当前位置:文档之家› IR2104 mos管驱动

IR2104 mos管驱动

IR2104 mos管驱动
IR2104 mos管驱动

Data Sheet No. PD60046-S

Typical Connection

Product Summary

HALF-BRIDGE DRIVER

Features

?Fully operational to +600V

dV/dt immune

??Undervoltage lockout

???Internally set deadtime

????Also available LEAD-FREE

Description

operates from 10 to 600 volts.

https://www.doczj.com/doc/5016111910.html, 1

IR2104(S ) & (PbF)

查询IR2104供应商

2

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Note 1: Logic operational for V S of -5 to +600V. L ogic state held for V S of -5V to -V BS . (Please refer to the Design Tip DT97-3 for more details).

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V S offset rating is tested with all supplies biased at 15V differential.

3

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

Dynamic Electrical Characteristics

V BIAS (V CC , V BS ) = 15V, C L = 1000 pF and T A = 25°C unless otherwise specified.

4

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

Functional Block Diagram

Lead Definitions

Symbol Description

IN

Logic input for high and low side gate driver outputs (HO and LO), in phase with HO Logic input for shutdown V B

High side floating supply HO High side gate drive output V S High side floating supply return V CC Low side and logic fixed supply LO Low side gate drive output COM

Low side return

SD

Lead Assignments

8 Lead PDIP 8 Lead SOIC

IR2104

IR2104S

1234

8

765

V CC IN SD COM

V B HO V S LO

1234

8

765

V CC IN SD COM

V B HO V S LO

5

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html, Figure 5. Delay Matching Waveform Definitions

Figure 4. Deadtime Waveform Definitions

Figure 3. Shutdown Waveform Definitions

Figure 1. Input/Output Timing Diagram

SD

IN

HO LO

Figure 2. Switching Time Waveform Definitions

6

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

7

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

8

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

9

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

10

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

11

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

IR2104(S) & (PbF)

13

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

14

IR2104(S

) & (PbF)

https://www.doczj.com/doc/5016111910.html,

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Per SCOP 200-002

Basic Part (Non-Lead Free)

8-Lead PDIP IR2104 order IR21048-Lead SOIC IR2104S order IR2104S Leadfree Part

8-Lead PDIP IR2104 order IR2104PbF 8-Lead SOIC IR2104S order IR2104SPbF

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

This product has been qualified per industrial level

Data and specifications subject to change without notice. 4/2/2004

脉冲驱动激光二极管

脉冲驱动激光二极管

脉冲驱动激光二极管 by Doug Hodgson, Kent Noonan, Bill Olsen, and Thad Orosz 介绍 相对较高的峰值功率和工作效率使得脉冲激光二极管成为固态激光器泵浦和范围测定这类应用的理想选择。脉冲激光二极管工作时通常占空比相对较低,因此平均功率较低,这样就可能达到更高的峰值功率。所以产生的热量并不很高。另一方面,连续波激光二极管要承受的热量比脉冲激光器高。这是由于在连续波工作期间,器件的热电阻使得结温度显著增加。所以连续波激光二极管一般需要很好的热沉封装和/或用热电致冷。 脉冲驱动激光二极管是测试其质量和热效率的一个强大的分析工具。本文描述了通过用电流脉冲驱动激光二极管来进行测试的方法,提出了脉冲驱动激光二极管的几点困难,并给出了克服或避免的方法。文中介绍了一个简单的实验,用ILX Lightwave LDP-3811脉冲电流源来驱动一个典型的激光二极管。这里主要表现的是脉冲驱动二极管出现的问题。最后描述了LDP-3811的典型应用。 为什么要脉冲驱动一个连续波激光二极管? 在低占空比情况下脉冲驱动连续波激光二极管的能力在二极管评测中很有用。其应用可划分为两个广泛领域。第一个是封装前通过/失败测试;第二个是器件特性评价。这两种应用都利用了脉冲方式驱动激光二极管不会产生大量热量的优点。可在热效应最小的情况下完成测试和特性评价。 封装前测试 对于这种应用,低占空比的脉冲可用于半 导体制造工艺后的晶圆或条级测试。单点 光测量或L/I曲线(光输出vs.驱动电流)能用来“预筛选”工艺处理后的晶圆。它能将有缺陷的晶圆在花费不匪的切割和 封装操作之前就清除掉,建立制造工艺的成品率数目和性能。(注意对于这些测试相对测量比绝对精度更重要。) 特性测试 脉冲测试的第二个应用领域是对封装好的器件的特性测试。很多关于激光二极管特性的工业文档既推荐连续波测试也推荐脉冲波测试。(贝尔交流研究出版的题为“光电器件可靠性保证实践”的技术咨询文档TA-TSY-000983就是这样。)通过比较脉冲和连续波工作方式,可以评测像输出功率、波长和阈值电流这样一些与温度相关的参数。图1所示的是一个典型激光二极管的L/I曲线。 这些曲线既表示了低占空比脉冲模式,又表示了连续波工作模式。连续波曲线阈值电流的增加和斜率效率的略微减少(与脉冲曲线比较)主要是由器件热电阻引起的结温度上升造成。(脉冲L/I曲线所用的脉宽一般为100至500ns,占空比小于百分之一,因此热效应不明显。) 脉冲与连续波L/I曲线的比较也可用来检图1 典型激光二极管的脉冲及连续波L/I曲线

