当前位置:文档之家› B Cation Ordered Double Perovskite Ba2CoMo0.5Nb0.5O6-δ As a Potential SOFC Cathode

B Cation Ordered Double Perovskite Ba2CoMo0.5Nb0.5O6-δ As a Potential SOFC Cathode

5154Chem.Mater.2009,21,5154–5162

DOI:10.1021/cm902094q

B Cation Ordered Double Perovskite Ba2CoMo0.5Nb0.5O6-δAs

a Potential SOFC Cathode

Z.Q.Deng,J.P.Smit,H.J.Niu,G.Evans,M.R.Li,Z.L.Xu,J.B.Claridge,and

M.J.Rosseinsky*

Department of Chemistry,The University of Liverpool,Liverpool L697ZD,United Kingdom

Received July10,2009.Revised Manuscript Received August19,2009

This paper reports the evaluation of the cubic B site cation-ordered double perovskite system Ba2Co2-x(Mo1/2Nb1/2)x O6,resulting in the single phase composition Ba2CoMo0.5Nb0.5O6-δ(BCMN) with a mixed Co charge state stabilized by a combination of Mo and Nb doping as a new mixed conductor with potential SOFC cathode applications.X-ray,neutron,and electron diffraction show that hexagonal intergrowths found in multiple phase samples at lower Mo/Nb contents are suppressed in BCMN,which has large domains of rock-salt ordered B site cations with separate Co and Mo/Nb sites.

Conductivity measurement and impedance spectroscopy investigation shows that BCMN has a considerably reduced dc conductivity compared with materials such as BSCF but exhibits comparable electrochemical properties to some existing cathode materials in symmetrical cell measurements,and shows higher structural stability and reduced reactivity with the Ce0.8Sm0.2O2-δ(SDC)electrolyte.The role of Mo in dioxygen activation is proposed to offset the reduction that the d0Mo(VI)and Nb(V) cations on the B site produce in the electronic and ionic conductivity.

Introduction

With increasing demand for clean and renewable energy,solid-oxide fuel cells(SOFCs)have received much attention because of their energy efficiency,environmen-tal friendliness and excellent fuel flexibility in comparison with other fuel cell types.To make SOFCs economically competitive with the existing technology,an intermediate temperature operating range of500-750°C is needed.1-4 This remains a challenge because of a lack of appropriate SOFC component materials to compensate for the sig-nificant increase in electrolyte and electrode ohmic and polarization losses at lower temperatures.Electrolytes overcome this barrier with higher ionic conductivity and/or decreased thickness,such as Gd3t-or Sm3t-doped CeO2,Sr2t-and Mg2t-doped LaGaO3(LSGM), whereas the anode could be either a cermet of Ni and yttria-stabilized zirconia(YSZ)or doped CeO2.5There-fore,the largest contribution to the total resistance at decreased operating temperatures is the cathodic polar-ization resistance,associated particularly with the ki-netics of oxygen reduction,making the development of new cathode materials critical for SOFC commercializa-tion.6With a target power density of1W cm-2,the combined area-specific resistance(ASR)of the cell com-ponents(electrolyte,anode,and cathode)needs to be below0.3Ωcm2,and ideally to approach0.1Ωcm2.1,2 Early explorations of SOFC cathodes encompass perovskite-type and related structures.These materials combine high defect tolerance for oxygen vacancy ionic charge carriers,strong metal-oxygen-metal covalent overlap to give the band widths required for electronic conductivity and a range of octahedral-related sites to accommodate catalytically active transition metals for oxygen reduction.For example,La1-x Sr x MnO3-δ(LSM with x=0.2)is the present cathode choice for zirconia electrolyte-based SOFCs that operate efficiently at high temperatures(usually above700°C).Additionally, Ln1-x Sr x CoO3-δ(Ln=La,LSC with x=0.4,Ln=Sm, SSC with x=0.5),La1-x Sr x Co1-y Fe y O3-δ(LSCF with x=0.4and y=0.8)and Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) have demonstrated promising performances with ceria electrolytes in the intermediate temperature range.7-9 Alternative cathode materials have oxygen interstitial charge carriers,such as LnBaCo2O5tδ(Ln=Gd,Pr) with ordered A-site cations in the perovskite structure,10 and the n=1Ruddlesden-Popper(RP)analogue La2NiO4tδ.11The RP structure,which includes the

*Corresponding author.

(1)Steele,B.C.H.;Heinzel,A.Nature2001,414,345.

(2)Vohs,J.M.;Gorte,R.J.Adv.Mater.2009,21,943.

(3)Yang,L.;Zuo,C.D.;Wang,S.Z.;Cheng,Z.;Liu,M.L.Adv.

Mater.2008,20,3280.

(4)Brandon,N.P.;Skinner,S.;Steele,B.C.H.Annu.Rev.Mater.Res.

2003,33,183.

(5)Atkinson,A.;Barnett,S.;Gorte,R.J.;Irvine,J.T.S.;Mcevoy,

A.J.;Mogensen,M.;Singhal,S.C.;Vohs,J.Nat.Mater.2004,3,

17.

(6)Ivers-Tiff e e,E.;Weber,A.;Herbstritt,D.J.Eur.Ceram.Soc.2001,

(7)Shao,Z.P.;Haile,S.M.Nature2004,431,170.

(8)Xia,C.R.;Rauch,W.;Chen,F.L.;Liu,M.L.Solid State Ionics

2002,149,11.

(9)Stevenson,J.W.;Armstrong,T.R.;Carneim,R.D.;Pederson,

L.R.;Weber,W.J.J.Electrochem.Soc.1996,143,2722.

(10)Taranc o n,A.;Skinner,S.J.;Chater,R.J.;Ramirez,F.H.;Kilner,

J.A.J.Mater.Chem.2007,17,3175.

(11)Dong,X.;Wu,Z.;Chang,X.;Jin,W.;Xu,N.Ind.Eng.Chem.Res.

Article Chem.Mater.,Vol.21,No.21,20095155

phases Sm0.5Sr1.5CoO4-δ12and LaSr3(Fe,Co)3O10-δ,13 is a layered analogue of the3D vacancy-containing perovskites.14Mixed conducting materials of these types also have a wide range of applications in gas separation and catalytic reaction membranes.

Cobalt is often included in mixed-conducting perov-skite oxides,as it gives rise to high electronic conductivity from strong covalency with oxygen,resulting from its position to the right of the first transition series,com-bined with the high metal oxidation states that are accessible.The production of oxygen vacancies,and thereby ionic conductivity at high temperature,is facili-tated by the difficulty of attaining pure Co4tin the cubic perovskite structure.One of the problems with perovskite cobaltites is the stability of competing hexagonal phases at high(>t3)cobalt oxidation states.

These hexagonal phases can produce degradation over time and disrupt promising performance as oxygen permea-tion membranes or SOFC cathodes.Another problem is the ordering of oxygen vacancies that has been demonstrated to occur in Ln1-x Sr x CoO3-δand Sr0.8Co0.8Fe0.2O3-δbelow 750°C at p O2below0.1atm,yielding an orthorhombic brownmillerite phase15-17and producing a significant decrease in electronic and ionic conductivity,in addition to mechanical instability associated with the lattice expan-sion.Partial substitution of Ba for Sr suppresses this type of transition,and indeed Ba0.5Sr0.5Co0.8Fe0.2O3-δhas been reported among the most promising oxygen permeable membrane and SOFC cathode materials.7However,recent studies have shown the cubic perovskite phase undergoes decomposition into a hexagonal perovskite phase and a cubic perovskite phase at intermediate temperatures over time.18Interfacial reaction between the cathode and the electrolyte is another concern for the cathode performance. The stabilization of Co-containing cubic perovskites with retention of ionic and electronic conductivity is thus an important challenge.

Molybdenum compounds,such as Ni0.5Co0.5MoO4, are well-known catalysts with high activity for selective oxidation of hydrocarbons,where the activation of oxy-gen by dissociation into reactive species is a key part of the catalyst function.19,20Niobium substitution has been found effective in the stabilization of the highly oxygen permeable cubic perovskite structure of strontium cobal-tite.21This paper reports the evaluation of the perovskite system Ba2Co2-x(Mo1/2Nb1/2)x O6where cobalt,molyb-denum and niobium are all present on the octahedral B site.This produces the cubic B site cation-ordered x=1 composition Ba2CoMo0.5Nb0.5O6-δ(BCMN)with a mixed Co charge state stabilized by a combination of Mo and Nb doping as a new mixed conductor.BCMN exhibits comparable electrochemical properties to some existing cathode materials,but with higher structural stability.

Experimental Section

Preparation of BCMN Samples.The x=0.5Ba2Co1.5Mo0.25-Nb0.25O6-δand x=1Ba2CoMo0.5Nb0.5O6-δ(BCMN)members of the Ba2Co2-x(Mo1/2Nb1/2)x O6solid solution are reported in detail here.Materials were prepared via solid-state reaction. Stoichiometric amounts of high purity(99.99%)BaCO3, Co3O4,MoO3and Nb2O5were mixed together by ball milling for24h with alcohol,followed by drying,grinding,and calcina-tion at700°C for6h and at900°C for8h.Ba0.5Sr0.5Co0.8Fe0.2-O3-δ(BSCF)was prepared using high purity(99.99%)BaCO3, SrCO3,Co2O3,and Fe3O4,which were ball-milled and subse-quently calcined at700°C for5h,at900°C for6h and1150°C for8h in air.The resulting powders were then ball milled again, and isostatically pressed into pellets with an autoclave engineers cold isostatic press under a pressure of200MPa and sub-sequently sintered in air at1100°C for12h.After confirming a single phase was formed by X-ray diffraction(XRD),the pellets were cut into bars for the electrical conductivity measurement with standard d.c.four-probe method,using Keithley2182 Nanovoltmeter and Keithley220Programmable Current Source, in which Pt paste and Pt wire were used to make the four probes with a four-in-a-line contact geometry,or crushed and ball milled again to produce powders for further characterization.

Characterization of Structure.The structure of the materials was analyzed by powder X-ray diffraction(PXRD)on a Pana-lytical X’pert Pro diffractometer(with Co K R1radiation).Time-of-flight neutron diffraction(ND)data were collected from room temperature to900°C at an interval of100°C on the POLARIS instrument at the ISIS facility,Rutherford Appleton Labora-tories.The transmission electron microscopy(TEM)study was carried out on a JEOL JEM3010(JEOL,LaB6filament,300keV) and energy-dispersive X-ray spectroscopy(EDX)data were collected on a JEM2000FX(JEOL,W filament,200keV). X-ray absorption near edge spectroscopy(XANES)was carried out in transmission mode in station9.3at the SRS synchrotron at Daresbury Laboratory(Warrington,UK).

