当前位置:文档之家› 导数及其应用复习课教案(共三课时).

导数及其应用复习课教案(共三课时).

导数及其应用复习课教案(共三课时).
导数及其应用复习课教案(共三课时).

导数及其应用复习课教案(共三课时)

复习目标:

1.熟记微积分的的基本概念及微积分基本定理,并能根据事例正确理解。

2.熟悉微积分的基本知识结构,记住并理解其联系。

3.会正确地求给定函数的导数,会正确地求给定函数在已知区间上的定积分。

4.能熟练应用导数研究函数的单调性、极值和最值。

5.能熟练解决定积分在几何和物理方面的应用。

复习重点:

1.熟记微积分的的基本概念及微积分基本定理,并能根据事例正确理解。

2.正确地求给定函数的导数,会正确地求给定函数在已知区间上的定积分。

3.熟练应用导数研究函数的单调性、极值和最值。

4.熟练解决定积分在几何和物理方面的应用。

复习难点:

1.熟记微积分的的基本概念及微积分基本定理,并能根据事例正确理解。

2.正确地求给定函数的导数,会正确地求给定函数在已知区间上的定积分。

3.熟练应用导数研究函数的单调性、极值和最值。

4.熟练解决定积分在几何和物理方面的应用。

第一课时

一.知识结构

二.知识点精析

(一)求函数的导数

1.导数的基本概念、变化率。

2.记住基本初等函数的导数公式

3.记住导数的四则运算

4.理解复合函数的求导,即[]'(())f x ?=''(())()f x x ??

(1)求初等函数的导数

注:'()a x =1a ax -(a 为常数) '()x a =ln x a a (a 0,1a >≠常数) '()x e =x e

(二)导数的应用

1.求函数的单调区间与极值

步骤:①求出函数的定义域,求导函数。

②求出导数为0的点(驻点)或导数不存在点。

③列表讨论

④总结

2.求函数的最大值与最小值

①闭区间[a ,b ]上连续函数()f x 一定能取到最大与最小值且最大值与最小值点一定包含在区间内部的驻点或内部导数不存在点及端点之中。

②应用题的最大与最小值。设所求的量为y ,设于有关量为x ,建立()y f x =,x D ∈,求()f x 的最大值或最小值。

定理:若0()f x 为唯一极值,若0()f x 为极大值,则0()f x 为最大值;若0()f x 为极小值,则0()f x 为最小值。

3.关于证明题:

(1)证明方程根的存在性

(2)证明不等式

(三)求不定积分

()()f x dx F x c =+?(其中'()()F x f x =,称()F x 是()f x 的一个原函数)

(四)定积分

1.定积分的概念(四个步骤、本质)(求曲边梯形的面积、变速直线运动的路程)

2.微积分基本定理: 若()f x 在[,a b ]上连续且()F x 是()f x 在[,a b ]上的一个原函数, 则()()()()b b

a a f x dx F x F

b F a ==-?。称为牛顿—莱布尼兹公式(牢牢记住)

3.应用定积分求面积的基本步骤和注意事项。三.例题讲析

例1 课本P73页题4.

例2 课本P73页题8.

例3 课本P74页题13.

例4 课本P75页题5.

四.练习与巩固

1.课本P73页题1—3;5—7.

2.课本P74页题9—12;14—17.

五.作业

课本P74页题11,16,17

课本P75页题6,7,8,9

处理《第二课堂》习题作为例题讲析以下题目:例1第3页例 2.

例2第4页例 1.

例3.第9页例 1.

例4第21页例 1.

例5第27页例 2.

例6第48页例 1.

练习与巩固

1.第5页能级训练.

2.第11页能级训练.

3.第16页能级训练.

4.第22页能级训练.

5.第30页能级训练.

6.第37页能级训练.

7.第43页能级训练.

8.第54页能级训练.

处理《第二课堂》习题

作为例题讲析以下题目:

例1第58页例 2.

例2第63页例 1.

例3.第67页例1、例2、例 3.