MOS管及MOS管的驱动电路设计

MOS管及MOS管的驱动电路设计 MOS管及MOS管的驱动电路设计 摘要:本文将对MOSFET的种类,结构,特性及应用电路作一简单介绍,并控讨了一下MOSFET驱动电路设计问题在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。右图是这两种MOS管的符号。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。下图是MOS管的构造图,通常的原理图中都画成右图所示的样子。(栅极保护用二极管有时不画) MOS管的三个管脚之间有寄生电容存在,如右图所示。这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,在MOS管的驱动电路设计时再详细介绍。

2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V 或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,使用与源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 右图是瑞萨2SK3418的Vgs电压和Vds电压的关系图。可以看出小电流时,Vgs达到4V,DS间压降已经很小,可以认为导通。 3、MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,因而在DS间流过电流的同时,两端还会有电压(如 2SK3418特性图所示),这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。

功率场效应管原理

功率场效应晶体管(MOSFET)原理 功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。 一、电力场效应管的结构和工作原理 电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。在电力电子装置中,主要应用N沟道增强型。 电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。 电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。电气符号,如图1(b)所示。

电力场效应晶体管有3个端子:漏极D、源极S和栅极G。当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。U GS超过U T越大,导电能力越强,漏极电流越大。 二、电力场效应管的静态特性和主要参数 Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。{{分页}} 1、静态特性 (1)输出特性 输出特性即是漏极的伏安特性。特性曲线,如图2(b)所示。由图所见,输出特性分为截止、饱和与非饱和3个区域。这里饱和、非饱和的概念与GTR不同。饱和是指漏极电流I D不随漏源电压U DS的增加而增加,也就是基本保持不变;非饱和是指地U CS 一定时,I D随U DS增加呈线性关系变化。 (2)转移特性

Maxim 激光驱动器和激光二极管的接口(1)

