当前位置:文档之家› 以BINOL为骨架的手性Br_nsted酸催化剂的研究进展

以BINOL为骨架的手性Br_nsted酸催化剂的研究进展

以BINOL为骨架的手性Br_nsted酸催化剂的研究进展
以BINOL为骨架的手性Br_nsted酸催化剂的研究进展

固体酸催化剂

固体酸催化剂 酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 中文名固体酸催化剂 功能来源催化活性的酸性部位特点一类重要催化剂 性质酸中心、酸强度和酸度 与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。 ①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: 红外光谱研究表明,800℃焙烧过的γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。 SiO2-Al2O3的酸中心模型 (见图)有多种模式。 ②酸强度,可用哈梅特酸强度函数 0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。 2应用 在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO2-Al2O3、 B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为0≤3.3, 0≤1.5,0≤-3,-3< 0<+1.5。在同类型的催化剂上进行同一反应时, 催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,

手性药物拆分的研究进展

手性药物拆分的研究进展 许多药物具有光学活性(opitical activeity)。一般显示光学活性的药物分子,其立体结构必定是手性(chirality)的,即具有不对称性。手性是指其分子立体结构和它的镜像彼此不能重合。互为镜像关系而又不能重合的一对分子结构称为对映体(enantiomer)。虽然对映异构体药物的理化性质基本相同,但由于药物分子所作用的受体或靶位是由氨基酸、核苷、膜等组成的手性蛋白质和核酸大分子等,后者对与之结合的药物分子的空间立体构型有一定的要求。因此,对映异构体在动物体内往往呈现出药效学和药动学方面的差异。鉴于此,美国食品药品监督管理局规定,今后研制具有不对称中心的药物,必须给出手性拆分结果,欧盟也提出了相应的要求。因此,手性拆分已成为药理学研究和制药工业迫切需要解决的问题。 目前,利用酶法、超临界流体色谱(SFC)法、化学法、高效液相色谱(HPLC)法、气相色谱(GC)法、毛细管电泳(capillary electrophoreisis,CE)法和分子烙印法拆分对映体,已成为新药研究和分析化学领域的重要课题。笔者在本文综述了近年来利用上述方法拆分手性药物的研究进展。 1酶法 酶的活性中心是一个不对称结构,这种结构有利于识别消旋体。在一定条件下,酶只能催化消旋体中的一个对映体发生反应而成为不同的化合物,从而使两个对映体分开。该法拆分手性药物已有较久的历史,反应产物的对映过剩百分率可达100%。酶催化的反应大多在温和的条件下进行,温度通常在0~50℃,pH 值接近7.0。由于酶无毒、易降解、不会造成环境污染,适于大规模生产。酶固定化技术、多相反应器等新技术的日趋成熟,大大促进了酶拆分技术的发展。脂肪酶、酯酶、蛋白酶、转氨酶等多种酶已用于外消旋体的拆分。脂肪酶是最早用于手性药物拆分的一类酶,是一类特殊的酯键水解酶,具有高度的选择性和立体专一性,反应条件温和,副反应少,适用于催化非水相递质中的化学反应,在B 一受体阻滞药、非甾体类抗炎药和其他多种药物的手性拆分中都有广泛的应用。意大利的Batlistel等用固定于载体Amberlite AD-7上的脂肪酶对萘普生的乙氧基乙酯进行酶法水解拆分,对温度、底物浓度和产物抑制等进行了研究,最后使用500 mL的柱式反应器,在连续进行了1200h的反应后,得到了l8kg的光学纯S-萘普生,且酶活性几乎无损失。另外,酯酶具有很高的工业价值,其应用前景也极为广阔。Jiaxin等利用pseudomaonas cepacia脂肪酶拆分了一类酰基取代的1.环己烯衍生物,通过酶催化酯交换反应,得到产率较高的光学纯化合物,且提供了反应过程监测方法。这种方法可推广到该类化合物系列衍生物的合成与拆分。 2 SFC法 根据手性选择剂种类不同,该分离方式主要包括氨基酸和酰氨类手性固定相、Prikle型手性固定相、环糊精型键合固定相如聚甲基异丁烯酯等。由于SFC 法尚处于发展阶段,各种参(如温度、压力、流动相的组成和密度等) 对分离度的影响机制还未完全清楚。SFC法具有简单、高效、易于变换操作条件等优点,已成为与HPLC法和GC法互补的拆分方法,因其具有独特的优越性,应用前景极为广阔。Nozal等用Chiralpak AD柱和Chiralcel OD柱在SFC条件下拆分了驱肠蠕虫药阿苯唑亚砜化合物,并研究了甲醇、乙醇、乙丙醇及乙腈等有机溶剂对立体构型的影响。结果表明,在以Chiralpak AD柱为固定相时,用2丙醇可以获得最好的拆分效果;而在Chiralcel OD柱上用甲醇效果最好。