Chemical Compatibility with SDC and Long-Term Annealing. The phase composition of the mixture of BCMN or BSCF with SDC powder(Ce0.8Sm0.2O2-δ,from https://www.doczj.com/doc/5e15819282.html,,sur-face area:30-40m2/g,Particle Size(d50):0.3to0.5μm)calcined at different temperatures was determined by XRD.Powders of BCMN or BSCF and SDC with a weight ratio of1:1were well mixed,pressed into pellets and calcined at1000or1050°C for 5or10h.The pellets were then crushed to powders for XRD characterization.For long-term structural stability tests,the as-synthesized single-phase powders of BCMN or BSCF were annealed at750°C in air for240h,then characterized by XRD.

Symmetric Cell Fabrication and Testing.SDC was first pressed into pellets and then sintered at1400°C for8h to obtain fully dense SDC electrolyte substrates(1.5mm thick,10 mm diameter).To prepare the electrode paste,we mixed BCMN powders by ball milling with an organic binder(Heraeus V006)

(12)Wang,Y.S.;Nie,H.W.;Wang,S.R.;Wen,T.L.;Guth,U.;

Valshook,V.Mater.Lett.2006,60,1174.

(13)Lee,K.T.;Manthiram,A.Chem.Mater.2006,18,1621.

(14)Boehm,E.;Bassat,J.M.;Steil,M.C.;Dordor,P.;Mauvy,F.;

Grenier,J.C.Solid State Sci.2003,5,973.

(15)Kruidhof,H.;Bouwmeester,H.J.M.;Doorn,R.H. E.v.;

Burggraaf,A.J.Solid State Ionics1993,63-65,816.

(16)Deng,Z.Q.;Yang,W.S.;Liu,W.;Chen,C.S.J.Solid State Chem.

2006,179,362.

(17)Harrison,W.T.A.;Lee,T.H.;Yang,Y.L.;Scarpe,D.P.;Liu,

L.M.;Jacobson,A.J.Mater.Res.Bull.1995,30,621.

(18)S varcov a,S.;Wiik,K.;Tolchard,J.;Bouwmeester,H.J.M.;

Grande,T.Solid State Ionics2008,178,1787.

5156Chem.Mater.,Vol.21,No.21,2009Deng et al. diameter of the electrodes are about30μm and10mm,

respectively.The contacts for the electrical measurements were

made using gold mesh fixed with gold paste.The impedance

spectra of the symmetric cells were measured under an air

atmosphere with a flow rate of100mL/min in the range from

550to800°C,using a Solartron1260frequency response

analyzer coupled to a Solartron1287electrochemical interface

and controlled by ZPlot electrochemical impedance software.

The impedance spectra were analyzed with the Zview software

(Scribner Associates,Inc.).The measurements were repeated on

a second cell prepared with the same process.The microstructure

of the electrodes was investigated by scanning electron micro-

scopy using a Hitachi S4800type II cold field emission scanning

electron microscope.The samples were observed using a mix of

upper and lower secondary electron detectors operating at an

acceleration voltage of3kV with a working distance of8.0mm.

Results

Composition and Structure.The results of the solid state

syntheses were initially assessed by PXRD which revealed

the temperature ranges required for phase formation and

the compositional limits for the cubic perovskite phase

within the Ba2Co2-x(Mo1/2Nb1/2)x O6family.The only

single phase composition produced under the reaction

conditions studied is x=1Ba2CoMo0.5Nb0.5O6,where

the EDX-determined atomic ratios of Ba,Co,Mo and

Nb are2.02:1.01:0.48:0.49,close to the nominal com-

position.Substitutions to enhance the Co content further

(exemplified here by x=0.5,Ba2Co1.5Mo0.25Nb0.25O6-δ)

produce multiple phase systems discussed later after the

single phase material.The ND,XANES,selected area

electron diffraction(SAED),and high resolution TEM

(HRTEM)results(Figures1-4)for the single phase x=1

composition Ba2CoMo0.5Nb0.5O6-δ(BCMN)show that it

adopts a B site ordered double perovskite structure,

A2B0B00O6(space group Fm3m),with A=Ba at the8c

site,B0=Co at the4a site,and B00=Mo0.5Nb0.5at the4b

site at both room and high temperatures.22Here,the ND

data were used to refine the oxygen content and the

occupancy fraction for the B site cations in the rock salt

arrangement,with the constraints of nominal composi-

tions and identical atomic displacement parameter values

set for Mo and Nb.The B-site cationic antisite disorder

was examined by introducing Co/(Mo,Nb),Co/Mo,or

Co/Nb disorder.The best refinement results come from

the Co/(Mo,Nb)antisite disorder(where antisite disorder y

between the4a Co and4b Mo/Nb positions disorders an

equal amount of Mo and Nb)with a formula of Ba2-

(Co1-y Mo y/2Nb y/2)(Mo0.5-y/2Nb0.5-y/2Co y)O6-δ.Refine-

ment affords y=0.10(1)(χ2=1.57,R F2=6.55%)at

room temperature and y=0.07(1)(χ2=1.43,R F2=

14.23%)at900°C.The final refined structural results for

Ba2CoMo0.5Nb0.5O6-δat room temperature and900°C are shown in Figures1and S1-S4and Tables1and S1-S4. XANES spectra(Figure2)show Nb is present as Nb5t, with a mixed oxidation state oft2/t3for Co at room temperature(RT).Quantitative analysis of the XANES data by the shift in the edge position compared to the reference samples(NdSr)CoO4and La2CoO4reveals a ratio of70:30for Co2t:Co3ti.e.,a mean Co oxidation state oft2.3.23The oxide chemistry of Mo indicates the formation of Mo(VI)as does the formation of

Nb(V) Figure1.Rietveld refinement of neutron powder diffraction data from (a)room temperature,(b)900°C for Ba2CoMo0.5Nb0.5O6-δ.The upper tick marks indicate the location of individual Bragg reflections.The lower curve is the difference plot between the observed and calculated profiles. (Inset shows the low d-space data).(c)Unit-cell polyhedral structure of Ba2CoMo0.5Nb0.5O6-δ(BCMN)at900°C from the Co/(Mo,Nb)antisite disordering model(Table1),showing the rock salt arrangement of B site cations and the atomic displacement parameters of O(90%weighted). Ba,green;O,red;[Co0.93(Mo0.5Nb0.5)0.07)]O6octahedron,blue;[(Mo0.5-Nb0.5)0.93Co0.07]O6octahedron,orange.Figure S5in the Supporting Infor-mation is a representation of the structure at both temperatures where all ADPs are shown.

Article Chem.Mater.,Vol.21,No.21,20095157

under the synthesis conditions.24The oxygen content

calculated from this charge distribution is 5.90,which agrees well with the value obtained from neutron

refinement,5.87(7)at room temperature.The change of refined oxygen content between RT and 900°C is 0.17per formula unit,which is comparable to oxygen loss eval-uated from TGA in air (0.14per formula unit),suggesting the reduction of Co 3tto 5.90,which agrees well with the value obtained from neutron refinement,5.87(7)at room temperature.The change of refined oxygen content be-tween RT and 900°C is 0.17per formula unit,which is comparable to oxygen loss evaluated from thermogravi-metric analysis (TGA)in air (0.14per formula unit),suggesting the reduction of Co 3tto Co 2tat high tem-peratures with a Co charge state close to t2.The refined change in cation antisite disorder on heating is at the 3σlevel -if such a change is present,it may relate to the change in coordination number at the B sites locally affected by the change in oxygen occupancy indicated by both TGA and neutron diffraction.Variable tempera-ture ND data (see Figure S5in the Supporting In-formation)allows determination of the lattice expansion coefficient of BCMN and gives 14.3and 18.7ppm K -1between 100and 400°C and 600-900°C respectively.The average value of 16.0ppm K -1for BCMN is almost identical to LSCF and lower than BSCF (27.3ppm K -1for BSCF and 16.2ppm K -1for La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ)25while still higher than that of SDC (12.7ppm K -1)in the temperature range 20-900°C.Both thermal and chemical expansion due to the observed oxygen nonstoichiometry,as reported in LSCF 26and BSCF,27are expected to contribute to the lattice expansion

effect.

Figure 2.(a)Nb K-edge and (b)Co K-edge XANES spectra of Ba 2CoMo 0.5Nb 0.5O 6-δ(BCMN)with the oxidation state standards described in the text.The arrow indicates the inflection point,which is taken as the energy position of the

edge.

Figure https://www.doczj.com/doc/5e15819282.html,posite SAED patterns of [001],[011],[012],[111],[133],[112],and [113]zone axes for Ba 2CoMo 0.5Nb 0.5O 6-δ.The diffraction patterns are indexed according to a double perovskite cubic unit cell with

lattice parameters a ≈8.1A

and space group Fm 3m

.Figure 4.HRTEM along the [112]zone axis for Ba 2CoMo 0.5Nb 0.5O 6-δ.The insets from top left to right are FFT patterns of the image,schematic drawing of the atomic projection according to the HRTEM simulation,and details of the framed area with simulated image,respectively.

(25)Ried,P.;Holtappels,P.;Wichser,A.;Ulrich, A.;Graule,T.

J.Electrochem.Soc.2008,155,B1029.

5158Chem.Mater.,Vol.21,No.21,2009Deng et al.

TEM studies were undertaken to check the local crystal structure.The seven major SAED patterns (Figure 3),particularly the presence of {111}diffraction in the [112]and [011]zone axis patterns,confirm that BCMN has a double perovskite cubic unit cell with lattice parameters

a ≈8.1A

and that the reflection conditions correspond to space group Fm 3m ,consistent with B site cation order.Many SAEDs along other zone axes and from different grains were taken and indexed well on the same cell,with no extra weak diffraction or streaking apparent,indicat-ing that the average B site cation order probed by neutron diffraction is maintained on shorter length scales.The B site cation ordering is confirmed by an HRTEM image along the [112]zone axis (Figure 4),a direction from which the neighboring B sites can be readily separated.Along the [111]direction,the B layers are stacked with alternate black and white contrast,which means the B sites are alternately occupied by different cations.The HRTEM image simulation showed that darker B layers are occupied by Co while the brighter B layers are occupied by Mo/Nb.The cation ordered domain size was evaluated (with the Scherrer formula)by using fitted individual peak parameters,giving an average crystallite/diffracting region size of 75nm from even reflections (hkl =2n ),and an average cation-ordered domain size of 66nm from odd reflections (hkl =2n t1).