Maxim 激光驱动器和激光二极管的接口 Maxim 高频/光纤通信部 一概述 用激光驱动器驱动高速商用激光二极管是设计人员所面临的一项挑战本文旨在就这一主题为光学系统设计者提供参考以尽可能地简化设计过程激光管接口电路的设计难点在于 激光驱动器的输出电 路 激光二极管的电气特性和 二者之间的接口 (通常采用印刷电路板实现 ) 以下首先讨论激光二极管和激光驱动器的电气特性然后再结合二者讨论印刷电路板的接口以Maxim 的 2.5 Gbps 通信激光驱动器 MAX3867 和 MAX3869 为例来说明典型的应用 二激光二极管特性 流过激光管的电流超过它的门限值时半导体激光二极管产生并保持连续的光输出对于快速开关操作激光二极管的偏置需略高于门限以避免开关延迟激光输出的强弱取决于驱动电流的幅度电流-光转换效率或激光二极管的斜率效率门限电流和斜率效率取决于激光器结构制造工艺材料和工作温 度 图1给出了典型激光二极管的电压-电流特性和光输出与驱动电流的关系当温度升高时门限电流将以指数方式增加可近似用下式表示 I T T I th e K I T I ?+=0)( (1) 式中 I 0, K I 和 T I 是激光器常数例如对DBF 激光器 I 0 = 1.8mA, K I = 3.85mA, T I = 40°C 激光器的斜率效率(S) 是输出光功率 (mW) 与输入电流mA)的比值温度升高将导致斜率效率降低下式较好地表示了斜率效率与温度的函数关系 S T T S e K S T S ??=0)( (2) 对上述同样的DFB 激光器特征温度T S 近似等于40°C 其它两个参数 S 0 = 0.485mW/mA K S = 0.033mW/mA 激光管工作电压正向电压V 和电流I 的关系可由二极管的电压和电流特性模型来表示 T V V S e I I ??≈η, (3) 其中 I S 是二极管饱和电流 V T 是热电压η是结构常数当激光二极管被驱动至门限上下时电压和电流的关系近似为线性如图1所示 图2是激光二极管的简化模型图中直流偏置电压V BG 是激光二极管的带隙电压 R L 是二极管的动态电阻当驱动激光管至门限以上时激光管的输出光功率P 0 (图2)可由下式来表示 )(0th I I S P ??= (4) 图2. 简化的激光二极管等效电路 激光管电流

MOS管工作原理及其驱动电路

MOS管工作原理及其驱动电路 1.概述 MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导 体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的 栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。 功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS 型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。 结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单, 需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流 容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。 2.功率MOSFET的结构和工作原理 功率MOSFET的种类:按导电沟道可分为P沟道和N沟道。按栅极电压幅值 可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对 于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率MOSFET 主要是N沟道增强型。 2.1功率MOSFET的结构 功率MOSFET的内部结构和电气符号如图1所示;其导通时只有一种极性的 载流子(多子)参与导电,是单极型晶体管。导电机理与小功率mos管相同, 但结构上有较大区别,小功率MOS管是横向导电器件,功率MOSFET大都采用垂 直导电结构,又称为VMOSFET(Vertical MOSFET),大大提高了MOSFET器件 的耐压和耐电流能力。

场效应管电机驱动-MOS管H桥原理

精心整理 场效应管电机驱动-MOS管H桥原理 所谓的H桥电路就是控制电机正反转的。下图就是一种简单的H桥电路,它由2个P型场效应管Q1、Q2与2个N型场效应管Q3、Q3组成,所以它叫P-NMOS管H桥。 与非网 模拟与电源技术社区 桥臂上的4个场效应管相当于四个开关,P型管在栅极为低电平时导通,高电平时关闭;N型管在栅极为高电平时导通,低电平时关闭。场效应管是电压控制型元件,栅极通过的电流几乎为“零”。 正因为这个特点,在连接好下图电路后,控制臂1置高电平(U=VCC)、控制臂2置低电平(U=0)时,Q1、Q4关闭,Q2、Q3导通,电机左端低电平,右端高电平,所以电流沿箭头方向流动。设为电机正转。 与非网 模拟与电源技术社区 控制臂1置低电平、控制臂2置高电平时,Q2、Q3关闭,Q1、Q4导通,电机左端高电平,右端低电平,所以电流沿箭头方向流动。设为电机反转。

与非网 模拟与电源技术社区 当控制臂1、2均为低电平时,Q1、Q2导通,Q3、Q4关闭,电机两端均为高电平,电机不转; 当控制臂1、2均为高电平时,Q1、Q2关闭,Q3、Q4导通,电机两端均为低电平,电机也不转, 所以,此电路有一个优点就是无论控制臂状态如何(绝不允许悬空状态),H桥都不会出现“共态导通”(短路),很适合我们使用。 (另外还有4个N型场效应管的H桥,内阻更小,有“共态导通”现象,栅极驱动电路较复杂,或用专用驱动芯片,如MC33883,原理基本相似,不再赘述。) 下面是由与非门CD4011组成的栅极驱动电路,因为单片机输出电压为0~5V,而我们小车使用的H桥的控制臂需要0V或7.2V电压才能使场效应管完全导通,PWM输入0V或5V时,栅极驱动电路输出电压为0V或7.2V,前提是CD4011电源电压为7.2V。切记!! 故CD4011仅做“电压放大”之用。之所以用两级与非门是为了与MC33886兼容。