隐身材料的研究进展及存在问题

隐身斗篷的研究进展及存在问题 摘要:隐身斗篷,由硅纳米材料制造而成,利用该特殊材料折射或吸收大部分光线,从而达到隐形的目的。本文主要总结归纳现如今应用于隐身斗篷的各种主要材料,详细论述了基于超材料特殊电磁特性的隐身技术,简单介绍部分材料应用原理。 关键词:影身斗篷,超材料,限元分析软件,均匀介质 1. 隐身斗篷的应用前景 隐形斗篷我其实是在电影Harry Potter 中第一次知道,它常被哈利拿来干一些从霍格华兹魔法学校里偷跑出来如此的事情。现实中科学家们也一直在研究它。在不远的将来,隐身斗篷将会真的存在于现实世界中了。而且隐身斗篷的应用前景非常广。隐身技术在外科手术,军事航空等多个领域中获得广泛的应用。例如, “地震斗篷”——能够让冲击波、暴风浪或者海啸在所遮蔽的物体面前变成“瞎子”,进而达到保护建筑物的目的。同时为提高战场生存能力, 隐身技术越来越多地应用于军用装备上。随着军用探测技术的不断进步, 对军用装备隐身性能的要求不断提高, 传统的隐身技术已经不能满足要求。 2. 隐身材料及其隐身原理 2.1 超材料 众所周知,介电常数和磁导率是用于描述物质电磁特性的基本物理量,决定着电磁波在物质中的传播特性。迄今为止,自然界中天然物质的介电常数和磁导率均大于或等于1。2000年,Smith 等人利用金属铜的开环共振器和导线组成2 维周期性结构,首次在实验室制造出微波频段具有负介电常数和负磁导率的介质材料,引起科学界的轰动。随后,双负材料、单负材料、手性材料、理想磁导体和理想电导体等材料成为科学研究的热点,并将这些材料统称为超材料(metamaterials)。由于超材料具有一系列特殊的电磁特性,因而具有广阔的应用前景。 2.1.1超材料椭圆柱电磁斗篷 文献[1] 利用有限元分析软件Comsol Multip hysics 分析了超材料介电常数偏差、磁导率偏差 和损耗对电磁斗篷场分布的影响,并讨论了在电 磁斗篷内放置不同电磁特性的物体后斗篷外电 场分布的变化。 图1 为TE 波辐射下超材料椭圆柱电磁斗篷 的计算模型。超材料椭圆柱是沿z 轴放置的无限 长空心柱,其横截面为xOy 平面,椭圆中心为坐标 原点,内外径短轴分别为a 和b ,长轴分别为ka 和 kb ,其中, k 为长轴与短轴之比,仿真时取k = 6 , a =0. 1 m ,b = 0. 2 m 。在图1 所示的左边完全匹配 层( PML) 的内表面施加沿z 轴方向电流,激励起 沿x 轴方向(水平) 传播的频率为2 GHz 的TE 波。计算区域四周是PML 吸收层,斗篷内外均为空气。 通过文献[1]计算可知,超材料介电常数和磁导率空间分布如图2所示。图2 (a) 为介电常数分量在xOy 平面上的空间分布,由图可以看出,在x = 0 或y = 0 的平面上 xx 最小,同时在两图1 TE 波辐射下超材料椭圆柱电磁斗篷的计

固体酸催化剂的分类以及研究近况

固体酸催化剂的分类以及研究近况 刘庆辉,詹宏昌,汤敏擘 (广东省安全科学技术研究所评价中心,广州510620) 摘 要:固体酸作为一种新型绿色环保型催化剂引起了人们的广泛关注。到目前为止,已经开发出固载化液体酸、简单氧化物、硫化物、金属盐、沸石固体酸、杂多酸固体酸、阳离子交换树脂、粘土矿、固体超强酸等九类固体酸。笔者在综合国内外的研究近况的基础上,提出了对固体酸催化剂研究的展望。 关键词:固体酸;催化剂;近况 Classif ication and R esearch Development of Solid Acid C atalyst L IU Qi ng2hui,ZHA N Hong2chang,TA N G M i ng2bo (Safety Assessment Center,Guangdong Institute of Safety Science&Technology,Guangzhou510620,China) Abstract:Recently,solid acids as new green catalysts have attracted considerable attention.By far,nine kinds of solid acids,such as solid2supported liquid acid,ordinary oxid,sulfide,salt,zeolite solid acid,cation ex2 change resin,clunch and solid superacid had been developed.The prospects for solid acids were proposed on the base of colligating recent domestic and abroad researching. K ey w ords:solid acids;catalyst;research development 固体酸是近年来研究与开发的一种新型酸催化剂,也是具有广泛的工业应用前景的环境友好的催化剂之一,因而对固体酸的研究具有十分重要的意义,成为当前催化研究的热点之一[1]。根据固体酸催化剂的特点进行分类,讨论了各种固体酸的研究近况,并在此基础上提出了对固体酸催化剂研究展望。1 固体酸催化剂的分类 1979年日本科学家Hino等人首次合成出SO42-/Fe2O3固体酸,引起了人们的广泛重视,人们便对固体酸进行了大量研究,并合成了一系列SO42-/WxOy固体酸体系催化剂。到目前为止,开发出的固体酸大致可分为九类[2],见表1。 表1 固体酸的分类 序号酸类型实例 1固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 2氧化物简单:Al2O3,SiO2,B2O3,Nb2O5 复合:Al2O3-SiO2,Al2O3/B2O3 3硫化物CdS,ZnS 4金属盐磷酸盐:AlPO4,BPO4 硫酸盐:Fe2(SO4)3,Al2(SO4)3,CuSO4 5沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石 丝光沸石,非沸石分子筛:AlPO SAPO系列 6杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40 7阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H 8天然粘土矿高岭土,膨润土,蒙脱土 9固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3/ZrO2 作者简介:刘庆辉,男,湖南人,硕士研究生,2006年毕业于华南理工大学化工学院,师从博士生导师,彭峰教授,同年5月进入广东省安全科学技术研究所工作,主要从事于化工企业管理,安全评价,危险化学品从业单位安全标准化考评等工作。目前发表或接收的论文4篇,其中1篇被SCI(网络版)收录。