例4第72页例 2.

例5第27页例 2.

例6第81页例 5.

练习与巩固

1.第59页能级训练.

2.第64页能级训练.

3.第69页能级训练.

4.第75页能级训练.

5.第83页章末检测题.

高中导数及其应用教案

教育教师备课手册 教师 姓名 学生姓名填写时间2012.2.1 学科数学年级高三上课时间 10:00-12:00 课时 计划 2小时 教学目标 教学内容中考复习三角形 个性化学习问题解决基础知识回顾,典型例题分析 教学重点、难点 教学过程 导数及其运用 知识网络 第1讲导数的概念及运算 ★知识梳理★ 1.用定义求函数的导数的步骤. (1)求函数的改变量Δy;(2)求平均变化率 x y ? ? .(3)取极限,得导数f'(x0)= lim → ?x x y ? ? . 2.导数的几何意义和物理意义 几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的 物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处 的 解析:斜率.;瞬时速度. 导数的概念 基本初等函数的导数公式 导数 函数的单调性研究 函数的极值与最值研究 导数的定义 导数的物理及几何意义 导数的运算 导数的四则运算法则及复合函数的导数 导数的应用 最优化问题 计算定积分 定积分与微积分 的基本定理 定积分的应用

3. 几种常见函数的导数 'c =0(c 为常数);()n x '=1 n nx -(R n ∈); '(sin )x = ;'(cos )x = ; (ln )x '= 1x ; (log )a x '=1 log a e x ; '()x e =x e ;'()x a =ln x a a . 解析:cos ;sin ;x x - 4.运算法则 ①求导数的四则运算法则: ' ()u v ±=' ' u v ±;' ()uv = ;' u v ?? = ??? (0)v ≠. 解析:' ' u v uv +; '' 2 u v uv v - ②复合函数的求导法则:'(())x f x ?=''()()f u x ?或x u x u y y '''?= ★ 重 难 点 突 破 ★ 1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法 2.难点:切线方程的求法及复合函数求导 3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题. (1)平均变化率的实际含义是改变量与自变量的改变量的比。 问题1.比较函数()2x f x =与()3x g x =,当[1,2]x ∈时,平均增长率的大小. 点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是 (1)计算自变量的改变量21x x x ?=- (2)计算对应函数值的改变量22()()y f x f x ?=- (3)计算平均增长率: 2121 ()()f x f x y x x x -?=?- 对于()2x f x =,2111223,21y x ?-==?-又对于()3x g x =,212 233821 y x ?-==?- 故当[1,2]x ∈时, ()g x 的平均增长率大于()f x 的平均增长率. (2)求复合函数的导数要坚持“将求导进行到底”的原则, 问题2. 已知2 )2cos 1(x y +=,则='y . 点拨:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

导数的应用(习题课)优秀教学设计

§1.3 导数的应用(习题课)教学设计 【教材分析】 本节课是人教A版选修2-2第一章第三节内容,前面已经学习了利用导数求解函数的单调性、极值、最值、零点等问题,本节课是在前节内容的基础上,进一步学习如何利用导数研究不等式恒成立问题。这个问题属于高考压轴题的范畴,本节主要从“套路”和“模型”的角度出发,体现导数的工具性特征。 【学情分析】 学生已经学习了导数的基础知识,知道了一些解题的基本思路,但如何利用导数来解决一些较难的问题,完成对压轴题的“破冰”,学生还是无能为力,这是本节课的困难,需要进行不断的引导与强化。 【教学目标】 1、知识与技能: (1)能利用导数研究函数的单调性、极值、最值、零点等问题及不等式恒成立问题; (2)能够利用导数作图,反之可以利用图像来研究函数的性质; 2、过程与方法: 导数作为一种工具,是高中数学诸多知识的一个交汇点。通过教师思路上的引导,小组合作探究,能让学生从诸多条件中抽丝剥茧,发现解决方法,从而提高学生发现问题、解决问题的能力,深化对问题的认识,在过程中获得思维能力的提高。 3、情感与价值观: 培养学生主动学习,合作交流的意识,互相启发,相互促进,充分发挥各自的主观能动性,激发学生的学习兴趣,完善学习成果。 【教学重点】 利用“套路”和“模型”来研究导数研究不等式恒成立问题。 【教学难点】 (1)基本模型的熟悉与应用;(2)问题如何转化成“模型”来处理。 【课时设计】 两个课时,其中一个0.5个课时完成课堂练习,1.5个课时完成后面内容。 【教学策略】 采用练、评、讲的教学方法,利用几何画板、多媒体投影仪辅助教学。