X-ray powder diffraction data from the higher Co content x =0.5sample Ba 2Co 2-x (Mo 1/2Nb 1/2)x O 6can only be fitted with two simple cubic perovskite phases (see Figure S6in the Supporting Information).Consistent with this absence of the B site cation order found at x =1,an SAED study proved that most of the particles have the simple cubic perovskite structure with a lattice

parameter of about 4A

.Very weak streaks along {111}in the [011]and [112]diffraction pattern were regularly observed.HRTEM described later leads to the interpreta-tion of this scattering as arising from stacking faults along {111}.There are relatively high intensities where the diffuse streaks cross at ((2n+1)/2){111}in [011](see Figure S7in the Supporting Information),which could be interpreted as B site cation ordering.However,because no such intensity is observed at the equivalent points in the [112]pattern,these The HRTEM viewed along the [011]axis reveals stack-ing faults in the (111)and (111)(bottom right inset)planes in the same grain.In the defect free area of the crystal,{111}BaO 3close-packed planes are arranged in the cubic perovskite...ABCABC...sequence.According to the pro-posed atomic model of the defect,the stacking faults arise from conversion of a BaO 3(111)plane (B in the Figure 5)into a hexagonally stacked C component in an ACA sequence,representing intergrowth of a BaCoO 3-type hexagonal perovskite in the cubic sequence.This is con-sistent with the streaking observed along [111]in the fast Fourier transform (FFT)pattern (top left inset)of the HRTEM,whereas no visible intensity associated with cation ordering is found at ((2n t1)/2){111}in the FFT of perfect areas,which directly confirmed the SAED analy-Table 1.Refined Structural Parameters for Ba 2CoMo 0.5Nb 0.5O 6-δfrom Neutron Diffraction Data (space group Fm 3h m )at Room Temperature (RT )and

900°C

RT

900°C

a (A

)8.10728(6)8.22272(4)Ba,8c ,0.25,0.25,0.25,U iso (A 2)0.0055(2)0.0227(3)Co/(Mo,Nb),4a ,0,0,0,U iso (A

2)a 0.0071(9)

0.0246(14)

occupancy

0.897(12)/0.051(6)/0.051(6)0.930(10)/0.035(5)/0.035(5)Mo/Nb/Co a ,4b ,0.5,0,0,U iso (A

2)a 0.0031(3)

0.0130(5)

occupancy

0.449(6)/0.449(6)/0.102(12)0.465(5)/0.465(5)/0.070(10)O,24e ,x ,0,0U anis (A

2)b 0.2579(2)0.2589(2)U 11

0.0082(4)0.0175(5)U 22=U 330.0083(2)0.0321(3)occupancy

0.979(5)0.950(4)oxygen content per formula O 5.87(7)

O 5.70(2)

R p (%)/R wp (%)/χ2/R F 2(%)

2.25/4.85/1.57/6.55

1.10/

2.57/1.43/14.23

a

U iso of mixed site atoms were constrained to be the same.b U ij =

0.

Figure 5.HRTEM along the [011]zone axis for x =0.5Ba 2Co 1.5-Mo 0.25Nb 0.25O 6.The insets from top left to bottom right are the FFT pattern of the image,details of the framed area with the simulated image and atomic model used in the simulation,and a low magnification TEM image showing stacking faults along equivalent ?111?directions,respec-tively.

Article Chem.Mater.,Vol.21,No.21,20095159

hence the long-range XRD only shows the cubic matrix material.Electrical and electrochemical characterization was thus carried out solely on the single phase x =1material.

Electrical Properties and Symmetrical Electrochemical Cells.Processing of the BCMN powder affords ceramics of ~90%density.Four-probe d.c.electrical conductivity data (Figure 6)were measured in air on these samples over the temperature range 400-950°C.Ba 2CoMo 0.5Nb 0.5-O 6-δexhibits an electrical conductivity of 1.2and 1.0S cm -1at 800and 700°C,respectively,with an activation energy of 0.29eV over the measured temperature range.For comparison,the electrical conductivity measured in our lab for BSCF (of ~90%density,comparable to that of the BCMN studied here)is 38-43S/cm over 600to 800°C,also in good agreement with previous reports.7

Figure 7a shows a typical cross-sectional scanning electron microscope (SEM)image of the fractured elec-trolyte/electrode bilayer of the symmetrical BCMN/SDC/BCMN cell fabricated by a screen-printing tech-nique,sintered at 1000°C for 3h.The BCMN electrode presents the required highly porous morphology;with a homogeneous thickness of 28-30μm (the Au current collector is also seen on the electrode top).The image also indicates that the SDC electrolyte has a fully dense structure,and good adhesion to the electrode.A repre-sentative surface SEM image,Figure 7b,reveals a uni-form and porous electrode structure formed by BCMN oxide grains with an average size of 500nm and good intergrain connection.

Impedance spectroscopy measurements (Figure 8)were performed on the symmetrical BCMN/SDC/BCMN cell shown in Figure 7over the temperature range 550-800°C in air.The difference between the low-frequency (LF)and the high-frequency (HF)intercepts on the real axis is taken as the area specific resistance (ASR).The measured values for the pure BCMN cathode were 0.09,0.20,0.49,and 1.31Ωcm 2at 750,700,650,and 600°C,https://www.doczj.com/doc/5e15819282.html,ed for cells containing BCMN as the cathode in this study (except the cell was sintered at a slightly lower temperature of 970°C for 3h because of reactions between BSCF and

Figure 6.Temperature dependence of the dc electrical conductivity for Ba 2CoMo 0.5Nb 0.5O 6-δsamples in

air.

Figure 7.SEM images of (a)cross-sectional and (b)surface views of the Ba 2CoMo 0.5Nb 0.5O 6-δcathode with SDC electrolyte in a symmetrical cell configuration fired at 1000°C for 3

h.

Figure 8.Cathode polarization of Ba 2CoMo 0.5Nb 0.5O 6--δon an SDC electrolyte symmetric cell measured in air at 800,750,700,and 650°C.The electrolyte contribution has been subtracted from the overall resistance,which is the cell resistance divided by two and represents the polarization of one electrode.

5160Chem.Mater.,Vol.21,No.21,2009Deng et al.

was observed at 600°C,which is in good agreement with prior reports and a factor of ~2.5lower than that observed for the present BCMN material.28

Analysis of the electrochemical impedance spectrosco-py (EIS)data with an equivalent circuit model is helpful to understand in more detail the processes corresponding to the ASR value.Figure 9shows the best fits of the EIS data to the equivalent circuit shown in the inset.R 1represents the ohmic resistance from the electrolyte,whereas the ASR is represented by the sum of two resistances representing the electrode processes at high and low frequencies (ASR=R HF tR LF )with a parallel constant phase element (CPE)representing the effect of inhomogeneity.The resulting fitted parameters (includ-ing resistance,time constant and CPE exponent)in the temperature range 600-750°C are listed in Table S5of the Supporting Information.The R 1electrolyte resistance fitted in Figure 9yielded an ionic conductivity of 0.016S cm -1at 600°C.At other points from 550to 800°C,the conductivity values obtained in this way are all in good agreement with reported values for SDC,suggesting the equivalent circuit proposed is correct.29Figure 10shows the temperature dependence of the ASR (R LF tR HF )and the separate resistances of the LF (R LF )and HF (R HF )arcs of the BCMN electrode for the oxygen reduction reaction.The activation energies of the LF and HF arcs are found to be 147.9and 112.1kJ mol -1,whereas that of the total cathode ASR is 130.0kJ mol -1.Stability.To investigate the long-term stability of BCMN,we annealed the as-synthesized single-phase pow-ders for an extended time (held at 750°C for 240h).For comparison,Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3-δ(BSCF)powders (synthesized at 1100°C/8h and confirmed as single-phase by XRD)were also annealed under the same conditions.As shown in Figure 11,there are no significant changes in the

XRD patterns before and after annealing observed for BCMN.The refined cell parameters with XRD data are

8.1117(1)and 8.1148(1)A

for the as-synthesized and annealed samples,respectively.In contrast,BSCF partially decomposes under the same conditions (see Figure S8in the Supporting Information),suggesting improved long-term stability for this new material.The observations about the structural instability of BSCF agree well with previous studies,which show that BSCF separates into a mixture of the hexagonal phase of barium-rich iron-free cobalt perovskite,(Ba 0.75Sr 0.25)-CoO 3-δ,and the cubic phase of strontium-rich,iron -cobalt perovskite,(Ba 0.25Sr 0.75)(Co 0.6Fe 0.4)O 3-δ.19,30,31

For the specific SOFC cathode application of BCMN,the compatibility with the SDC electrolyte was also addressed.The reactivity tests between BCMN and SDC were carried out by cofiring a mixture of BCMN and SDC (weight ratio of 1:1)pressed pellet at different tempera-tures.Similarly,BSCF was also tested in comparison.

As

Figure 9.Fitting the impedance spectra of Ba 2CoMo 0.5Nb 0.5O 6-δ/SDC/Ba 2CoMo 0.5Nb 0.5O 6-δat (a)650and (b)600°C to the equivalent circuit shown in the insert.R 1is the overall ohmic resistance,R HF and R LF correspond to the high and low frequency resistance arcs from the electrode,respectively,and CPE is a constant phase

element.

Figure 10.Activation energy for the high and low frequency resistance elements and the total ASR from the Ba 2CoMo 0.5Nb 0.5O 6-δ/SDC/Ba 2CoMo 0.5Nb 0.5O 6-δcell in the temperature range 600°C-750°

C.

Figure 11.XRD patterns for Ba 2CoMo 0.5Nb 0.5O 6-δ(a)as-synthesized (1100°C for 12h),(b)after annealing in air at 750°C/240h,(c)Ba 2Co-Mo 0.5Nb 0.5O 6-δ-SDC mixture after cofiring at 1050°C/10h.

(28)Li,S.Y.;Lu,Z.;Wei,B.;Huang,X.Q.;Miao,J.P.;Liu,Z.G.;Su,

(30)Ovenstone,J.;Jung,J.I.;White,J.S.;Edwards,D.D.;Misture,

Article Chem.Mater.,Vol.21,No.21,20095161

shown by the XRD data in Figure 11,no new phase is formed and no obvious peak shifts for either component were observed even after cofiring at 1050°C for 10h,an indication of the absence of solid-state reactions between SDC and BCMN.The refined cell parameters for BCMN

and SDC after reaction are 8.1187(2)and 5.4314(1)A

(5.4288(5)A

for starting SDC sample).However,reaction of BSCF with SDC leads to obvious impurity phases produced even at a lower temperature,1000°C for 5h (as shown in Figure S8in the Supporting Information).This reaction between BSCF and SDC,along with its phase decomposition over time may partially explain the discrepancies in BSCF cathode properties from different authors corresponding to the spread in values reported earlier.Although no obvious reaction with SDC was observed for BCMN,the compositions of both cathode and electrolyte may change due to diffusion of the ions,as evidenced by XRD data in Figure 11showing some peak broadening at 88.46and 111.14°in (c)comparing with those of (b).EDX in the SEM indicated a slight interdiffu-sion of Co into SDC and Ce into BCMN on the interface (see Figure S9in the Supporting Information).