手性表面活性剂研究进展

手性表面活性剂的研究进展 摘要:简介手性表面活性剂的分类、结构,重点综述胆汁盐类、皂苷类手性表面活性剂的研究与应用,以及氨基酸型、季铵盐型、烷基糖苷型和松香型手性表面活性剂的合成与研究现状。 关键词:手性表面活性剂;进展;手性分离;立体合成 手性表面活性剂(chiral surfactant)是指一类性质上具有一般表面活性剂特性——具有油水两亲性,结构上含有手性中心的手性分子。由于分子结构中有手性中心的存在,该类表面活性剂具有良好的区域选择性、不对称催化能力和手性识别能力。尤其是在特定的手性拆分中的手性识别能力,使得手性两亲分子在立体选择性合成和手性药物分离领域逐渐成为一大热点。此外,近年来,在无机材料科学方面,利用手性表面活性剂合成无机介孔材料的研究也有迅速的进展。 随着医药科学和材料科学等领域的发展,手性表面活性剂由于其独特的分子结构特性而具有的不可替代性使得它的需求日益增加,因而引起了化学、材料等学科对手性表面活性剂的普遍关注。 目前获得手性两亲分子的途径还比较少,而且只局限于应用已有的手性源来合成,因此手性表面活性剂的类型并不多。主要可从来源分为天然手性表面活性剂和合成手性表面活性剂两大类。 1.天然手性表面活性剂 天然手性表面活性剂可细分为胆汁盐类和皂苷类两类。 1.1胆汁盐(Bile salts)类 胆汁(酸)盐类手性表面活性剂属于阴离子表面活性剂,具有光学活性,可用于手性对映体的拆分,最早由Terabe等[1]在1989年应用在几种氨基酸和药物的胶束电动色谱(MEKC 法)手性分离中。其基本结构式如图1,主体结构由四个饱和稠环构成。表1列举了几种常见的胆汁盐类手性表面活性剂。 图1 胆汁盐类结构式 表1 几种常见的胆汁盐类手性表面活性剂

相转移催化在精细有机合成中进展

相转移催化在精细有机合成中地进展 摘要:相转移催化技术是一种重要地非均相反应方法,本文综述了相转移催化反应地概念,原理,杂多酸有机盐催化剂地作用.文中着重介绍了近年来该技术地新发展,同时讨论了其在精细有机合成领域地应用和存在地不足. 关键词:相转移催化技术;发展;有机合成 相转移催化(Phase transfer),简称PT,是20 世纪70 年代以来在有机合成中应用日趋广泛地一种新地合成技术. 在有机合成中常遇到非均相有机反应,这类反应地通常速度很慢,收率低.20 世纪70 年代初,相转移催化技术发展起来.泛应用于医药.农药.香料.造纸.制革等行业,带来了令人瞩目地经济效益和社会效益. 一.相转移催化地定义. 相转移催化作用是指:一种催化剂能加速或者能使分别处于互不相溶地两种溶剂(液-液两相体系或固-液两相体系)中地物质发生反应.反应时,催化剂把一种实际参加反应地实体(如负离子)从一相转移到另一相中,以便使它与底物相遇而发生反应. 相转移催化作用能使离子化合物与不溶于水地有机物质在低极性溶剂中进行反应,或加速这些反应.相转移催化剂把一种实际参加反应地化合物,从一相 转移到另一相中,以便使它与底物相遇而发生反应.

目前相转移催化剂已广泛应用于有机反应地绝大多数领域,如卡宾反应.取代反应.氧化反应.还原反应.重氮化反应.置换反应.烷基 化反应.酰基化反应.聚合反应,甚至高聚物修饰等,同时相转移催化 反应在工业上也广泛应用于医药.农药.香料.造纸.制革等行业,带来了令人瞩目地经济效益和社会效益. 二.相转移催化地原理. 是指在反应中使用一种能将反应实体从一相转移到另一相地相 转移催化剂,使实体与底物相遇而发生反应地一种方法.以卤代烷与 氰化钠地反应为例,相转移催化反应地过程大致如下:(1)水相反应NaCN+Q+X-→NaX+QCN(Q+X-为相转移催化剂);(2)QCN进入有机相;(3)有机相反应RX+QCN→RCN+Q+X-;(4)Q+X-返回水相.相转移催化剂在反应中并未损耗,只是起传递离子地作用,因此用量很少.常用地相转移催化剂是冠醚和季铵盐.相转移催化使许多用传统方法很难进行地反应或者不能发生地反应能顺利进行,而且具有选择性好.条 件温和.操作简单.反应速度快等优点,具有很好地实用价值. 相转移催化概括起来可以分为三类:液液相转移催化.固一液相转移催化和三相催化,后来随着技术地进步,还出现了气一液相转移催化和气一固相转移催化,但有用较少.其中液一液相转移催化地使用范匝最为广泛. 1.液一液相转移催化 液一液相转移催化反应是在一个互不混溶地两相系统中进行.其中一相(一般为水相)为碱或含起亲核试剂作用地盐类,另一相为有机