【教学过程】 一、课堂练习(提前印发给学生) 问题 设计意图师生活动1、解决导数在函数中的应用问题的一般步骤:构造函数 求 求导 求 →→→ 求极值、最值 求问题的解 →→回顾定义,明确方法。 学生自主完成。 2、曲线在处的切线方程为 .x x y ln 2=e x =3、函数的单调递减区间为 . 1ln -=x x y 4、函数的极小值点为( ) x x e y x 2-=A. 1 B. C. D.2-e )2,1(-e ) ,1(e 5、函数的零点个数为( )x xe y =A. 0 B. 1 C. 2 D. 3 6、若不等式恒成立,则实数的取值范围为0ln >-x ax a ( ) A. B. C. D.??????+∞,1e [)+∞,e ??? ??+∞,1e ??? ? ? ∞-e 1,左边5个题均是导数应用中的基础题型, 练习的目的如下:1、巩固求解切线、单调区间、极值点、 零点的一般步骤;2、熟练掌握简单复合函数的求导,并能根据导函数画出原函数图像,深化对导数的理解。 学生自主完成,并 总结求解步骤,注意事项。 二、列表比较常考函数的图像与性质:(课堂完成) 教师:通过以上5个题目我们发现,含对数指数的复合函数出现的频率很高,事实上在高考中考查的也很频繁,下面我们对这几类函数进行单独研究,后期就会有意想不到收获。 学生:独立完成下表,小组内部讨论结论是否正确。 设计意图:针对高考的热点问题进行练习,先追根溯源,找到构成问题的“基本元素”,再由简到繁,引导学生体会解题思路,有意识去提炼总结,提高学生解题能力的同时增强自信心。原函数 x xe y =x e y x = x e x y = x x y ln =x x y ln = x x y ln = 定义域

2020版高中数学高二选修1-1教案及练习归纳整理70知识讲解导数的综合应用题基础

《导数及其应用》全章复习与巩固 编稿:李 霞 审稿: 张林娟 【学习目标】 1. 会利用导数解决曲线的切线的问题. 2. 会利用导数解决函数的单调性等有关问题. 3. 会利用导数解决函数的极值、最值等有关问题. 4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题 【要点梳理】 要点一:有关切线问题 直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上; ③切线斜率等于曲线在切点处的导数值. 要点诠释: 通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组. 要点二:有关函数单调性的问题 设函数()y f x =在区间(a,b)内可导, (1)如果恒有'()0f x >,则函数()f x 在(a,b)内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a,b)内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a,b)内为常数函数. 要点诠释: (1)若函数()f x 在区间(a,b)内单调递增,则'()0f x ≥,若函数()f x 在(a,b)内单调递减,则 '()0f x ≤. (2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤. ② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥.

(或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题 (1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根; (4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域 ②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点. 注意:无定义的点不用在表中列出 ③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值. 要点诠释: ①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可. ②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值.