分享一个比较经典的MOS管驱动电路

问题提出: 现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V 左右的压降,导致实际最终加在gate上的电压只有4.3V。这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。 为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate 电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。 同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。 3,双电压应用 在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。两个电压采用共地方式连接。 这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS 管,同时高压侧的MOS管也同样会面对1和2中提到的问题。 在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。 于是我设计了一个相对通用的电路来满足这三种需求。 电路图如下:

图1 用于NMOS的驱动电路 图2 用于PMOS的驱动电路 这里我只针对NMOS驱动电路做一个简单分析: Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超

MOS管驱动直流电机

直流电机驱动课程设计题目:MOS管电机驱动设计

摘要 直流电动机具有优良的调速特性,调速平滑,方便,调速范围广,过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程中自动化系统各种不同的特殊运行要求。 本文介绍了直流电机驱动控制装置(H桥驱动)的设计与制作,系统采用分立元件搭建H桥驱动电路,PWM调速信号由单片机提供,信号与H桥驱动电路之间采用光电耦合器隔离,电机的驱动运转控制由PLC可编程逻辑控制器实现。 关键词:直流电动机,H桥驱动,PWM

目录 一、直流电机概述 (4) 二、直流电机驱动控制 (6) 三、直流电机驱动硬件设计 (8) 四、直流电机驱动软件设计 (9) 五、程序代码 (12) 六、参考文献 (18)

一、概述 19世纪70年代前后相继诞生了直流电动机和交流电动机,从此人类社会进入了以电动机为动力设备的时代。以电动机作为动力机械,为人类社会的发展和进步、工业生产的现代化起到了巨大的推动作用。在用电系统中,电动机作为主要的动力设备而广泛地应用于工农业生产、国防、科技及社会生活等各个方面。电动机负荷约占总发电量的70%,成为用电量最多的电气设备。对电动机的控制可分为简单控制和复杂控制两种。简单控制对电动机进行启动、制动、正反转控制和顺序控制。这类控制可通过继电器、可编程控制器和开关元件来实现。复杂控制是对电动机的转速、转角、转矩、电压、电流等物理量进行控制,而且有时往往需要非常精确的控制。以前对电动机的简单控制应用较多,但是,随着现代化步伐的迈进,人们对自动化的需求越来越高,使电动机的复杂控制变成主流,其应用领域极其广泛。电动机控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术、微机应用技术的最新发展成就。正是这些技术的进步,使电动机控制技术在近二十多年内发生了翻天覆地的变化。其中电动机控制部分已由模拟控制让位给以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统的应用,并向全数字控制系统的方向快速发展。电动机驱动部分所用的功率器件经历了几次更新换代,目前开关速度更快,控制更容易的

场效应管驱动电阻的经典计算方法

Q L Rg Cgs DR IVE VC C 12V

驱动电压: 驱动电流: 可以看到当Rg比较小时驱动电压上冲会比较高,震荡比较多,L越大越明显,此时会对MOSFET及其他器件性能产生影响。但是阻值过大时驱动波形上升比较慢,当MOSFET有较大电流通过时会有不利影响。 此外也要看到,当L比较小时, 此时驱动电流的峰值比较大,而一般 IC的驱动电流输出能力都是有一定 限制的,当实际驱动电流达到IC输 出的最大值时,此时IC输出相当于 一个恒流源,对Cgs线性充电,驱动 电压波形的上升率会变慢。电流曲线 就可能如左图所示(此时由于电流不 变,电感不起作用)。这样可能会对 IC的可靠性产生影响,电压波形上升 段可能会产生一个小的台阶或毛刺。