手性超材料研究进展

手性超材料研究进展 钟柯松 2111409023 物理 1. 引言 超材料是有特殊电磁性质的人造结构性材料,其中一个典型的性质就是负折射率。第一种负折射率材料1两个部分组成:一个是连续的金属线,它来实现负介电常数2,另一个是开环谐振器,来实现负的磁导率3。在同时实现复介电常数和负磁导率的时候,负折射率就是实现了。后来,人们大多数以这个原则4-5来设计负折射率材料。虽然负磁导率在微波段很容易实现,但是在光频区域却极其困难7,8。与此同时,Pendry9,Tretyakov10,11和Monzon12等人从理论上提出了另一种利用手性实现负折射率的途径。而手性材料层作为完美透镜也从理论上实现了9-13。在这些报告中,Pendry提出了一种3D螺旋线结构来实现负折射率的手性超材料9。Tretyakov等人则在理论上研究了在手性和偶极粒子手性复合材料中得到负折射率的可能性11。理论表明,负折射率是可以在以3D螺旋对称为晶格的金属球超材料中可以得到14。同时也表明,周期上的手性散射是3D和各向同性负折射率的原因15。实际上,Bose曾经在1898年利用螺旋结构研究了平面偏振电磁波的旋转16。Lindman也是研究微波段人造手性介质的先驱17。最近,Zhang等人在实验上实现了一个3D手性超材料在THz波段的负折射率18。Wang等人则在微波段同时实现了3D手性超材料的负折射率和巨大的光学活性和圆二色性19,20。但是,这些提到的3D手性超材料都很难构建。同时,平面手型超材料显示了光学活性也被报道了21-24。这里需要指出的是,平面手性结构是正真的3D手性结构是不同的。Arnaut和Davis第一次把平面手性结构引入到了电磁波的研究中25,26。一个结构如果被定义为手性结构,那么它应该是在任何平面是没有镜面对称的,然而,一个平面结构被认为是手性的,则它是不能和它在该平面上的镜像重叠的,除非它不在这个平面上。实际上,一个平面手性结构还是和镜像镜面对称的。在垂直入射的情况下,在光传播方向上镜面对称的结构是没有光学活性的27。除非在这个结构上增加衬底来打破传播方向上的镜面对称,这样光学活性就能得到了22-24。然而,手性在这些结构是非常微弱的。后来,Rogacheva等人进一步地提出了双层的手性结构,展现出了很强的光学活性28。这个两层的花环状的平面金属层相互平面扭和在两个平面中,它们也不像3D手性原胞一样连接在一起18-20,二是通过电磁场来相互耦合。它的光学活性强到了整个结构都显示出了负折射率。在这个开创性的工作下,一些不同的双层手性结构,从微波段到近红外波段被相继的提出。如双层花环结构29,30,双层十字线结构31,32,金属切线对33,卍字结构34,四个‘U’型结构35-37,互补性手性结构38等等。另外,多层的平面手性结构也被提了出来29,39。它表明,在构建体手性超材料时,邻近原胞之间的耦合效应也应该考虑在内。由于存在这个耦合效应,体手性超材料和单原胞手性超材料的性质存在差异39。当手性超材料在负折射率带中工作是,品质因素(FOM)来评估它的损耗级别40。FOM被定义为折射率实部和虚部比值的绝对值。在一个波长对应的介质中波振幅衰竭为exp(-2π/FOM)。为了得到高的FOM,一种复合的手性超材料在最近提了出来41。另外,可调节的手性超材料也有报道42。 基于传输和反射参数的有效折射率的提取是一种在表征设计的超材料是的方便有用的手段43-47。随着手性超材料研究的进展,负折射率用其他提取方法中也得到了18,29,48,49。Zhao 等人总结了这些提取方法,简练出了几个简单的公式,这在手性超材料的研究中是非常有用的50。非互易式传输在信息处理中起到了至关重要的作用,点偶极子就是一个典型的例子,它在电

手性催化剂在有机合成中的应用

综述:手性催化剂在有机合成中的应用 摘要:手性salen金属络合物在烯丙醇类化合物的动力学拆分,环氧化合物的不对称开 环以及非官能化烯烃的不对称环氧化等反应中已得到了广泛的应用。手性催化剂控制不对称羟醛反应,从工业生产的角度来看,实用的有机合成反应要求高选择性,高反应速率,高产率,原子经济性,低成本,操作简单,环境友好以及低能耗。一个简单的手性催化剂分子可以决定上百万的手性产物分子的立体选择性,但只有当昂贵的与底物或试剂结合的手性助剂能被重复利用,反应才有实用价值,使得反应具备极高的生产力和经济效益 关键词:手性催化剂手性Salen-Co(Ⅲ)催化剂 正文: 众所周知有机化合物是含碳的化合物,一个碳原子的最外层上有四个电子,若以单键成键时,可以形成四个共价单键,共价键指向四面体的顶点,当碳原子连接的四个基团各不相同时,与这个碳原子相连接的四个基团有两种空间连接方式,这两种方式如同左右手,互为“镜像”,也是不能完全叠合在一起的,因此,这样的分子叫做“手性分子”。这种构成手性关系的分子之间,把一方叫做另一方的“对映异构体”。许多有机化合物分子都有“对映异构体”,即是具有“手性”。而催化剂会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰在氯酸钾受热分解中起催化作用,加快化学反应速率,但对其他的化学反应就不一定有催化作用。而手性催化剂就是含有手性C原子的催化剂,它在一些合成放应中具有举足轻重的作用。 手性催化剂按其反应类型又可以分为:不对称催化氧化,不对