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

导数及其应用 复习课 教案

导数及其应用复习课教案 【教材分析】 导数及其应用内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用. 先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题. 该部分共分三节,第三节则是“导数的应用”,内容包括利用导数求切线方程;判断函数的单调性;利用导数研究函数的最值、极值;导数的实际应用. 在“利用导数求切线方程”中介绍了利用导函数的几何意义求切线的斜率,进而求解切线方程;在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题. 【考纲解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 1.导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等. 2.与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目. 【教学目标】 1.能熟练应用导数的几何意义求解切线方程 2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学重点】 理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学难点】 原函数和导函数的图像“互译”,解决一些恒成立问题 【学法】 本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。【教法】 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

痛点五 导数中的综合问题(原卷版)

痛点五 导数中的综合问题 一、单选题 1.函数()() 2 21 1x f x x -= -的大致图象是( ). A . B . C . D . 2.已知()f x 的导函数为()f x ',且满足()()21ln f x xf x '=-,则1f e ?? '= ??? ( ) A .12e - B .2e - C .2e -- D .12e -- 3.已知函数()ln k f x x x =+(k ∈R )若对任意120x x >>,()()1212f x f x x x -<-恒成立,则k 的取值范围是( ) A .1,4??+∞???? B .1,4??+∞ ??? C .(0,)+∞ D .[)0,+∞ 4.已知函数()2b f x x ax =+的导数()23f x x '=+,则数列()()* 12n f n ????∈??+???? N 的前n 项和是( ) A .1 n n + B .()121n n -+ C .() 22n n + D . ()() 12n n n ++ 5.若函数()f x 的定义域是R ,()02f =,()()1f x f x '+<,则不等式的()1x x e f x e >+的解集为( ) A .(),0-∞ B .()(),11,-∞-+∞ C .()0,∞+ D .()(),00,-∞?+∞ 6.曲线1C :2y x 与曲线2C :ln y x =公切线的条数是( )

A .0 B .1 C .2 D .3 7.若函数()2 ln f x x x bx =+-在[ )1,+∞是增函数,则b 的最大值是( ) A .3 B .22 C .2 D .2 8.已知函数()f x 的定义域为[]1,4-,部分对应值如下表,()f x 的导函数()'y f x =的图象如图所示.当 01a <<时,函数()()()22 21y f x a f x a a =-+++的零点个数为( ) x -1 0 2 3 4 ()f x 1 2 2 A .4 B .5 C .6 D .7 9.设函数2()21ln f x x x a x =-++有两个极值点1x ,2x ,且12x x <,则()2f x 的取值范围是( ) A .12ln 20, 4+?? ??? B .12ln 2,4-??-∞ ??? C .12ln 2,4+??+∞ ??? D .12ln 2,04-?? ??? 10.设曲线()4ln f x x =在点()1,0处的切线上有一动点P ,曲线()2 32ln g x x x =-.上有一点Q ,则线段PQ 长度的最小值为( ) A . 17 17 B 217 C . 317 17 D 417 11.已知关于x 的方程为222 2(3)23(3)x x x e x e e --=+-则其实根的个数为( ) A .2 B .3 C .4 D .5 12.已知函数()22ln ,03,02x x x x f x x x x ->?? =?--≤??的图象上有且仅有四个不同的点关于直线1y =的对称点在 10kx y +-=的图象上,则实数k 的取值范围是( )

高中数学第一章导数及其应用1.1.1平均变化率教案

§1.1.1平均变化率 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. (一)、探究新知,揭示概念 教学过程设计 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. (二)、探究新知,揭示概念 实例一:气温的变化问题 现有南京市某年3月18日-4月20日每天气温最高温度统计图: (注:3月18日 为第一天) 1、你从图中获得了哪些信息? 2 、在“4月18日到20日”,该地市民普遍感觉“气温骤增”,而在“3月18日到4月18日”却没有这