TR(nS) 19 49 230 20 45 229 Rg(ohm) 10 22 100 10 22 100 L(nH) 30 30 30 80 80 80 可以看到L 对上升时间的影响比较小,主要还是Rg 影响比较大。上升时间可以用2*Rg*Cgs 来近似估算,通常上升时间小于导通时间的二十分之一时,MOSFET 开关导通时的损耗不致于会太大造成发热问题,因此当MOSFET 的最小导通时间确定后Rg 最大值 也就确定了 Rg 140Ton_min Cgs ,一般Rg 在取值范围内越小越好,但是考虑EMI 的话可以 适当取大。 以上讨论的是MOSFET ON 状态时电阻的选择,在MOSFET OFF 状态时为了保证栅极电荷快速泻放,此时阻值要尽量小,这也是Rsink

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

场效应管电机驱动MOS管H桥原理

场效应管电机驱动M O S 管H 桥原理 所谓的H桥电路就是控制电机正反转的。下图就是一种简单的H桥电路,它由2个P型场 效应管Q1 Q2与2个N型场效应管Q3 Q3组成,所以它叫P-NMO管H桥。 与非网 模拟与电源技术社区 桥臂上的4个场效应管相当于四个开关,P型管在栅极为低电平时导通,高电平时关闭;N 型管在栅极为高电平时导通,低电平时关闭。场效应管是电压控制型元件,栅极通过的电流几乎为“零”。 正因为这个特点,在连接好下图电路后,控制臂1置高电平(U=VCC、控制臂2置低电平 (U=0时,Q1 Q4关闭,Q2 Q3导通,电机左端低电平,右端高电平,所以电流沿箭头 方向流动。设为电机正转

与非网 模拟与电源技术社区 控制臂1置低电平、控制臂2置高电平时,Q2 Q3关闭,Q1、Q4导通,电机左端高电平, 右端低电平,所以电流沿箭头方向流动。设为电机反转

与非网 模拟与电源技术社区 当控制臂1、2均为低电平时,Q1、Q2导通,Q3 Q4关闭,电机两端均为高电平,电机不转;当控制臂1、2均为高电平时,Q1、Q2关闭,Q3 Q4导通,电机两端均为低电平,电机也不转,所以,此电路有一个优点就是无论控制臂状态如何(绝不允许悬空状态),H桥都不会出 现“共态导通”(短路),很适合我们使用。

(另外还有4个N型场效应管的H桥,内阻更小,有“共态导通”现象,栅极驱动电路较 复杂,或用专用驱动芯片,如MC33883原理基本相似,不再赘述。) 下面是由与非门CD4011组成的栅极驱动电路,因为单片机输出电压为0~5V,而我们小车 使用的H桥的控制臂需要0V或7.2V电压才能使场效应管完全导通,PW输入0V或5V时, 栅极驱动电路输出电压为0V或7.2V,前提是CD4011电源电压为7.2V。切记!! 故CD4011仅做“电压放大”之用。之所以用两级与非门是为了与MC33886兼容 与非网 模拟与电源技术社区 两者结合就是卜面的电调试时两个PW输入端其中一个接地,另一个悬空(上拉置1),电机转为正常。监视MOS管温度,如发热立即切断电源检查电路。

一种大功率场效应管隔离驱动电路

一种大功率场效应管隔离驱动电路 余洋云南交通技术学院 摘要:本文介绍了一种高性能的的大功率场效应管隔离驱动电路,并就其技术原理、性能、特点以及运用做了详细的阐述。 关键词:场效应管,隔离,驱动电路 A high power MOSFET isolated driver circuit Yu Yang yunnan traffic institute of technology abstract:This article describes one model of china-made high-power MOSFET Isolation drive Circuit and detailed introduction of its performance,features and application. Keywords: MOSFET, Isolation, drive Circuit 1 概述 大功率场效应管因工作频率高,驱动损耗小等优点在高频大功率电子设备中成为不可替代的功率半导体器件,尤其是在高频大功率开关电源以及高频感应加热设备中,大功率场效应管几乎是了唯一可以选择的功率器件。由于主回路工作电压高,驱动功率大,且开关频率高,为了减少功率变换电路对控制电路(尤其是以DSP等数字处理器为核心的控制系统)干扰,实际运用中需要把功率电路和控制电路隔离,因此就需要具有隔离驱动功能的大功率场效应管驱动电路。目前市场上的场效应驱动器很多,但大多以IR公司的小功率的专用IC为主,这类IC 的缺点在于本能实现控制电路与功率电路的隔离驱动,且驱动能力小。本文向大家介绍的大功率场效应管隔离驱动电路具有驱动功率大、工作频率高、电路简单等特点,可应用于250A/1000V以内容量的大功率场效应管隔离驱动。 电路采用了变压器调制解调隔离驱动技术,信号延迟时间短,抗干扰能力强;采用了干扰脉冲抑制技术,脉冲宽度小于调制电路RS触发器1/2时钟周期宽度的干扰脉冲都将被忽略;内部集成隔离的DC/DC变换电路,只需外供15V电源即可稳定工作。

