,我联想到在此之前认识线段中点时的一道典型例题,挖掘它与原有知识的内在联系,从而作如下探索引导。 ⑴如图,A为线段BC(或线段BC的延长线)上的任意一点,D、E分别是AB、AC 的中点,线段DE与BC有什么关系? A BEDC 图⑴: ⑵如果点A不在直线BC上,图形如何变化?上述结论仍然成立吗? A

ED BC 图⑵:,上时A的顶点运动到直线BC说明:学生观察(几何画板制作的)课件演示:当△ABC上,这样由“二维”转化为“一维”,学生就不难猜想性质的BC 中位线DE也运动到如果教师直接叫学.两方面,特别是数量关系,而想到去度量、验证和猜想,水到渠成. 生去度量角度和长度,是强扭的瓜不甜、教学重点:本课重点是掌握和运用三角形中位线定理。2第一,要知道中位线定理的作用:可以证明两条直线平行及线段的倍分关系,计算边长或中位线的长。第二,要知道中位线定理的使用形式,如: A DE是△ABC的中位线∵ ED1BCDE ,BC∥∴ DE2CB. 第三,让学生通过部分题目进行训练,进而掌握和运用三角形中位线定理。 题1 如图4.11-7,Rt△ABC,∠BAC=90°,D、E分别为AB,BC的中点,点F 在CA延长线上,∠FDA=∠B. (1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

《三角形中位线定理》

课题:三角形中位线定理 科目:数学教学对象:八年级课时:§18.1平行四边形第4课时提供者:大城县第四中学毕宝清 一、教学目标 1.知识与技能: 理解三角形中位线的概念;探索并掌握三角形中位线定理;能正确应用三角形中位线定理解决问题。 2.过程与方法: 经历探索三角形中位线定理的过程,感受数学转化思想。 3.情感态度与价值观: 培养学生大胆猜想、合理论证、归纳结论的科学精神。 二、教学重点、难点 1.重点:探究三角形中位线定理并应用,应用三角形中位线定理解决有关问题。2.难点:三角形中位线定理的证明。 三、教具准备 多媒体、三角形纸片 四、教学过程 教 学 环 节 教学内容师生活动设计意图 一、情境设置 导入新课蚕丝吐尽春未老,烛泪成灰秋更稠。 春播桃李三千圃,秋来硕果满神州。 为感恩教师,七年级六班召开主题 班会,班长要求每个同学把手中的 三角形原料裁成四面完全相同的彩 旗装扮教室,应该怎么裁剪呢? 教师引 导学生观察 图片,思考问 题后出示课 题. 教育学生懂得感 恩,从学生的生活实际 出发,创设情境,提出 问题,激发学生强烈的 好奇心和求知欲.

环 节 教学内容师生活动设计意图 二、 动手操作 观察发现探究一:三角形中位线的概念 活动一:请同学们按要求画图: (1)画一个任意的△ABC; (2)取AB、AC的中点D、E; (3)连接DE 三角形中位线定义: 连接三角形两边中点的线段叫做三 角形的中位线。 问题1:一个三角形有几条中位线? 请学生画出三角形中所有中位线。 问题2:三角形的中位线和三角形 的中线有何异同? 教师引 导学生在练 习本上作图, 实践操作后 分析线段DE 的特征,独立 思考并总结 归纳出三角 形中位线的 定义. 教师 用红笔标出 定义的关键 词:“线段中 点”、“线段” 让学生在作图过 程中充分感知三角形 中位线并加深印象。 通过学生实践操 作把握概念的本质,有 利于学生今后更加准 确运用。 三、 探究性质定理 深化认知探究二:三角形的中位线定理 问题3:如图,DE是△ABC的中位 线,DE与BC有什么 关系? 通过拼图活动 寻求辅助线做法。 (1)把三角形 纸片沿中位线DE裁开。 (2)变换△ADE的位置,想办 法去构造一条线段等于2DE, (3)画出变换后的图形,并把 △ADE移动后的对应的位置用虚线 画出来。 (4)请仔细观察哪条线段是 DE的2倍。 (5)我们只要证明哪两条线 段相等就可以。 (6)辅助线做法该怎么写? (7)请构思并书写证明过程。 教师引导 学生从2个 方面探究两 条线段之间 的关系。 学生独立 思考寻求方 法探究结论, 小组讨论交 流并根据探 究结果猜想 三角形的中 位线定理。 教师板书证 明过程,并用 展台展示其 他证明方法。 调动已有知识经 验,结合学生实践操作 感知思考、交流合作探 究三角形中位线的定 理。 通过学生亲自拼 图操作,进一步探究辅 助线做法,并为定理的 证明作好准备工作 经历这个探究的 过程让学生意识到讨 论、合作是学生完成学 习任务的一种手段,而 交流则促进学生智慧 成果共享。