样的感觉,这是什么原因呢? 3、 怎样从数学的角度描述“气温变化的快慢程度”呢? 师生讨论,教师板书总结: 分析:这一问题中,存在两个变量“时间”和“气温”, 当时间从1到32,气温从3.5o C 增加到18.6o C ,气温平均变化 当时间从32到34,气温从18.6o C 增加到33.4o C ,气温平均变化 因为7.4>0.5, 所以,从32日到34日,气温变化的更快一些。 【教师过渡】:“ 18.6 3.5 0.5321 -≈- 表示时间从“3月18日到4月18日”时,气温的平均变化率。 提出问题:先说一说“平均”的含义,再说一说你对 “气温平均变化率”的理解。 实例二:气球的平均膨胀率问题。 【提出问题】:回忆吹气球的过程,随着气球内空气容量的增加,气球半径增长的快慢相同吗? 学生思考回答。 假设每次吹入气球内的空气容量是相等的,如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢? 思考: 1、 这一问题与“气温的变化问题”有哪些相同的地方?你打算怎样做呢? 2、如何从数学的角度解释“随着气球内空气容量的增加,气球半径增长的越来越慢”这一现象呢?先独立思考,再在小组内交流你的想法。 学生讨论,小组交流,教师巡视。 学生充分讨论后,指名不同学生上台演示交流。 【教师过渡】:“在小组交流中,同学们采用了不同的方法解决这一问题,一部分从图形的角度入手,另一部分通过计算进行具体的量化,下面我们借助Excel 的自动计算功能与插入图表功能来研究这一问题。” (1)、观察表格,你发现了什么?(教师操作,Excel 演示) 18.6 3.50.5 321 -≈-33.418.6 7.4 3432-≈-

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

高中数学人教A版选修1-1 第三章导数及其应用 13

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1.如果函数y =ax +b 在区间[1,2]上的平均变化率为3,则a = ( ) A .-3 B .2 C .3 D .-2 【解析】 根据平均变化率的定义,可知Δy Δx =(2a +b )-(a +b )2-1 =a =3.故选C. 【答案】 C 2.若函数f (x )=-x 2 +10的图象上一点? ????32,314及邻近一点? ?? ??32+Δx ,314+Δy ,则Δy Δx =( ) A .3 B .-3 C .-3-(Δx )2 D .-Δx -3 【解析】 ∵Δy =f ? ????32+Δx -f ? ?? ??32=-3Δx -(Δx )2, ∴Δy Δx =-3Δx -(Δx )2 Δx =-3-Δx .故选D. 【答案】 D 3.若质点A 按照规律s =3t 2运动,则在t =3时的瞬时速度为( ) A .6 B .18 C .54 D .81

【解析】因为Δs Δt= 3(3+Δt)2-3×32 Δt= 18Δt+3(Δt)2 Δt=18+3Δt, 所以lim Δt→0Δs Δt=18. 【答案】 B 4.如图3-1-1,函数y=f(x)在A,B两点间的平均变化率是() 图3-1-1 A.1 B.-1 C.2 D.-2 【解析】Δy Δx= f(3)-f(1) 3-1 = 1-3 2=-1. 【答案】 B 5.已知函数f(x)=13-8x+2x2,且f′(x0)=4,则x0的值为() A.0 B.3 C.3 2 D.6 2 【解析】f′(x0)=lim Δx→0Δy Δx= lim Δx→0[13-8(x0+Δx)+2(x0+Δx)2]-(13-8x0+2x20) Δx =lim Δx→0-8Δx+22x0Δx+2(Δx)2 Δx =lim Δx→0 (-8+22x0+2Δx) =-8+22x0=4,所以x0=3 2. 【答案】 C 二、填空题

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结 一、导数的概念和几何意义 1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为: 2121 ()() f x f x x x --。 2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ?无限趋近于0时,比值00()()f x x f x y x x +?-?=??无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ?=+?-;(2)求平均变化率:00()()f x x f x x +?-?;(3)取极限,当x ?无限趋近与0时,00()() f x x f x x +?-?无限趋近与一个常数A ,则 0()f x A '=. 4. 导数的几何意义: 函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。 当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。 5. 导数的物理意义: 质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。 二、导数的运算 1. 常见函数的导数: (1)()kx b k '+=(k , b 为常数); (2)0C '=(C 为常数); (3)()1x '=; (4)2()2x x '=; (5)32()3x x '=; (6)211()x x '=-; (7 )'; (8)1()ααx αx -'=(α为常数);

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

相关主题
文本预览
相关文档 最新文档