激光驱动器与激光二极管接口优化调试

激光驱动器与激光二极管接口优化调试 Maxim高频/光纤通信部 一、概述: 在激光驱动器与激光二极管的接口电路设计中,即使是对电路做了仔细、周密的考虑,也很难达到最优状态,系统调试过程中仍需对各部分电路加以调整、优化,图1是采用Maxim的2.5Gbps激光驱动器MAX3869构成的激光驱动器典型连接电路。本文以该电路为例,以激光二极管的输出通过光电(O/E)转换后显示在示波器上的波形为基础,列举了一些通用接口问题和可能的解决办法。 二、优化设计 以下列举了八个常见激光管接口问题,激光管的输入是伪随机比特流(PRBS)。 A. 眼图不清晰(图2): 图2中,在显示的眼图最下面有黑色水平线。当减少偏置电流时,波形会被压缩,波形上端下移,底端固定不变。导致这一问题的原因可能是偏置电流设置得太低,数字零电平低于激光管的门限。可以提高激光管的偏置电流,直到示波器上的波形开始上移(表示数字零电平已高于激光管门限),当偏置电流增加时,眼图会变得清晰可辨。 B. 欠阻尼振荡(图3): 在波形图上有较大的过冲,示波器显示的眼图最下方有黑色水平线。减小偏置电流使数字1电平下移,但过冲幅度保持不变,甚至增大。偏置电流减小时波形底端(数字0电平)保持不变。 造成这一现象的可能原因是偏置电流设得太低。数字0电平低于激光管的门限。当激光管从低于门限电平向高电平切换时需要额外的时间,从而导致了上升边沿的延迟。开关延迟使电势积累增加,一旦克服了门限就冲过数字1电平(被称作欠阻尼振荡)。可通过提高激光管的偏置电流解决,提高激光管的偏置电流直到示波器上的波形开始上移(表示数字零电流已高于激光管门限)。当数字0电平高于门限值后,过冲将显著减少。 C. 过冲(图4): 图4所示,波形的上升沿冲过了数字1电平。当偏置电流和调制电流变化时过冲的相对幅度没有变化。没有明显的振铃。可能原因有两个:(a)上升太快,(b)用于上拉的铁氧体磁珠Q 值太高。解决的方法是:(a)插入截止频率为75%数据率的低通滤波器,减慢上升和下降沿,减小过冲。(b)降低与铁氧体磁珠并联的电阻(图1中的RP)阻值,使Q值降低。(c)调整串联阻尼电阻(图1中的RD)。 D. 欠冲(图5): 当输出电路过阻尼会造成欠冲现象,示波器显示波形的上升或下降沿在单个间隔的前半部分不能到达高或低电平。这是由置于OUT+ 和OUT-间的0.5pF 电容(用来阻尼某些振铃)引起的。 解决途径有:(a)如果可能,减小OUT+和OUT-间的电容。(b) 减小OUT+的负载电容。(c)减小串联阻尼电阻(图1中的RD)的值。 E. 振铃(图6): 振铃指的是眼图的上升或下降沿相对于正确电平出现振荡、振幅逐渐衰减的现象。可能原因是: 阻抗不匹配,电路中电感过大,电路元件产生谐振。在图6显示的图像中,振铃是由拿