Discussion

In the A 2B 0B 00O 6-type double perovskite structure,the arrangement of the B-cation sublattice is controlled primarily by the charge difference and secondarily by the size difference with a given A site.32The rock salt cation ordered arrangement is dominant when the charge difference is greater than two such as in the reported B site ordered Mo and Nb perovskites Sr 2FeMoO 6,22Sr 2-MgMoO 6-δ,33Ba 2LnNbO 6(Ln=lanthanides and Y),34and Sr 2Sr 1-x Nb 1tx O 6-δ.35,36The relevant ionic radii in

the present case are Co 2t=0.745A

(high spin),Co 2t=0.65A

(low spin),Mo 6t=0.059nm,Nb 5t=0.064nm).37The present material is an Nb-doped variant of the rock-salt ordered Co 2tBa 2CoMoO 6,38made by solid solution with the B-site disordered simple cubic Co 3tperovskite BaCo 0.5Nb 0.5O 3.39Although at the 1:1ratio Co 3tand Nb 5tare disordered,the ordered domain sizes in the present BCMN material are large suggesting that the Co/Nb alternation is still favored,assigned to the presence of only 30%Co 3t,with the Co 2tcharge state driving site order with Nb 5towing to the larger charge difference.Co 2tand Nb 5tare ordered in the well-known 2:1micro-wave dielectric perovskite Ba 3CoNb 2O 9;interestingly,in this class of ordered perovskite,dilution with a third cation of intermediate charge (Zr 4t)produces a transition to the 1:1rock-salt type ordering of the type

seen here.40In the present case,the rock-salt ordered 2t/6tBa 2CoMoO 6is robust to the introduction of 50%of the lower charged cation Nb 5ton the Mo 6tsite,where the common geometries adopted by d 0cations may assist the tendency to retain order.The sizes of the ordered domains of over 60nm from diffraction data are consis-tent with the sizes of the ordered regions observed in HRTEM and emphasize the robust nature of the B site ordering pattern despite the 50%substitutional cation disorder on one of the two sublattices.

The composition and structure of B-site ordered Ba 2-CoMo 0.5Nb 0.5O 6-δcontrol both stability and properties.Instability against phase separation into hexagonal per-ovskites containing Co 4tis a problem for the Co 4t-containing cubic BSCF.The introduction of Mo VI and Nb V on half of the B sites strongly reduces the mean Co valence to just over two and thus suppresses the tendency for hexagonal stacking of the AO 3layers,explaining the enhanced stability to thermal treatment and reactivity with the SDC electrolyte compared with BSCF.This is emphasized by the presence of hexagonal stacking faults (Figure 5)in the x =0.5material with a higher Co charge state of t3.5-the stacking faults are completely sup-pressed at x =1.This higher Co charge at x =0.25also reduces the drive to order the Co and Mo/Nb on both size and charge grounds,accounting for the simple cubic rather than rock-salt ordering observed here.The de-creased Co charge state within the cubic structure does however negatively affect some of the key functions of the material as a cathode.The lower Co mean oxidation state considerably reduces the tendency to form anion vacan-cies,which are prevalent when the mean charge rises above t3as in BSCF,and thus reduces the ionic com-ponent of the conductivity.The bonding with oxygen is necessarily less covalent for Co 2t/3tin BCMN than in the higher oxidation state Co 3t/4tpresent in BSCF,and this will reduce the electronic conductivity.A further contri-butor to the relatively low electronic conductivity of

BCMN is the large (~8A

)separation of the electronically active Co by intervening d 0Mo centers imposed by the rock-salt ordering.The electronic conductivity is by hopping and presumably enhanced by the mixed valency at the Co site.The total conductivity of BCMN is thus more than 30times lower than BSCF.As the performance of a fuel cell electrode depends on the ability to transport electrons and ions to the reactive site,it would be expected that the performance of BCMN would be markedly inferior to materials such as BSCF.

The literature shows the ASR for cathode materials depends strongly on the composition,morphology,and processing parameters.For example,at 600°C,ASR values observed are 2.8Ωcm 2for GdBaCo 2O 5tδ(GBCO on YSZ), 1.15Ωcm 2for La 0.6Sr 0.4CoO 3-δ(LSC on SDC),2.0Ωcm 2for Sm 0.5Sr 0.5CoO 3-δ(SSC on SDC),1.3Ωcm 2for La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ(LSCF on Gd 0.1-Ce 0.9O 1.95),and 0.1-1.1Ωcm 2for Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3-δ

(32)Anderson,M.T.;Greenwood,K.B.;Taylor,G.A.;Poeppelmeier,

K.R.Prog.Solid State.Chem.1993,22,197.

(33)Bernuy-Lopez,C.;Allix,M.;Bridges,C. A.;Claridge,J. B.;

Rosseinsky,M.J.Chem.Mater.2007,19,1035.(34)Fu,W.T.;IJdo,D.J.W.J.Solid State Chem.2006,179,1022.(35)Gl ::ockner,R.;Neiman,A.;Larring,Y.;Norby,T.Solid State Ionics

1999,125,369.

(36)Li,M.R.;Hong,S.T.Chem.Mater.2008,20,2736.(37)Shannon,R.D.Acta Crystallogr.,Sect.A 1976,32,751.

5162Chem.Mater.,Vol.21,No.21,2009Deng et al.

(BSCF,on SDC).8,41,44The direct comparison with the same processing parameters here gives BCMN an ASR 2.5times higher than BSCF.Therefore,despite the relatively low total conductivity,the ASR data indicate the BCMN performance is comparable to that of other cathodes such as LSM and BSCF.

The ASR activation energy of130kJ mol-1for the oxygen reduction reaction on the BCMN cathode is comparable to that of BSCF(116-127.4kJ mol-1)and LSCF(131-138kJ mol-1)on the SDC electrolyte in the same temperature range.7,45ASR is decomposed into two separate high-and low-frequency processes,as shown in Table S5of the Supporting Information and Figure8. Considering the LF arc,the capacitance1.1?10-2to 5.7?10-2F cm-2,and the time constant values(τ=RC) 8.6?10-3to2.3?10-3s at650-750°C,together with the high activation energy of147.9kJ mol-1are consistent with the characteristics associated with the dissociative adsorption and diffusion of oxygen on the surface of the electrode,i.e.,with surface kinetic impedance. The capacitance value is comparable to that of the dense LSCF microelectrode15?10-3F cm-2(750°C),and the porous LSCF(3.6?10-3F cm-2),LSM(12.2?10-3Ω-1cm-2s n,n=0.7,700°C),and La0.74Ca0.25Co0.8-Fe0.2O3-δ(12.7?10-3Ω-1cm-2s n,n=0.89,750°C) electrodes.46-49

The HF arc has a capacitance1order of magnitude lower than that of the LF arc and a typical time constant ~1?10-4s.This is likely related to the charge-transfer process of reduction from O to O2-,as suggested by prior studies on LSCF and LSC cathodes.50-52For the present BCMN material,the rate-limiting steps are the dissocia-tive adsorption and diffusion at the BCMN electrode surface(i.e.,the process in the LF arc)at low tempera-tures and the charge transfer process at high temperature when T>700°C.As shown in Figure8and Table S5 in the Supporting Information,BCMN has R LF=

0.78Ωcm2and R HF=0.55Ωcm2at600°C,indicating

a comparable contribution from surface kinetic impe-dance(R LF)and charge-transfer impedance(R HF).In contrast,R LF has been found to be the predominant contribution to the ASR of materials such as LSC and LSCF.For example,values of R LF=3.0Ωcm2and R HF=1.0Ωcm2were reported for an LSCF electrode at 590°C,and R LF=1.6Ωcm2and R HF=1.1Ωcm2for an LSC-SDC composite cathode.52,53As BCMN has limited electrical conductivity(1.2and 1.0S/cm at800and 700°C,respectively,compared to300-320S/cm for LSCF and LSM at750°C9,47the enhanced surface kinetics of the present material may play an important role in the surprisingly good electrode performance found here for the oxygen reduction reaction(i.e.,the low ASR values comparable to the existing materials with much higher intrinsic total conductivities).This suggests that the inclusion of Mo in the material assists the electro-chemical oxygen reduction via catalytic promotion of the dissociation and surface diffusion of oxygen species on the cathode to the three-phase boundary(TPB).19,20,54 This inference is supported by the activation energy for the oxygen surface exchange involving the dissociative adsorption and diffusion of oxygen on the surface of the electrode seen in the LF arc found for the BCMN electrode,~147.9kJ mol-1,which is lower than that of the porous LSM(202-236kJ mol-1)the dense LSCF microelectrode(154.4kJ mol-1),and the dense BSCF microelectrode173.7kJ mol-1over the temperature range600-750°C.47,48,55The known ability of Mo VI to enhance dioxygen dissociation in hydrocarbon oxidation catalysis may thus be an important factor in the cathode behavior of BCMN.BCMN is also expected to display oxide ion conductivity because of the oxygen vacancies, though these are less abundant than in BSCF.

Conclusion

The new oxide,Ba2CoMo0.5Nb0.5O6-δ(BCMN),with a B-site cation ordered double perovskite structure in which d0Mo VI is separated from the d-electron bearing Co,exhibits comparable electrochemical properties and improved stability compared with some existing candi-date SOFC cathode oxides.The role of Mo in dioxygen activation,possibly through the LF process corres-ponding to dioxygen cleavage and surface motion to the reduction site,offsets the reduction produced by the introduction of d0Mo(VI)in electronic and ionic conductivity,and can be proposed as the origin of the cathode performance of BCMN.

Acknowledgment.We thank EPSRC for support under EP/C511794and for access to ISIS,where Dr.R.I.Smith is thanked for assistance on the POLARIS instrument. Supporting Information Available:Additional figures and tables(PDF).This material is available free of charge via the Internet at https://www.doczj.com/doc/5e15819282.html,.

(41)Taranc o n,A.;Morata,A.;Dezanneau,G.;Skinner,S.J.;Kilner,J.

A.;Estrad e,S.;Hern a ndez-Ram?rez,F.;Peir o,F.;Morante,J.R.

J.Power Sources2007,174,255.

(42)Bellino,M.G.;Sacanell,J.G.;Lamas,D.G.;Leyva,A.G.;de

Reca,N.E.W.J.Am.Chem.Soc.2007,129,3066.

(43)Grunbaum,N.;Dessemond,L.;Fouletier,J.;Prado,F.;Caneiro,

A.Solid State Ionics2006,177,907.

(44)Sahibzada,M.;Benson,S.J.;Rudkin,R.A.;Kilner,J.A.Solid

State Ionics1998,113-115,285.

(45)Esquirol,A.;Kilner,J.A.;Brandon,N.P.Solid State Ionics2004,

175,63.

(46)Baumann,F.S.;Fleig,J.;Habermeier,H.U.;Maier,J.Solid State

Ionics2006,177,1071.

(47)Jiang,S.P.Solid State Ionics2002,146,1.

(48)Jiang,S.P.;Love,J.G.;Ramprakash,Y.J.Power Sources2002,

110,201.

(49)Chen,C.W.;Tsai,D.S.;Jin,T.Y.;Chung,W.H.;Chou,C.C.

Solid State Ionics2008,179,330.

(50)Adler,S.B.;Lane,J.A.;Steele,B.C.H.J.Electrochem.Soc.1996,

143,3554.

(51)Shah,M.;Barnett,S.A.Solid State Ionics2008,179,2059.

(52)Dusastre,V.;Kilner,J.A.Solid State Ionics1999,126,163.(53)Zhao,F.;Peng,R.R.;Xia,C.R.Mater.Res.Bull.2008,43,

370.