固体酸催化剂的研究进展

炭基固体酸催化剂的研究进展 摘要 酸催化反应在化工工业生产中广泛应用,目前工业上硫酸、盐酸等液体酸催化剂使用较普遍,液体酸存在一次性消耗大、对设备腐蚀严重、后处理困难,对环境污染较大等缺点。固体酸催化剂作为一种新型的环保材料,在化工生产中的应用变得越来越广泛,主要用于缩酮缩醛反应、水解反应、烷基化反应、酯化反应等。其中,炭基固体酸催化剂是近年来较为热门的研究课题,以葡萄糖、淀粉、蔗糖、纤维素作为原料在一定条件下制备新型固体酸催化剂。炭基固体酸催化剂酸量高、催化活性和选择性好、易回收再生使用和对设备腐蚀性小等优点。本文简单介绍生物质炭基固体酸催化剂的制备原料、分类及制备方法,分析其作为催化剂的作用机理,简述炭基固体酸催化剂的现状并展望其发展前景及方向。 (正文部分) 碳基固体磺酸作为一种新型的固体酸催化剂,具有催化活性高、酸密度大、后处理简单、价格低廉等优点。目前碳材料种类繁多且存储量巨大,其中木纤维原料作为碳材料的一种,是可再生能源,在环境、能源状况日渐恶化的今天具有重要利用价值。炭基固体酸催化剂指的是以炭材料为载体,在其表面上负载一些酸性基团或者固体酸,使其具备液体的B 酸及L 酸活性中心。由于炭材料具有疏水性的特点,使得反应后的分离操作变得简单且催化剂易于回收,其巨大的比表面积能够提高其催化活性,近年来,有关炭基固体酸的研究在国内外均有报道。 1.炭基固体酸分类 以炭基固体酸载体的不同可将其分为两类:一类为以碳材料为载体,在其表面键合上 -SO3H 基团的磺化碳固体酸;另一类为以活性炭为载体,在其表面负载上杂多阴离子的活性炭载杂多酸催化剂。 根据结构不同可以将磺化碳基固体酸分为普通碳基固体酸、多孔碳基固体酸和有序中孔碳基固体酸三种。普通碳基固体酸的孔道结构为大孔,比表面积一般小于5 m2/g,这种材料以无定型炭的形式存在,孔道无序排列;多孔碳基固体酸的孔道大部分都为中孔,比表面积可达到1000m2/g以上,孔道无序排列,孔径分布和比表面积的大小由制备方法决定;有序中孔碳基固体酸的孔道为中孔,比表面积一般高于400 m2/g,这些孔道以一定的形状有序排列,孔道形状、孔径大小和比表面积由模板剂类型和制备方法决定。 2.炭基固体酸原料及制备方法 2.1炭基固体酸催化剂的原料 炭基固体酸催化剂的原料与其他固体酸催化剂相比,成本较低、原料来源广泛。杂多酸

茚酮类化合物的研究进展

2010年第30卷 有 机 化 学 V ol. 30, 2010 * E-mail: jlliu@https://www.doczj.com/doc/5316421076.html, Received November 19, 2009; revised December 25, 3009; accepted February 1, 2010. ·综述与进展· 茚酮类化合物的研究进展 段义杰 刘建利* 王翠玲 (西北大学生命科学学院 西部资源生物与现代生物技术教育部重点实验室 西安 710069) 摘要 茚环结构存在于天然产物、合成药物、农药等分子中. 茚酮作为原料用于生物活性化合物的合成具有很强的工业应用前景. 同时在有机发光材料、染料合成方面也有应用, 还作为可光除去的有机保护基团. 对此类化合物的合成、应用进行了总结, 以促进相关的研究进展. 关键词 茚酮; 合成; 应用 Progress in the Studies of Indanones Duan, Yijie Liu, Jianli * Wang, Cuiling (Key Laboratory of Resource Biology and Biotechnology in Western China , Ministry of Education , School of Life Science , Northwest University , Xi'an 710069) Abstract Indan ring frameworks are ubiquitous in a large number of natural products, bioactive and phar-maceutically interesting molecules. Indanones therefore are very useful molecules as starting building blocks for the synthesis of biologically active compounds and thus are of tremendous industrial interest. It is also very useful in organic light-emitting devices, dyes and photoremovable protecting groups. The synthetic methods and application of this kind of molecules are reviewed in this paper. Keywords indanone; synthesis; application 茚酮的基本结构有1-茚酮、2-茚酮、1,2-茚二酮、1,3-茚二酮、茚三酮(Scheme 1). 其中茚三酮(Ninhydrine)非常有名, 又称水合茚三酮、水合茚满三酮. 茚酮结构广泛存在于天然产物、药物、农药等生物活性分子中, 也是有机发光、光致变色、染料等材料中的结构单元. 因此此类化合物具有广泛的应用前景[1]. 1 天然存在的茚酮及其衍生物 天然存在的茚酮化合物有 100多个, 其中重要的化合物有pterosin P (1), mukagolactone (2)和monachosorin A (3). 这些及相关结构的分子显示出多种生物活性, 例如平滑肌松弛活性、环氧化酶抑制活性等. 从海洋藻青菌中分离的化合物4显示抑制人血管内皮因子生长的 Scheme 1 活性, 在肿瘤血管生成调节方面具有应用前景[2] (Scheme 2). 一个新的茚酮类化合物2,6-dimethyl-1-oxo-4-indan- ecarboxylic acid (5)最近被从植物中分离出来, 虽然它的结构中有一个手性碳, 但该化合物不显示旋光性, 可能