分享一个比较经典的MOS管驱动电路

问题提出:现在的MOS驱动,有几个特别的需求, 1,低压应用 当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate 上的电压只有。这时候,我们选用标称gate 电压的MOS管就存在一定的风险。 同样的问题也发生在使用3V或者其他低压电源的场合。 2,宽电压应用 输入电压并不是一个固定值,它会随着时间或者其他因素而变动。这个变动导致PWM fe 路提供给MOS管的驱动电压是不稳定的。 为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。同时,如果简单的用电阻分压的原理降低gate 电压,就会出现输入电压比较高的时候,MOS I工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。 3,双电压应用

在一些控制电路中,逻辑部分使用典型的5V 或者数字电压,而功率部分使用12V 甚至更高的电压。两个电压采用共地方式连接。 这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS 管,同时高压侧的MOS t也同样会面对1和2中提到的问题。 在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS区动IC,似 乎也没有包含gate 电压限制的结构。于是我设计了一个相对通用的电路来满足这三种需求。 电路图如下: ? 图1用于NMO的驱动电路 图2用于PMO的驱动电路 这里我只针对NMO驱动电路做一个简单分析: VI和Vh分别是低端和高端的电源,两个电压可以是相同的,但是VI不应该超过Vh。 Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4 不会同时导通。

场效应管电机驱动

场效应管电机驱动-MOS管H桥原理 所谓的H 桥电路就是控制电机正反转的。下图就是一种简单的H 桥电路,它由2 个P型场效应管Q1、Q2 与2 个N 型场效应管Q3、Q3 组成,所以它叫P-NMOS 管H 桥。 桥臂上的4 个场效应管相当于四个开关,P 型管在栅极为低电平时导通,高电平时关闭;N 型管在栅极为高电平时导通,低电平时关闭。场效应管是电压控制型元件,栅极通过的电流几乎为“零”。 正因为这个特点,在连接好下图电路后,控制臂1 置高电平(U=VCC)、控制臂2 置低电平(U=0)时,Q1、Q4 关闭,Q2、Q3 导通,电机左端低电平,右端高电平,所以电流沿箭头方向流动。设为电机正转。 控制臂1 置低电平、控制臂2 置高电平时,Q2、Q3 关闭,Q1、Q4 导通,电机左端高电平,右端低电平,所以电流沿箭头方向流动。设为电机反转。

当控制臂1、2 均为低电平时,Q1、Q2 导通,Q3、Q4 关闭,电机两端均为高电平,电机不转; 当控制臂1、2 均为高电平时,Q1、Q2 关闭,Q3、Q4 导通,电机两端均为低电平,电机也不转,所以,此电路有一个优点就是无论控制臂状态如何(绝不允许悬空状态),H 桥都不会出现“共态导通”(短路),很适合我们使用。 (另外还有4 个N 型场效应管的H 桥,内阻更小,有“共态导通”现象,栅极驱动电路较复杂,或用专用驱动芯片,如MC33883,原理基本相似,不再赘述。) 下面是由与非门CD4011 组成的栅极驱动电路,因为单片机输出电压为0~5V,而我们小车使用的H 桥的控制臂需要0V 或7.2V 电压才能使场效应管完全导通,PWM 输入0V 或5V时,栅极驱动电路输出电压为0V 或7.2V,前提是CD4011 电源电压为7.2V。切记!! 故CD4011 仅做“电压放大”之用。之所以用两级与非门是为了与MC33886 兼容。

激光二极管驱动基础

Application Note AN-LD13 Rev. A Laser Diode Driver Basics April, 2013 Page 1 In the most ideal form, it is a constant current source — linear, noiseless, and accurate — that delivers exactly the current to the laser diode that it needs to operate for a particular application. The user chooses whether to keep laser diode or photodiode current constant and at what level. Then the control system drives current to the laser diode safely and at the appropriate level. The block diagram in Figure 1 shows a very basic laser diode driver (or sometimes known as a laser diode power supply). Each symbol is de? ned in Table 1. Laser diode drivers vary widely in feature set and performance. This block diagram is a representative sample, meant to familiarize the users with terminology and basic elements, not an exhaustive evaluation of what is available on the market. GND Figure 1. Block Diagram, Laser Diode Driver in Dashed Box