(54)Baumann,F.S.;Fleig,J.;Cristiani,G.;Stuhlhofer,B.;Habermeier,

H.U.;Maier,J.J.Electrochem.Soc.2007,154,B931.

(55)Fleig,J.Annu.Rev.Mater.Res.2003,33,361.

疯狂农场3金牌攻略之一

疯狂农场3金牌攻略之一 同样的关卡,可能各人打法不同,但结果相同,所以也就是个参考,快乐游戏才是第一位的。各位有更好办法的,可以回复交流一下~~ 先熟悉一下产品列表 蛋系列:火鸡(鸡、鸭、雌企鹅)蛋→蛋松→蛋饼→蛋糕(加飞机运回面粉)毛系列:羊(牦牛、南美驼羊)毛→毛线→布匹→高级布匹→衣服→工艺熊(狮子) 羽毛系列:雄企鹅(驼鸟)羽毛→双羽毛→帽子→衣服→工艺熊(狮子) 奶系列:牛→牛奶→奶油→高级奶油→奶酪(加飞机运回的瓶子) 角系列:羚羊(野牛、海豹)→角→加工角→双角→工艺装饰品(加飞机运回颜料) 鸡厂:蛋→鸡(火鸡、雌企鹅) 魔法蛋糕:蛋糕+帽子+工艺装饰品+高级奶油 就产品而言,与二代相比还是有所丰富,但不如披萨狂欢那么复杂。游戏难度还可以接受,不是非常的难。。 3代里比较失败的是“狗”的使用,个人感觉狗的升级没什么意义,好像只是跑的快一点点。不管升到什么时候,反正让熊一下子就卷跑了。 技巧: 1、顺利拿金的要点,在于关卡开始后,首先熟悉目标、已经给出的设备、初始条件,能一次过最好,不行就Restart一下。 2、各关卡的最初阶段是很重要的,合理利用给出初始的条件,选择正确的方法,是全金过关的关键所在。在初始条件有限的情况下没有选择,但如果初始给出的钱或动物比较多、以及初始就可利用的工艺熊(狮子)条件,打起来就顺利多了。

3、疯狂农场系列,其后遗症是到最后手会抽筋的,如果有个鼠标点击器,那是最好不过了。但是,好象有部分点击器是被屏蔽的。 4、时间紧的情况下,可以狂点设备加快速度,只要注意别点坏就行。无论点到什么程度,只要设备没损坏,升级一下就成新的,又可以放心的点了。 5、刚开始打的时候可能不容易金牌过关,可以等到设备升级以后再打,会发现容易多了。 6、要求时间比较长的关卡,自由度往往较高,也容易金牌过关;时间短的关卡,才是让人头疼的。所以,对于时间要求短的关卡,一定要充分利用设备加速的功能,尤其是第一批产品,一定要快,第一桶金太重要了。 7、在仓库飞机小车和水井中,小车的升级是最重要的,因为资金回笼全靠它了,所以只要条件允许就升级吧,甚至有时候哪怕钱刚刚好,也要优先升级它;在某几个关卡中,飞机的升级很重要,特别是基本购买产品加工的关卡,如第77关;水井的升级适合手懒的人,动物太多时,我就把水井升级到最高。 8、要求完成的任务目标,只要曾经达到过就可以,并不是必须保留到最后,所以要充分利用这一点,买了动物可以马上卖掉,完成金币任务后可以马上花钱。 第一大区:右下角 1-3关按惯例是教学关,很容易就过了。 第4关 目标:6蛋、4蛋松、2蛋饼、300金币; 初始条件:1火鸡、150金币; 时间要求1:50 买1火鸡,抓2狮子卖,钱回来建蛋饼厂。 第5关 目标:10蛋松、8蛋饼; 初始条件: 190金币; 时间要求3:10 买1火鸡,28秒出1熊,卖。钱回来再买2火鸡。升级蛋松厂和蛋饼厂各一次。

疯狂农场2全金牌通关攻略

疯狂农场2全金牌通关攻略 每一关都是根据这个顺序 关卡名 过关条件 需要时间 攻略详细内容 关卡太多了,如果找不到你想找的关卡,请使用CTRL+F搜索关卡名~ chichen lane 1 4个鸡蛋 1分钟 教学关,上来就买只鸡等着下蛋吧。 chichen lane 2 6个鸡蛋 3只鸡 1分30秒 得到2个鸡蛋就赶紧用小车买掉,这样才可以买第三只鸡。都是教学关很简单。 powder street 1 6个鸡蛋 3只鸡 2个蛋粉?(成包的那种,也不知道是什么东西) 2分钟 刚开始就把加工厂买了,后面出只熊加上一个蛋粉正好100块够买只鸡的,也很简单。powder street 2 2个蛋饼 2只鸡 2分30秒 上来买蛋粉加工厂和一只鸡,第一个蛋粉加上两只熊足够开蛋饼加工厂的,喂鸡的时候一次就喂一块草地就够啦,尽量不要用井,只有一只鸡应该没问题的。 powder street 3 12个蛋粉 1袋面粉(好象是面粉) 2分50秒 这关就有点难了,金牌几乎是卡着时间只差几秒。面粉是通过仓库右边的飞机来购买的,1个才10块钱,飞机运输也是需要时间的,所以有钱就买了省得后面忘记了。游戏一开始卖掉4只鸡,只留2只,得到的钱就可以买蛋粉加工厂,买熊和蛋饼把蛋粉加工厂升到2级,如果你手够快,2级就足够完成任务了,这关关键是如何喂鸡,只喂一块草地,草地快没了再种,我过关的时候一次井都没用,最后把鸡饿死了,不过蛋正好够,嘿嘿,多试几次。crossroads 1 20个鸡蛋 5个蛋粉 10个蛋饼 3分10秒 上来买两只鸡,鸡蛋最好都2个2个的一起加工。抓熊卖熊,升级蛋饼加工厂,中间多买只鸡就足够了。 powder street 4 2000块钱 3分30秒 什么都不用升级,开始就有1000块钱,买一只猪等着收猪肉吧,收8块猪肉的时候(可以得到1600元的时候),把猪也一起卖了,猪卖500正好够目标了。 powder street 5 1个蛋饼

lovelycation攻略===

lovely cation2攻略 此攻略改自某坑爹的日文攻略喵翻,根据自己通关过程修改,对应0.9汉化补丁。 序盘的选择转折点在4月9号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。 根据所拥有的物品,在某些地方对话有追加或者变化(对好感度有影响) 在4/ 10,4/ 15~4/16等地方选择错误的or好感度不足的话,也会BAD END 黄金周期间(4月29~5 / 5)道具的入手不了,所以需要的东西需提前购买起始能力奖励:每推完一女主,重新开始时全能力+5。所以推完之后就重新开始比较好 魅力对好感度的影响特别大,提升好感度王道方法就是提升各种属性了。 有一部分CG根据主人公能力及女主好感度会有不同(主要是梦想CG),后面会附上表 BY:吐槽の囧虚 七沢由仁 好感度影响大:魅力/食物/时髦 好感度影响小:体力/感性/艺术/运动 将超市里的便当A~C套餐都买了就能买到D套餐 4/ 6(水)“不去”(三朝月冈路线否决) “不擅长这种事”(天瀬优希否决) 4/ 7(木)“想要情报”(七沢由仁路线flag)

4/ 9(土)“OK”(七沢由仁路线flag) 4/12(火)《巧克力蛋糕》(超市入手)在手→一部分对话改变 “要谈一谈”→第二天《时尚杂志》入手 4/13(水)《巧克力蛋糕》在前一天4/12买到手→对话追加 4/14(木)“拿出勇气” 4/15(金)好感度达到一定以上“有空啊” 4/19(火)《烹饪教室》(图书馆入手)在手→一部分对话改变 4/20(水)《烹饪教室》在前一天4/19买到手→对话追加 4/21(木)“会这么做” 4/23(土)梦想场景1 4/24 (日)“发短信” 4/27(水)“已经足够了啊” 自由行动遭遇到→魅力27以上对话追加 4/28(木)《便当·D套餐》在手→第二天梦想场景2 4/30(土)《隔壁的猪先生》在手→一部分对话改变 5/ 1(日)好感度一定以上“那就试试吧”→第二天体育15以上梦想场景3 5/ 5(木)梦想场景4 5/ 8(日)梦想场景5 →第2次“体内XX”通往BAD END 5/10(火)《实用梦想eating Sound》(录像馆)在手→一部分对话改变 5/11(水)《实用梦想eating Sound》在前一天5/10买到手→对话追加梦想场景6 5/14(土)梦想场景7 天瀬优希

疯狂农场3冰河时代攻略

前言: 本攻略旨在最短时间金牌通关。有些关卡手段比较变态。有更好经验的桐梓欢迎拍砖。 本攻略主要适用于已经通关以后,在所有商店设施都买全的条件下攻全金牌的桐梓。 本攻略100%原创。疯狂农场冰河世纪有90关,每关都是鄙人反复研究以后的成果,写滴灰常辛苦。麻烦各位转载的时候请注明出处 攻略: 1、2为入门关省略。 3 企鹅蛋4,蛋粉4,蛋饼4,时间2:40 买熊2只开蛋粉工厂。企鹅下了4只蛋以后把企鹅和第三只熊一起卖了,开蛋饼工厂,一只一只生产。快的话2分20几秒就可以完成。 4 蛋粉6,蛋饼2,时间2:30 初始条件1企鹅300金 再买1企鹅。卖2熊,小车回来买2面粉,开蛋糕工厂。2:00出头完成。加工厂一律不升级。 5 蛋粉10,蛋饼10,金币500,时间3:10 初始条件5企鹅20金 本关关键在于升级蛋粉和蛋饼工厂。一开始卖2-3只企鹅,加工蛋。卖2熊,买2面粉。第二轮熊下来以后1蛋糕1熊得卖掉,卖2次,500金要求达成。之后蛋粉工厂升级1次,蛋饼工厂2次。2:45左右完成。 刚开始卖2只还是3只企鹅随意,企鹅下完10个蛋记得卖钱升级加工产。 6 企鹅10,蛋糕10,时间3:10 初始条件2企鹅300金