手性催化剂

手性催化研究的新进展与展望 手性是自然界的基本属性之一,与生命休戚相关。近年来,人们对单一手性化合物(如手性医药和农药等)及手性功能材料的需求推动了手性科学的蓬勃发展。手性物质的获得,除了来自天然以外,人工合成是主要的途径。外消旋体拆分、底物诱导的手性合成和手性催化合成是获得手性物质的三种方法,其中,手性催化是最有效的方法,因为他能够实现手性增殖。一个高效的手性催化剂分子可以诱导产生成千上万乃至上百万个手性产物分子,达到甚至超过了酶催化的水平。2001年,诺贝尔化学奖授予了三位从事手性催化研究的科学家Knowles、Noyori 和Sharpless,以表彰他们在手性催化氢化和氧化方面做出的开拓性贡献,同时也彰显了这个领域的重要性以及对相关领域如药物、新材料等产生的深远影响。 我国对于手性催化合成的研究始于上世纪80年代,从90年代逐渐引起重视。1995年戴立信、陆熙炎和朱光美先生曾撰文呼吁我国应对手性技术特别是手性催化技术的研究给予重视[1]。国家自然科学基金委员会九五和十五期间分别组织了“手性药物的化学与生物学研究”(戴立信院士和黄量院士主持)[2]、“手性与手性药物研究中的若干科学问题研究”(林国强院士主持)[3]重大研究项目,同时中国科学院和教育部等也对手性科学与技术的研究给予了重点支持,极大地推动了我国手性科学和技术领域特别是在手性催化领域的发展,取得了一批在国际上有较大影响的研究成果,并培养了一支优秀的研究队伍,在手性催化研究领域开始在国际上占有一席之地。 本文结合国际上手性催化研究的最新进展,主要回顾了我国科学家近年来在新型手性配体、金属配合物手性催化、生物手性催化、有机小分子手性催化、负载手性催化剂、以及新概念与新方法等方面取得的重要研究进展[4],并展望了手性催化的未来发展趋势。 一、新型手性配体的设计合成 手性配体和手性催化剂是手性催化合成领域的核心,事实上手性催化合成的每一次突破性进展总是与新型手性配体及其催化剂的出现密切相关。2003年,美国哈佛大学Jacobsen在美国《Science》杂志的视点栏目上发表论文,对2002年以前发展的为数众多的手性配体及催化剂进行了评述,共归纳出八种类型的“优势手性配体和催化剂(Privileged chiral ligands and catalysts)”[5]。例如:2001年诺贝尔奖获得者Noyori发展的BINAP系列手性催化剂就是其中一例。BINAP与金属铑和钌形成的配合物已被证明是许多前手性烯烃和酮的高效催化剂,其中,BINAP的钌-双膦/双胺催化剂成功地解决了简单芳基酮的高效、高选择性氢化,催化剂的TOF高达60次/秒(即一个催化剂分子每秒可以催化转化60个底物分子),TON高达230万(即一个催化剂分子总共可以催化转化230万个底物分子),是目前最高效的手性催化剂体系[6]。 尽管已经有成百上千的优秀手性配体被合成出来,但没有任何一种配体或催化剂是通用的,因此新型手性配体的设计合成是手性催化研究中的永恒主题。近年来,在膦配体、氮膦配体、含氮配体、含硫配体、卡宾配体、以及二烯烃配体等的设计合成方面又取得了新的重要进展。例如:Pfaltz等人在Crabtree催化剂的基础上,将手性膦配体和手性氮配体结合起来,发展了一类新型的手性膦氮配体(如PHOX[7]),其铱配合物是目前唯一的能够高对映选择性催化氢化非官能化烯烃的手性金属催化剂体系。最近,他们利用这类手性铱催化剂成功实现了全烷基取代的非官能化烯烃的不对称氢化反应,并将其应用到维他命E主要成

固体酸催化剂

辽宁石油化工大学设计(论文) 题目固体酸催化剂的研究进展 学院化学化工与环境学部 专业班级研2016 姓名张健 学号01201608170432 2016 年11 月6日

摘要 固体酸催化剂具有对多种化学反应有较高活性与选择性、回收重复利用和效率较高等优点,作为绿色环境友好型催化材料备受人们关注。以往单纯追求眼前效益、不顾对环境所造成的危害的做法近年来越来越受到人们的批判。随着环保意识的增强,以及“绿色化学”的提出,越来越多的学者致力于开发效益兼顾环境、促使化学工业转向开发可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化剂领域中得到了广泛的研究及应用。相比液体酸催化剂而言,固体酸催化剂具有广泛的工业应用前景,是一种无毒、不易腐蚀设备、可循环使用、环境友好型新型催化剂。本文着重介绍固体酸催化剂以及发展前景。 关键词:固体酸催化剂;活性;选择性;环保

1 绪论 1.1固体酸催化剂 固体酸催化剂是一种性能独特的酸性催化剂,它的出现使酸催化反应迈入了新的时代。首先固体酸催化剂的使用在一定程度上缓解和避免了均相反应所带来的不利因素的出现,其次由于其使用温度范围广,适用于700~800 K 进行的反应,这就将研究对象扩大到热力学上可进行的反应范围内。基于此,从19 世纪40年代开始,化学工作者们从未间断过对固体酸的研究。目前,已有大量应用于酸催化反应的固体酸[1-2],见表1。 1.2 几类重要的固体酸催化剂 1.2.1 负载型催化剂 负载试剂于无机载体中即成负载试剂催化剂亦称负载型催化剂。1989 年负载试剂催化剂就已经实现了工业化,取得了良好的经济和环境效益,引领催化研究进入了崭新的阶段。采用一定的方法(如下表2)将活性物质固定在载体上即制成了负载型催化剂,按照负载物质的性质不同,可将其分为负载碱型催化剂、负载酸型催化剂和负载氧化物型催化剂。在负载型催化剂中,催化活性高于载体活性和试剂活性的简单组合,可以理解为,在负载过程中活性物质与载体的共同作用强化了催化作用,进而表现出高的催化活性与环境友好性。 1.2.2 蒙脱土负载试剂固体酸催化剂 蒙脱土又称微晶高岭石,是由两层Si—O 四面体和一层Al-O八面体,组成的层状硅酸盐晶体,有一定的微孔结构。蒙脱土很早就应用在有机反应中,但是涉及其对负载Lewis