详细讲解MOS管驱动电路

详细讲解MOS管驱动电路 来源:21ic 作者: 关键字:MOS管驱动电路电子电路 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS管的导通电阻、最大电压、最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOS及MOS驱动电路基础的一点总结,其中参考了一些资料,并非原创。包括MOS管的介绍、特性、驱动以及应用电路。 MOSFET管FET的一种(另一种是JEFT),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到的NMOS,或者PMOS就是指这两种。 至于为什么不适用号耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS,下面的介绍中,也多以NMOS为主。MOS管的三个管教之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的,寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到漏极和源极之间有一个寄生二极管,这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适用于源极接地的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适用于源极接Vcc的情况(高端驱动)。但是,虽然PMOS可以很方便的用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是用NMOS。 MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样点电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗,现在的小功率MOS管导通电阻一般在几十毫伏左右,几豪欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失时电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也很大。缩短开关时间,可以减小每次导通时的损失,降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大

场效应管电机驱动

场效应管电机驱动-MOS管H桥原理 时间:2010-09-16 来源: 作者:Liang110034@https://www.doczj.com/doc/5016111910.html, 点击:4161 字体大小:【大中小】 所谓的H 桥电路就是控制电机正反转的。下图就是一种简单的H 桥电路,它由2 个P型场效应管Q1、Q2 与2 个N 型场效应管Q3、Q3 组成,所以它叫P-NMOS 管H 桥。 桥臂上的4 个场效应管相当于四个开关,P 型管在栅极为低电平时导通,高电平时关闭;N 型管在栅极为高 电平时导通,低电平时关闭。场效应管是电压控制型元件,栅极通过的电流几乎为“零”。 正因为这个特点,在连接好下图电路后,控制臂1 置高电平(U=VCC)、控制臂2 置低电平(U=0)时,Q1、 Q4 关闭,Q2、Q3 导通,电机左端低电平,右端高电平,所以电流沿箭头方向流动。设为电机正转。 控制臂1 置低电平、控制臂2 置高电平时,Q2、Q3 关闭,Q1、Q4 导通,电机左端高电平,右端低电平, 所以电流沿箭头方向流动。设为电机反转。

当控制臂1、2 均为低电平时,Q1、Q2 导通,Q3、Q4 关闭,电机两端均为高电平,电机不转; 当控制臂1、2 均为高电平时,Q1、Q2 关闭,Q3、Q4 导通,电机两端均为低电平,电机也不转,所以,此电路有一个优点就是无论控制臂状态如何(绝不允许悬空状态),H 桥都不会出现“共态导通”(短路),很适合我们使用。 (另外还有4 个N 型场效应管的H 桥,内阻更小,有“共态导通”现象,栅极驱动电路较复杂,或用专用驱动芯片,如MC33883,原理基本相似,不再赘述。) 下面是由与非门CD4011 组成的栅极驱动电路,因为单片机输出电压为0~5V,而我们小车使用的H 桥的控制臂需要0V 或7.2V 电压才能使场效应管完全导通,PWM 输入0V 或5V时,栅极驱动电路输出电压为0V 或7.2V,前提是CD4011 电源电压为7.2V。切记!! 故CD4011 仅做“电压放大”之用。之所以用两级与非门是为了与MC33886 兼容。

MOS管驱动电路

MOS管驱动电路总结 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。 下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。包括MOS管的介绍,特性,驱动以及应用电路。 1、MOS管种类和结构 MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。 至于为什么不使用耗尽型的MOS管,不建议刨根问底。 对于这两种增强型MOS管,比较常用的是NMOS。原因是导通电阻小,且容易制造。所以开关电源和马达驱动的应用中,一般都用NMOS。下面的介绍中,也多以NMOS为主。 MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。 在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。 2、MOS管导通特性 导通的意思是作为开关,相当于开关闭合。 NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。 PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。 3、MOS开关管损失 不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。选择导通电阻小的MOS管会减小导通损耗。现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。 MOS在导通和截止的时候,一定不是在瞬间完成的。MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。 导通瞬间电压和电流的乘积很大,造成的损失也就很大。缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。 4、MOS管驱动 跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了。这个很容易做到,但是,我们还需要速度。 在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。对电容的充电需要一个电流,因为对电容充电瞬间

相关主题
文本预览
相关文档 最新文档