关键在于尽早升级蛋糕工厂。买5面粉。生产出来1个蛋糕立刻卖掉升级蛋糕加工厂。攒到800金的时候再买6企鹅。这时候最后2个蛋糕生产完毕。3:00前完成。 7 企鹅20,鸡蛋50,时间4:30 初始条件200金。 这关需要升级右面养殖场,初始经费靠卖蛋糕。买2企鹅加工。第一只熊下来卖掉买4面粉。再抓3熊卖2只,第三只和第一批出来的2蛋糕一起卖480。再买4 面粉。小车回来升级养殖场到第二级。这时蛋开始往养殖场扔。左面4蛋糕出来卖掉升级养殖场。仓库和饲料站各升1级。接下来就是狂捡蛋生产企鹅。 偶滴最快纪录3:33。应该可以更快。这个方法有点变态,中间熊多的时候偶为了优先卖蛋糕不惜“放养”熊节省仓库空间。其实不急着买后面4袋面粉,先升级仓库1次也是可以在金牌时间内完成的。 8 蛋10,蛋粉15,蛋糕20,时间4:40 初始条件3企鹅0金钱 分析条件可知本关对蛋粉、蛋饼要求比最后成品的蛋糕低,可知关键在升级蛋糕加工厂。本关自由度较大。偶试过一上来就卖掉1企鹅换2面粉,尽快卖2蛋糕同时拿蛋养企鹅;也试过一开始生产几只企鹅卖点换面粉和升级加工厂,两种方法都可以在4:15左右完成。除了升级加工厂,仓库也要升1次。 9 企鹅50,金钱2000,时间4:00 初始条件500金 本关关键在于吧养殖场升级到最高最后卖企鹅。开始买3企鹅和面粉,3只3只做蛋糕卖钱升级养殖场。做12个蛋糕就可以升级到最高级。小车逐步升级到5格,最后跑2次卖50只企鹅。50个企鹅要求达成后面的蛋就不用捡了,最后被熊踢飞几只也没关系,因为卖40个企鹅就可以完成2000金的要求。 10 蛋糕5,时间3:40 初始条件3企鹅200金,养殖场2级,左面加工厂需新建。 花150建蛋粉厂,3只蛋送1只到蛋粉厂,2只送养殖场。卖2-3只企鹅和熊一起卖掉,建蛋饼工厂。确认半成品数量够生产5个蛋糕以后把企鹅买了,买5面粉,建蛋糕厂。3:30左右完成。 生产蛋糕同时多产几只企鹅卖钱升级蛋糕厂1-2次可在3:20左右完成。 11 金钱5000,时间5:30 初始条件1帝企鹅,90金 本关无难度。卖帝企鹅买企鹅和面粉,生产蛋糕卖钱。每个加工厂都升级1次4:30-4:50完成.

疯狂农场2 全奖杯攻略

疯狂农场2 全奖杯攻略 找到所有隐藏要素 就是那些从上面挂根藤下来,或者从地下钻出来的熊,共17个。 生存模式中购买所有东西 生存模式中把所有需要能买的、能升级的都买了并升到最高级。 快速生产 游戏中通过点击建筑物可以加速生产,生产进度条边上有个红条,点的多了那个红条涨满了建筑会爆掉,点爆两个建筑即可获得。 用狗在关卡里抓住所有的熊 在一关中不点击熊,只用狗抓住所有的熊 过关时突破时间记录 比游戏里德最高记录时间更快过关(任意一关到达都可以) 抓去掉落的物品 飞机一次空投中,在落地前,接住8个物品。 冲过10关没有损失一只动物 如题,过10关保护动物不被熊拍飞。 储存1百万钱币 如题,存够100万即可。 完成所有关卡 无任何要求,完成生涯模式中所有关卡即可。 集齐所有奖励 获得所有其它奖杯即可。 坚持不懈的进行游戏 生涯模式中,一关游戏时间超过30分钟(不用刻意去做,最后有一关自然会玩到30分钟以上)。 在生存模式中保护房子免受熊的骚扰 生存模式下,1小时内,保持房子不被熊毁。 在生存模式中保护你的动物免受熊的骚扰 生存模式下,30分钟内,保护动物不被熊拍飞。

购买所有升级项目 购买商店里所有物品(即把所有东西升到最高级)。 不点击任何产品或熊过关 在一关中,不点击任何熊和产品,即通过狗和猫来完成关卡。 收集300个产品 如题。 不使用任何提示过关 在一关中,不出现任何提示(仓库满了、井没水了那种箭头)。 每在每关均赢得金奖等级 生涯模式中每关都以金奖过关(即在规定的金牌时间内完成游戏)。 填满仓库的每个位置 非字面上的将仓库装满,而是在仓库里装上所有不同的商品。 包括各类动物产品16种,飞机买的各类辅料5种,各类熊4种,共25种同时要购买所有动物。 注意:只能在生涯模式中完成。

疯狂农场4古罗马金牌攻略

章节1-3 1分20秒1曲奇1蛋粉300金币 捉2熊卖掉300金任务完成,产出蛋后投入蛋粉加工厂,小车回来建曲奇加工厂,1分左右完成 章节1-4 3分30秒2蛋糕5蛋2只鹅 鹅产出1蛋后速度卖一个蛋,小车回来刚好100金买一只鹅,45秒左右出3只熊捉2只先放小车上卖掉,小车回来建蛋粉加工厂,开始加工蛋粉,1分18秒左右再出3熊,卖掉2只,小车回来总共有170金,这时鹅已经产完5个蛋,小车再卖两只鹅和一只熊,小车回来有350金,回来建曲奇厂,小车再跑一趟卖1个曲奇两个蛋粉,驴车去买两个面粉,小车回来建蛋糕厂,加工蛋糕,大概3分14秒左右完成。 章节1-5 1分20秒5个蛋1水泥 30秒左右出1熊与产好的两个蛋卖掉,同时买1沙子,小车回来建水泥厂,加工水泥(记得水潭要留水)1分10秒左右完成。 章节1-6 3分10秒10只鹅500金2个蛋糕 建孵化器厂,开始加工额,50秒左右出4只熊,分两批卖掉。建蛋粉厂,鹅产够10只后一车拉走卖掉,同时买两个面粉,小车回来建曲奇厂和蛋糕厂。3分钟左右完成。 章节1-7 6分30秒14个蛋粉10个蛋糕20个蛋2000金 这关自由度比较大,买两只鹅,产蛋后一只扔蛋粉厂一只扔孵化场,等产到2只鹅后卖掉,买面粉,加工面粉,等有钱了可以买沙子加工水泥,孵化蛋,中间升级一次仓库,升级一下蛋粉厂,小车可升可不升,但是不要停,5分15秒左右完成。 章节1-8 3分40秒15个鹅25个蛋1个蛋糕1个水泥 鹅产出蛋立即投入孵化场,15秒左右出熊,分2趟卖掉,升1级孵化场,继续孵化,中间出的熊捉住卖掉,建蛋粉厂,2分20秒左右15个鹅,25个蛋完成,分两趟卖掉鹅,建曲奇厂、蛋糕厂、水泥厂。中间别忘买沙子和面粉。3分20左右完成。 章节1-9 4分50秒5鹅4水泥4蛋粉1蛋糕 加工蛋成曲奇,卖1曲奇饼买5个面粉,加工蛋糕,卖蛋糕,小车回来建水泥厂,买沙子,加工水泥,和蛋糕一块卖,攒够400金左右,买四只鹅,继续加工水泥,4分30秒左右完成。 章节1-10 7分50秒20蛋糕22蛋粉1500金 起始可以卖一只鹅买水,捉熊卖熊,用卖熊的钱买沙子,造水泥卖水泥(等蛋粉快加工完就不要卖水泥了后面的升级需要用水泥)中间一直加工蛋粉,等22个蛋粉加工完,换曲奇厂,并升2级,驴车跑两次买20个面粉,蛋糕厂升一级,加工蛋糕卖蛋糕,5分钟左右可完成。 章节1-11 5分20蛋20鹅10水泥2000金 买5鹅,卖2狗得400金,买4沙子,回来造水泥,蛋产出就投孵化场,水泥产出就卖接着买沙子继续造水泥,中间升级一下仓库,升级一下捉熊网,熊比较多,鸡够了就10只10只的卖,加上买水泥的钱2000金很容易就达到了,3分15秒左右完成。 章节1-12 8分10秒10蛋糕20曲奇1羊6水泥 这关自由度比较大,买沙子,加工水泥卖水泥,可以多买只鹅(开始用蛋比较多)加工水泥的同时加工蛋粉,等加工完20个蛋粉,这时水泥也完成6个了(多加工几个后面升级曲奇厂用),建曲奇厂并升2级,买面粉加工蛋糕,卖蛋糕,等钱到了1000金买只羊,时间宽裕,5分10秒左右可完成。 章节1-13 6分30秒30鹅20水泥1羊毛5000金 这关自由度比较大,买一只鹅,蛋投孵化场,捉熊卖熊,得到的钱买沙子造沙子也可以买面粉造蛋糕,蛋一直投孵化器,剩下的造蛋糕,有钱升级一下驴车、仓库、小船,等有30

高中英语词性规律前缀后缀

英语单词词性转换的基本规律 .动词(v.)→名词(n.) (a)词形不变,词性改变 例如:work, study, water, plant等可以用作动词(工作,学习,浇水,种植),也可以用作名词(工作,学习,水,植物). (b)一些动词在词尾加上-er或-or之后就变成了表示"某一类人"的名词 例如:work—worker, teach—teacher, sing—singer, jump—jumper, play—player, learn—learner, visit—visitor, invent—inventor,collect—collector等. 注意:1)以不发音的e结尾的动词,在词尾加-r. 例如:drive—driver, write—writer等. 2)以重读闭音节结尾,且末尾只有一个辅音字母的动词,应双写末尾的辅音字母,再加-er 例如:run—runner, win—winner,begin—beginner等. (c)在动词词尾加上-ment 变成名词 例如:achieve—achievement (成就) advertise—advertisement//advertising(广告)

agree—agreement disgree—disagreement amuse—amusement (娱乐) improve—improvement(争吵) commit(奉献)—commitment develop—development (发展) depart—department (局,部) govern(统治)—government(政府) manage—management (管理) equip—equipment (装备) 有些单词比较特殊,需把动词后的e去掉再加ment. 例如:argue—argument(争论) (d)在动词词尾加上-(t)ion/(s)ion变成名词 例如: attract—attraction; instruct—instruction; invent—invention discuss—discussion; express—expression educate—education; graduate—graduation; operate—operation (去e 再加"ion") compete—competition; organize—organization (把e 改成其他字母再加"tion") decide—decision conclude—conclusion (把de改 为s再加"ion")

疯狂农场2攻略

【攻略简介】 每一关都是根据这个顺序关卡名过关条件需要时间攻略详细内容 chichen lane 1 4个鸡蛋 1分钟 教学关,上来就买只鸡等着下蛋吧。 chichen lane 2 6个鸡蛋 3只鸡 1分30秒 得到2个鸡蛋就赶紧用小车买掉,这样才可以买第三只鸡。都是教学关很简单。 powder street 1 6个鸡蛋 3只鸡 2个蛋粉?(成包的那种,也不知道是什么东西) 2分钟 刚开始就把加工厂买了,后面出只熊加上一个蛋粉正好100块够买只鸡的,也很简单。 powder street 2 2个蛋饼 2只鸡 2分30秒 上来买蛋粉加工厂和一只鸡,第一个蛋粉加上两只熊足够开蛋饼加工厂的,喂鸡的时候一次就喂一块草地就够啦,尽量不要用井,只有一只鸡应该没问题的。 powder street 3 12个蛋粉 1袋面粉(好象是面粉) 2分50秒 这关就有点难了,金牌几乎是卡着时间只差几秒。面粉是通过仓库右边的飞机来购买的,1个才10块钱,飞机运输也是需要时间的,所以有钱就买了省得后面忘记了。游戏一开始卖掉4只鸡,只留2只,得到的钱就可以买蛋粉加工厂,买熊和蛋饼把蛋粉加工厂升到2级,如果你手够快,2级就足够完成任务了,这关关键是如何喂鸡,只喂一块草地,草地快没了再种,我过关的时候一次井都没用,最后把鸡饿死了,不过蛋正好够,嘿嘿,多试几次。 crossroads 1 20个鸡蛋 5个蛋粉 10个蛋饼 3分10秒 上来买两只鸡,鸡蛋最好都2个2个的一起加工。抓熊卖熊,升级蛋饼加工厂,中间多买只鸡就足够了。 powder street 4 2000块钱 3分30秒 什么都不用升级,开始就有1000块钱,买一只猪等着收猪肉吧,收8块猪肉的时候(可以得到1600元的时候),把猪也一起卖了,猪卖500正好够目标了。 powder street 5 1个蛋饼 1分20秒 测试版本这关时间是1分10秒,害我过了N次都没过去。不过现在好啦,刚开始的5只鸡先别卖,先抓1只熊,等鸡产了1个蛋,速度把熊和5只鸡一起卖掉,这样第一趟获得310块。小车回来后速度开