手性药物的合成与拆分的研究进展

手性药物的合成与拆分的研究进展 手性是自然界的一种普遍现象,构成生物体的基本物质如氨基酸、糖类等都是手性分子。手性化合物具有两个异构体,它们如同实物和镜像的关系,通常叫做对映异构体。对映异构体很像人的左右手,它们看起来非常相似,但是不完全相同。 目前市场上销售的化学药物中,具有光学活性的手性药物约占全部化学药40% } 50%,药物的手性不同会表现出截然不同的生物、药理、毒理作用,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性,因而具有十分广阔的市场前景和巨大的经济价值[Dl 1由天然产物中提取 天然产物的提取及半合成就是从天然存在的光活性化合物中获得,或以价廉易得的天然手性化合物氨基酸、菇烯、糖类、生物碱等为原料,经构型保留、构型转化或手性转换等反应,方便地合成新的手性化合物。如用乳酸可合成(R)一苯氧基丙酸类除草剂[}z}。天然存在的手性化合物通常只含一种对映体用它们作起始原料,经化学改造制备其它手性化合物,无需经过繁复的对映体拆分,利用其原有的手性中心,在分子的适当部位引进新的活性功能团,可以制成许多有用的手性化合物。 2手性合成 手性合成也叫不对称合成。一般是指在反应中生成的对映体或非对映体的量是不相等的。手J险合成是在催化剂和酶的作用下合成得到过量的单一对映体的方法。如利用氧化还原酶、合成酶、裂解酶等直接从前体化合物不对称合成各种结构复杂的手性醇、酮、醛、胺、酸、酉旨、酞胺等衍生物,以及各种含硫、磷、氮及金属的手性化合物和药物,其优点在于反应条件温和、选择性强、不良反应少、产率高、产品光学纯度高、无污染。 手性合成是获得手性药物最直接的方法。手J险合成包括从手性分子出发来合成目标手性产物或在手性底物的作用下将潜在手性化合物转变为含一个或多个手性中心的化合物,手性底物可以作为试剂、催化剂及助剂在不对称合成中使用。如Yamad等和Snamprogetti等在微生物中发现了能催化产生N-氨甲酞基一D-氨基酸的海因酶( Hy-dantoinase)。海因酶用于工业生产D一苯甘氨酸和D一对轻基苯甘氨酸。D一苯甘氨酸和D一对轻基苯甘氨酸是生产重要的临床用药半合成内酞胺抗生素(氨节青霉素、轻氨节青霉素、氨节头炮霉素、轻氨节头炮霉素)的重要侧链,目前国际上每年的总产量接近SOOOto 3外消旋化合物的拆分 外消旋拆分法是在手性助剂的作用下,将外消旋体拆分为纯对映体。外消旋体拆分法是一种经典的分离方法,在工业生产中己有100多年的历史,目前仍是获得手性物质的有效方法之一。拆分是用物理化学或生物方法等将外消旋体分离成单一异构体,外消旋体拆分法又可分为结晶拆分法;化学拆分法;生物拆分法;色谱拆分法;膜拆分和泳技术。 3. 1结晶拆分法 3.1.1直接结晶法 结晶法是利用化合物的旋光异构体在一定的温度下,较外消旋体的溶解度小,易拆分的性质,在外消旋体的溶液中加入异构体中的一种(或两种)旋光异构体作为晶种,诱导与晶种相同的异构体优先(分别)析出,从而达到分离的目的。在。一甲基一L一多巴的工业生产中就是使两种对映体同时在溶液中结晶,而母液仍是外消旋的,把外消旋混合物的过饱和溶液通过含有各个对应晶种的两个结晶槽而达到拆分的目的[3]。结晶法的拆分效果一般都不太理想,但优点是不需要外加手性拆分试剂。若严格控制反应条件也能获得较纯的单一对应体。 3. 1. 2非对映体结晶法 非对映体结晶法适用于拆分外消旋化合物,利用天然旋光纯手性拆分试剂与消旋化合物