三角形中位线定理 优秀教案

三角形中位线定理 【教学目标】 1.本节课的认知目的是使学生了解三角形的中位线概念及其性质定理,重点是熟悉和掌握三角形中位线定理,并能正确地运用这个定理去解决一些简单的几何问题。 2.本节课利用几何画版平台,动态演示了例题几何图形的多种变化,使学生初步认识事物的动与静、变与不变这一矛盾的对立与统一的辩证唯物主义思想。 【教学重难点】 重点:掌握定理的实质和定理的应用。 难点:定理的证明。 【教学过程】 教 学 过 程 设计思路及应用分析 导读 1.概括这节课的学习内容和认知目标; 2.引入三角形的中位线概念。 连结三角形两边中点的线段叫三角形的中位线 注意:三角形的中位线和三角形的中线不同。 C B A E D C B A E D 对比:三角形有三条中位线,它们组成一个三角形; 三角形有三条中线,它们相交于一点。 C B A E D C B A E D F F 特别强调了本节课的制作特色是动态演示,学习方法是探索研究。 这里用动态连结并配上音 乐,以引起学生的注意。 这里的三条中位线和三条 中线使用闪烁的手法,加 强对比的效果。

三角形中位线定理: 三角形的中位线平行于第三边,并且等于它的一半 定理表达式 证明:延长DE 到F ,使EF=DE ,连结CF 。 演示:打开几何画板 1.依次拖动三角形的三个顶点,注意DE 和 BC 长度的变化,观察它们的数量关系。 2.自点 D 作 BC 的平行线 FG ,再拖动三个顶点,观察 DE 与 BC 的位置关系。 定理表达式更能清楚地反 映定理的题设和结论。 中位线定理的证明方法较多,因为不作为本节课的重点,所以这里只选用了一种学生比较熟悉的直接证法。 也可以先演示再证明,通过 演示,使学生更直观地了解三角形的中位线和第三边的数量关系以及位置关系。 说明:关闭几何画板时,选择“不保存”。 本例题选自课本,证法一与课本相同。 引导学生分析为什么要连辅助线。 C B A E D A B C D E F

勾股定理和三角形证明相关习题

勾股定理及三角形证明相关测试题 1.已知a 、b 、c 是?ABC 三边长,则2)(c b a --+c b a -+的值是( ) A.2a B.2b C.2c D.2(a-c) 2.如图所示,AB=BC=CD=DE=1,AB ⊥BC,AC ⊥CD,AD ⊥DE,则AE=( ) A.1 B.2 C.3 D.2 3.如图在棱长为1的正方体ABCD-A 1B 1C 1D 1中,一只蚂蚁从点A 出发,沿正方体表 面爬行到面对对角线A 1B 上的一点P ,再沿截面A 1BCD 1,则整个过程中蚂蚁爬行 的最短路程为( ) A.2 B.2 62+ C.2+2 D.22+ 4.下列4个命题中正确的个数是( ) (1)两边及第三边上的中线对应相等的两个三角形全等 (2)两边及第三边上的高线对应相等的两个三角形全等 (3)直角三角形两条边的长分别为3和4,则第三边边长为5. (4)如果a ≥0,那么(a )2=a. A.1 B.2 C.3 D.4

5.若一个直角三角形的三边长为a,b,c,且a2=9,b2=16,则c2= . 6.已知一个直角三角形的两条直角边长为5cm,12cm,则第三边长为 . 7.如图,一棵大树在一次强台风中离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为 m 8.如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm,4cm、12cm,插吸管处的出口到相邻两边的距离都是1cm,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口大小)则设计的吸管总长度L的范围是 . 9.如图,在?ABC中,AB=3+1,AC=6,BC=2,求?ABC三个内角的度数.

相关主题
文本预览
相关文档 最新文档