疯狂农场2金牌攻略

想起来的小窍门儿: 1、游戏中如果不停的点生产设备,速度会变快,但当设备变红之后还在继续点的话,设备会毁坏的,小心使用啊。 2、越是时间短的关卡越是要小心,个别关卡的时间要求可以用变态来形容,一定要盯紧。时间长的反而打的很轻松,这一点和一代倒是异曲同工。 3、有金钱任务要求的,记着最后在满足其他条件的情况下卖掉动物换钱。 4、需要辅助材料的,记得派飞机出去补充。 5、保持一定的频率。如果要生产最高级别的产品,基本上按照由低到高顺着点下去,一旦乱了就不好掌握了,时间也会浪费。 6、如果没能达成gold,不妨先放一放,等到升级了某些设备以后再打,也许就很容易了。 7、生存模式下刚开始很难受,没钱。不妨重新restar几回,你会发现出来的熊都不一样,选择价值最高的那个白熊开始吧。 8、本文中所说的方法,有时并不是唯一的,多尝试几次。 游戏是分大块进行的,刚开始写的时候没注意有街区的划分,如果看的不清楚,就对比一下要求好了。时间要求均为gold要求。 第1关:教学关目标:4个鸡蛋,初始条件:2鸡、金钱100;时间要求:1:30,相当容易的一关,没啥可说的。 第2关:目标:6鸡蛋,3鸡;初始条件:2鸡、金钱00;时间要求:1:30 也是很容易的,有几个鸡蛋就赶紧卖,基本上半分钟就完成了。 第3关:目标:6鸡蛋,3鸡、2蛋松;初始条件:2鸡、金钱190;时间要求:2:00 开始之前买蛋松房许可。这一关开始有熊了(咋是熊猫的样子),有了就抓吧,那60金钱还是挺有用的。建蛋松房,生产蛋松,也是很容易的一关,一半时间就够了。 第4关:目标:2鸡、2蛋饼;初始条件:金钱300;时间要求:2:30 开始之前买蛋饼房许可。买1只鸡就够了,抓熊卖掉,买蛋松机,差不多了就建蛋饼房,最后再买鸡,过关不难。

lovelycation攻略===

lovely cation2 攻略此攻略改自某坑爹的日文攻略喵翻,根据自己通关过程修改,对应汉化补丁。 序盘的选择转折点在4 月9 号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/ 帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。 根据所拥有的物品,在某些地方对话有追加或者变化(对好感度有影响) 在4/ 10 , 4/ 15?4/16等地方选择错误的or好感度不足的话,也会BAD END 黄金周期间(4 月29?5 / 5 )道具的入手不了,所以需要的东西需提前购买起始能力奖励:每推完一女主,重新开始时全能力+5 。所以推完之后就重新开始比较好 魅力对好感度的影响特别大,提升好感度王道方法就是提升各种属性了。 有一部分CG 根据主人公能力及女主好感度会有不同(主要是梦想 CG),后面会附上表 BY:吐槽①囧虚 七沢由仁好感度影响大:魅力/食物/时髦

好感度影响小:体力/ 感性/艺术/运动将超市里的便当A~C 套餐都买了就能买到D 套餐 4/ 6 (水)“不去”(三朝月冈路线否决)“不擅长这种事”(天瀬优希否 决) 4/ 7 (木)“想要情报”(七沢由仁路线flag) 4/ 9 (土)“OK”(七沢由仁路线flag ) 4/12 (火)《巧克力蛋糕》(超市入手)在手f一部分对话改变“要谈一谈” f第二天《时尚杂志》入手 4/13 (水)《巧克力蛋糕》在前一天4/12 买到手 f 对话追加4/14 (木)“拿出勇气” 4/15 (金)好感度达到一定以上“有空啊” 4/19 (火)《烹饪教室》(图书馆入手)在手 f 一部分对话改变 4/20 (水)《烹饪教室》在前一天4/19 买到手 f 对话追加4/21 (木)“会这么做” 4/23 (土)梦想场景1 4/24 (日)“发短信” 4/27 (水)“已经足够了啊” 自由行动遭遇到 f 魅力27 以上对话追加 4/28 (木)《便当D套餐》在手f第二天梦想场景2 4/30 (土)《隔壁的猪先生》在手 f 一部分对话改变 5/ 1 (日)好感度一定以上“那就试试吧” f 第二天体育15 以上 梦想场景3 5/ 5 (木)梦想场景4 5/ 8 (日)梦想场景5 —第2次“体内XX”通往BAD END

LOVELYCATION游戏攻略

序盘的选择转折点在4月9号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。 根据所拥有的物品,在某些地方对话有追加或者变化(对好感度有影响) 在4/ 10,4/ 15~4/16等地方选择错误的or好感度不足的话,也会BAD END 黄金周期间(4月29~5 / 5)道具的入手不了,所以需要的东西需提前购买 起始能力奖励:每推完一女主,重新开始时全能力+5。所以推完之后就重新开始比较好 魅力对好感度的影响特别大,提升好感度王道方法就是提升各种属性了。 有一部分CG根据主人公能力及女主好感度会有不同(主要是梦想CG),后面会附上表 BY:吐槽の囧虚 七沢由仁 好感度影响大:魅力/食物/时髦 好感度影响小:体力/感性/艺术/运动 将超市里的便当A~C套餐都买了就能买到D套餐 4/ 6(水)“不去”(三朝月冈路线否决)

“不擅长这种事”(天瀬优希否决) 4/ 7(木)“想要情报”(七沢由仁路线flag) 4/ 9(土)“OK”(七沢由仁路线flag) 4/12(火)《巧克力蛋糕》(超市入手)在手→一部分对话改变“要谈一谈”→第二天《时尚杂志》入手 4/13(水)《巧克力蛋糕》在前一天4/12买到手→对话追加4/14(木)“拿出勇气” 4/15(金)好感度达到一定以上“有空啊” 4/19(火)《烹饪教室》(图书馆入手)在手→一部分对话改变4/20(水)《烹饪教室》在前一天4/19买到手→对话追加 4/21(木)“会这么做” 4/23(土)梦想场景1 4/24 (日)“发短信” 4/27(水)“已经足够了啊” 自由行动遭遇到→魅力27以上对话追加 4/28(木)《便当·D套餐》在手→第二天梦想场景2

lovely cation2攻略===

精心整理 lovelycation2攻略 此攻略改自某坑爹的日文攻略喵翻,根据自己通关过程修改,对应0.9汉化补丁。序盘的选择转折点在4月9号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。 在4/10,4/15~4/16等地方选择错误的 黄金周期间(4月29~5/5 较好 有一部分CG 上表 BY 七沢由仁 时髦 艺术/运动 将超市里的便当A~C套餐都买了就能买到D套餐 4/6(水)“不去”(三朝月冈路线否决) “不擅长这种事”(天瀬优希否决) 4/7(木)“想要情报”(七沢由仁路线flag) 4/9(土)“OK”(七沢由仁路线flag)

4/12(火)《巧克力蛋糕》(超市入手)在手→一部分对话改变 “要谈一谈”→第二天《时尚杂志》入手 4/13(水)《巧克力蛋糕》在前一天4/12买到手→对话追加 4/14(木)“拿出勇气” 4/15(金)好感度达到一定以上“有空啊” 4/19(火)《烹饪教室》(图书馆入手)在手→一部分对话改变 4/20(水)《烹饪教室》在前一天4/19 4/21(木)“会这么做” 4/23(土)梦想场景1 4/24(日)“发短信” 4/27(水)“已经足够了啊” 自由行动遭遇到→魅力27 4/28(木)《便当·D 4/30(土) 5/115以上梦想场景3 5/5 5/8次“体内XX”通往BADEND 5/10(火)《实用梦想eatingSound》(录像馆)在手→一部分对话改变 5/11(水)《实用梦想eatingSound》在前一天5/10买到手→对话追加 梦想场景6 5/14(土)梦想场景7 天瀬优希 好感度影响大:感性/智力/艺术/娱乐

Lovely Cation攻略修改

修改:犬吠崎绫线中4月15日(金)有一选项————和我一样啊 By:神大人 此攻略改自某坑爹的日文攻略喵翻,根据自己通关过程修改,对应0.9汉化补丁。 序盘的选择转折点在4月9号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。根据所拥有的物品,在某些地方对话有追加或者变化(对好感度有影响)在4/ 10,4/ 15~4/16等地方选择错误的or好感度不足的话,也会BAD END 黄金周期间(4月29~5 / 5)道具的入手不了,所以需要的东西需提前购买 起始能力奖励:每推完一女主,重新开始时全能力+5。所以推完之后就重新开始比较好魅力对好感度的影响特别大,提升好感度王道方法就是提升各种属性了。有一部分CG根据主人公能力及女主好感度会有不同(主要是梦想CG),后面会附上表 BY:吐槽の囧虚 七沢由仁 好感度影响大:魅力/食物/时髦 好感度影响小:体力/感性/艺术/运动 将超市里的便当A~C套餐都买了就能买到D套餐 4/ 6(水)“不去”(三朝月冈路线否决) “不擅长这种事”(天瀬优希否决) 4/ 7(木)“想要情报”(七沢由仁路线flag) 4/ 9(土)“OK”(七沢由仁路线flag) 4/12(火)《巧克力蛋糕》(超市入手)在手→一部分对话改变“要谈一谈”→第二天《时尚杂志》入手 4/13(水)《巧克力蛋糕》在前一天 4/12买到手→对话追加 4/14(木)“拿出勇气” 4/15(金)好感度达到一定以上“有空啊” 4/19(火)《烹饪教室》(图书馆入手)在手→一部分对话改变 4/20(水)《烹饪教室》在前一天4/19买到手→对话追加 4/21(木)“会这么做” 4/23(土)梦想场景1 4/24 (日)“发短信” 4/27(水)“已经足够了啊” 自由行动遭遇到→魅力27以上对话追加 4/28(木)《便当·D套餐》在手→第二天梦想场景2 4/30(土)《隔壁的猪先生》在手→一部分对话改变 5/ 1(日)好感度一定以上“那就试试吧”→第二天体育15以上梦想场景3 5/ 5(木)梦想场景4 5/ 8(日)梦想场景5 →第2次“体内XX”通往BAD END 5/10(火)《实用梦想eating Sound》(录像馆)在手→一部分对话改变 5/11(水)《实用梦想eating Sound》在前一天5/10买到手→对话追加梦想场景6 5/14(土)梦想场景7 天瀬优希 好感度影响大:感性/智力/艺术/娱乐 好感度影响小:魅力/时髦/学问