相转移催化在药物合成中的应用

相转移催化在药物合成中的应用 程方莉 摘要:介绍了相转移催化的基本原理,分别介绍了液-液相转移催化反应,固-液相转移催化反应和三相转移催化反应的特点。着重介绍了近年来相转移催化在药物合成中的应用进展,采用相转移催化技术具有操作简便、收率高、反应温和等特点,对于工艺技术的改进有重要的现实意义。 关键词:相转移催化;相转移催化剂;合成;应用 0 引言: 相转移催化(Phase Transfer Catelysis)简写是PTC,是六七十年代发展起来的有机合成新方法,也是目前药物合成和工艺改进中最具吸引力的一项新方法、新工艺,其使用范围涉及到有机合成的各种类型反应,并且能够缩短反应时间、提高反应收率和选择性。 该技术应用于非极性溶剂中具有反应条件温和、反应速度快、收率高、产品质量好等特点。因此,在近三十年来,该技术的研究与应用得到了迅速的发展。 1 相转移催化剂及反应原理 相转移催化是指一种催化剂能加速,或者能使分别处于两种互不相溶的溶剂中的物质发生反应,反应时,催化剂把一种实际参加反应的实体,从一相转移到另一相中,以便使它于底物相遇而发生反应。这种现象和过程叫相转移催化作用,这种催化剂叫相转移催化剂。 一般存在相转移催化的反应,都存在水溶液和有机溶剂两相,离子型反应物往往可溶于水相,不溶于有机相,而有机底物则可溶于有机溶剂之中。不存在相转移催化剂时,两相相互隔离,几个反应物无法接触,反应进行得很慢。相转移催化剂的存在,可以与水相中的离子所结合,并利用自身对有机溶剂的亲和性,将水相中的反应物转移到有机相中促使反应发生。 1.1 相转移催化剂 相转移催化剂有翁盐、聚醚和高分子载体催化剂三大类.其中常用的有三乙基苄基氯化铵(TEBA)、溴化四丁基铵(TBAB)、四丁基碘化胺(TBAI)、18一冠醚一6、二苯并一l8一冠醚一6、聚乙二醇一400 (PEG一400)、新洁尔灭、度米芬等。近年来,由于手性药物的大量应用,用于合成手性药物的手性相转移催化剂 成为相转移催化剂研究热点之一。例如,抗帕金森药物L一多巴类似物3,4-二羟

固体酸催化剂研究近况综述

试卷( A 卷) 专业: 课程代码: 19060071 学号: 姓名: 作文题(任选一题,写一篇综述论文,每题 100 分) 自拟题目,写一篇关于工业上绿色环保催化剂进展的综述论文 [能力层次: 综合运用和创见 ];[难易度: 较难 ] 要求: 1、查阅文献至少在20篇以上,并且外文文献引用2篇以上; 2、论文字数3000字以上; 3、论文格式严格按照综述论文要求书写; 绿色固体酸催化剂研究近况综述 摘 要:催化剂的研究和发展是现代化学工业的核心问题之一,现代化学工业的巨大成就是同使用催化剂联系在一起的。目前90%以上的化工产品,是借助催化剂生产出来的。工业催化的发展是紧随化学工业的演变而发展的。 催化剂和催化技术的研究与应用,对国名经济的许多重要部门是至关重要的。但就化工工艺过程来说,催化剂的应用可以具体概括为以下几个方面:更新原料路线,采用更廉价的原料;革新工艺流程,促进工艺过程的开发;缓和工艺操作条件,达到节能降耗的目的;开发新产品,提高产品收率,改善产品的质量;消除环境污染或开发从原来到产品的整个化工品过程,对资源的有效利用以及污染控制的环境友好的“绿色催化工艺”等。 引言:固体酸催化剂因其具有对多种化学反应有较高活性与选择性、回收重复利用效率较高等优点,已作为绿色环境友好型催化材料备受人们关注。本文主要综述了近年来国内外对各类型固体超强酸、杂多酸固体酸、离子交换树脂的研究近况,并提出了对今后固体酸催化剂发展的展望。 关键词:固体酸;催化剂 【正文】以往单纯追求眼前效益、罔顾环境所造成的危害近年来逐渐得到人们的重视。随着环保意识的增强,以及绿色化学的提出,越来越多的学者致力于开发效益兼顾环境、使化学工业促可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化领域中得到了广

相转移催化在有机合成中的应用

相转移催化在有机合成中的应用 摘要:本文介绍了相转移催化的优点,相转移催化剂的种类以及在有机合成反应中的应用。主要介绍了相转移催化在亲核取代反应、亲核烃基化反应、烯烃与氢卤酸的加成反应、消去反应以及利用Hofmann重排制备异氰酸酯反应。 关键词:相转移催化,有机合成 Phase Transfer Catalysis in Organic Synthesis Abstract: This article describes the advantages of phase transfer catalysis, phase transfer of the type of catalyst, as well as in organic synthesis reactions. The phase transfer catalysis in nucleophilic substitution reactions, nucleophilic alkylation, the olefin and hydrohalic acid addition reaction, elimination reaction and the preparation of isocyanate-reactive using Hofmann rearrangement. Key words: Phase Transfer Catalysis, Organic Synthesis 1相转移催化简介 相转移催化作用是指一种催化剂能加速或者能使分别处于互不相溶的两种溶剂(液-液两相体系或固-液两相体系)中的物质发生反应。反应时,催化剂把一种实际参加反应的实体(如负离子)从一相转移到另一相中,以便使它与底物相遇而发生反应。相转移催化是20世纪六十年代后期出现的一项技术相转移催化的方法,不需要特殊的仪器设备,也不需要价格昂贵的无水溶剂或非质子溶剂。并且反应条件温和,操作简便,副反应少,选择性高,利用相转移催化,能使许多在一般条件下反应速度很慢或不能进行的反应,大大提高反应速度而顺利进行。相转移催化在烃基化、亲核取代、消大以及氧化还原等各种类型的有机反应中都有养广泛的应用。因此相转移催化力一法在科研和化工生产中越来越受到重视,应用范围不断扩大,在有机合成中显露出重大的重大的意义[1]。 2相转移催化的优点 (1)反应条件温和,不再需要昂贵的无水溶剂或非质子溶剂,可以用廉价、非毒性、能回收的溶剂。 (2)反应温度降低,减少能耗,节约能源。

相关主题
文本预览
相关文档 最新文档