lovely cation2攻略=== (2)

l o v e l y c a t i o n2攻略 此攻略改自某坑爹的日文攻略喵翻,根据自己通关过程修改,对应0.9汉化补丁。序盘的选择转折点在4月9号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。 根据所拥有的物品,在某些地方对话有追加或者变化(对好感度有影响) 在4/10,4/15~4/16等地方选择错误的or好感度不足的话,也会BADEND 黄金周期间(4月29~5/5)道具的入手不了,所以需要的东西需提前购买 起始能力奖励:每推完一女主,重新开始时全能力+5。所以推完之后就重新开始比较好 魅力对好感度的影响特别大,提升好感度王道方法就是提升各种属性了。 有一部分CG根据主人公能力及女主好感度会有不同(主要是梦想CG),后面会附上表 BY:吐槽の囧虚 七沢由仁 好感度影响大:魅力/食物/时髦 好感度影响小:体力/感性/艺术/运动 将超市里的便当A~C套餐都买了就能买到D套餐 4/6(水)“不去”(三朝月冈路线否决) “不擅长这种事”(天瀬优希否决) 4/7(木)“想要情报”(七沢由仁路线flag) 4/9(土)“OK”(七沢由仁路线flag) 4/12(火)《巧克力蛋糕》(超市入手)在手→一部分对话改变

“要谈一谈”→第二天《时尚杂志》入手 4/13(水)《巧克力蛋糕》在前一天4/12买到手→对话追加 4/14(木)“拿出勇气” 4/15(金)好感度达到一定以上“有空啊” 4/19(火)《烹饪教室》(图书馆入手)在手→一部分对话改变 4/20(水)《烹饪教室》在前一天4/19买到手→对话追加 4/21(木)“会这么做” 4/23(土)梦想场景1 4/24(日)“发短信” 4/27(水)“已经足够了啊” 自由行动遭遇到→魅力27以上对话追加 4/28(木)《便当·D套餐》在手→第二天梦想场景2 4/30(土)《隔壁的猪先生》在手→一部分对话改变 5/1(日)好感度一定以上“那就试试吧”→第二天体育15以上梦想场景3 5/5(木)梦想场景4 5/8(日)梦想场景5→第2次“体内XX”通往BADEND 5/10(火)《实用梦想eatingSound》(录像馆)在手→一部分对话改变 5/11(水)《实用梦想eatingSound》在前一天5/10买到手→对话追加 梦想场景6 5/14(土)梦想场景7 天瀬优希 好感度影响大:感性/智力/艺术/娱乐 好感度影响小:魅力/时髦/学问 ※4/13开始,女主同行到各地方,五次后,选择到自己房间好感度会下降(日语无

英语中常见的修辞手法

英语中常见的修辞手法 1 明喻(Simile) 明喻是一种最简单、最常见的修辞方法,是以两种具有共同特征的事物或现象进行对比,表明本体和喻体的关系,两者都在对比中出现,其基本格式是“A像B”,常用的比喻词有as, like, as if, as though等。如果使用得当可以把深奥的道理说得通俗、浅显、明白,使人可见可感可悟,把简单的事物表达的更为形象更为生动。例如: Like climbing a mountain, we struggle up three feet and fall back two.(正如爬山,我们费力爬上三英尺,又掉下去两英尺。)(大学英语第一册第三单元课文B) I see also the dull, drilled, docile, brutish masses of the Hun soldiery blodding on like a swarm of crawling locusts.(丘吉尔在此使用了一个恰当的比喻,把德国士兵比作蝗虫,因为二者有着共同之处-传播毁灭。) 2 暗喻(the metaphor) 暗喻也是一种比喻,但不用比喻词,因此被称作缩减了的明喻(a compressed simile)。它是根据两个事物间的某些共同的特征,用一事物去暗示另一事物的比喻方式。本体和喻体之间不用比喻词,只是在暗中打比方,从而更生动、更深刻地说明事理,增强语言的表现力。例如:I will do anything I can to help him through life's dangerous sea.(我将全力帮助他穿越人生的惊涛骇浪。)(第二册第三单元课文A) Consider that the same cultural soil producing the English language also nourished the great principles of freedom and right of man in the modern world.(想想吧,孕育英语的文化土壤也同样为当今世界培育了自由和人权准则。)(大学英语第二册第七单元课文A) Each letter was a seed falling on a fertile heart. A romance was budding.(每一封信就像落在肥沃土地上的种子,浪漫之花含苞待放。)(大学英语第一册地五单元课文A) 3 转喻(the metonymy) 转喻是通过相近的联想,借喻体代替本体。转喻是比隐喻更进一步的比喻,它根本不说出本体事物,直接用比喻事物代替本体事物。例如: The buses in America are on strike now.美国的公共汽车司机正在罢工(这里buses 喻指司机drivers)。 “Well,”said the doctor.“I will do all that science can accomplish. But whenever my patient begins to count the carriages in her funeral porcession I subtract 50 per cent from the curative power of medicines.”(“好吧,”医生说,“我会尽力做到科学能做到的,但每当我的病人开

LOVELYCATION游戏攻略

此攻略改自某坑爹的日文攻略喵翻,根据自己通关过程修改,对应0.9汉化补丁。 序盘的选择转折点在4月9号(固定追一个妹纸就好了,序盘的那些地点总是选她,选项是对她好奇/帮忙之类的。)对其他的妹纸地点和选项无视,下周目再追其他的也不会少剧情。根据所拥有的物品,在某些地方对话有追加或者变化(对好感度有影响) 在4/ 10,4/ 15~4/16等地方选择错误的or好感度不足的话,也会BAD END 黄金周期间(4月29~5 / 5)道具的入手不了,所以需要的东西需提前购买 起始能力奖励:每推完一女主,重新开始时全能力+5。所以推完之后就重新开始比较好 魅力对好感度的影响特别大,提升好感度王道方法就是提升各种属性了。 有一部分CG根据主人公能力及女主好感度会有不同(主要是梦想CG),后面会附上表BY:吐槽の囧虚 七沢由仁 好感度影响大:魅力/食物/时髦 好感度影响小:体力/感性/艺术/运动 将超市里的便当A~C套餐都买了就能买到D套餐 4/ 6(水)“不去”(三朝月冈路线否决) “不擅长这种事”(天瀬优希否决) 4/ 7(木)“想要情报”(七沢由仁路线flag) 4/ 9(土)“OK”(七沢由仁路线flag) 4/12(火)《巧克力蛋糕》(超市入手)在手→一部分对话改变 “要谈一谈”→第二天《时尚杂志》入手 4/13(水)《巧克力蛋糕》在前一天4/12买到手→对话追加 4/14(木)“拿出勇气” 4/15(金)好感度达到一定以上“有空啊” 4/19(火)《烹饪教室》(图书馆入手)在手→一部分对话改变 4/20(水)《烹饪教室》在前一天4/19买到手→对话追加 4/21(木)“会这么做” 4/23(土)梦想场景1 4/24 (日)“发短信” 4/27(水)“已经足够了啊” 自由行动遭遇到→魅力27以上对话追加 4/28(木)《便当·D套餐》在手→第二天梦想场景2 4/30(土)《隔壁的猪先生》在手→一部分对话改变 5/ 1(日)好感度一定以上“那就试试吧”→第二天体育15以上梦想场景3 5/ 5(木)梦想场景4 5/ 8(日)梦想场景5 →第2次“体内XX”通往BAD END 5/10(火)《实用梦想eating Sound》(录像馆)在手→一部分对话改变 5/11(水)《实用梦想eating Sound》在前一天5/10买到手→对话追加 梦想场景6 5/14(土)梦想场景7 天瀬优希 好感度影响大:感性/智力/艺术/娱乐 好感度影响小:魅力/时髦/学问 ※4/13开始,女主同行到各地方,五次后,选择到自己房间好感度会下降(日语无力,可能有错,总之自由行动带着妹纸时避免到自己房间)

2001年10月自考英语(二)试题及答案

全国2001年10月自考英语(二)试题及答案 课程代码:00015 全部题目用英文作答(英译汉题目除外),并将答案写在答题纸的相应位置上,否则不计分。 PART ONE Ⅰ.Vocabulary and structure(10 points,1 point for each item) 从下列各句四个选项中选出一个最佳答案,并将答案写在答题纸上。 1.Should she come tomorrow,I ______ take her to the museum. [A]can [B]will [C]would [D]must 2.Mary of us visited the industrial exhibition,______,to our disappointment,we saw very few high-tech(高技术) products. [A]where [B]which [C]as [D]that 3.These networks are on the ______ for warning signs that show the weakening of rock layers that can precede an earthquake. [A]eagerness [B]alarm [C]alert [D]guard 4.His name will be crossed out from the list ______ he makes the same mistakes again. [A]if [B]unless [C]because [D]though 5.With the soaring of prices,a number of young college graduates cannot earn their living,______ supporting their parents. [A]not to say [B]to say nothing of [C]not saying [D]saying nothing of 6.______ it was raining,many international tourists were having picnics in the woods. [A]In spite [B]In spite of [C]In spite of that [D]In spite of the fact that 7.The students would not have made so much progress under less ______ conditions. [A]popular [B]welcome [C]favourable [D]prosperous 8.Lots of empty beer bottles were found under the young man's bed;he ______ heavily. [A]must have drunk [B]must drink [C]should drink [D]had to drink 9.On the other hand concern is also growing about the possibility of a new economic order ______ resource-rich nations of the Third World would combine to set high commodity prices. [A]which [B]what [C]that [D]in that 10.______ home,she found that she had left the key at the office. [A]To have arrived [B]To arrive [C]While arriving [D]Arriving Ⅱ.Cloze Test(10 points,1 point for each item) 下列短文中有十个空白,每个空白有四个选项。根据上下文要求选出最佳答案,并将答案写在答题纸上。 Writing in a d iar y,wa tch ing te le vis ion,ta lk ing with f riends,spe ak ing on th e telephone,and 11 a menu-what do they have in common?They are all 12 of communication.It has been 13 that people spend more time communicating than they spend in any other complex activity in life. 14 ,communication is a word that most people have difficulty 15 and talking about. The word communication may be used to identify activities that do not 16 people.For example,the word may sometimes be used to describe the 17 that animals relate to each other. 18 ,it is said that electronic devices “communicate”with each other.However,commu-

相关主题
文本预览
相关文档 最新文档