当前位置:文档之家› 毕业设计(论文)-基于MCX314步进电机运动控制器设计

毕业设计(论文)-基于MCX314步进电机运动控制器设计

毕业设计(论文)-基于MCX314步进电机运动控制器设计
毕业设计(论文)-基于MCX314步进电机运动控制器设计

摘要

数控机床在整个现代制造业中处于基础性的、核心的地位。在现代制造系统朝着集成化、综合化和智能化发展的今天,特别是计算机的发展与普及化,深入研究新一代数控技术具有重要的意义。目前,以DSP为代表的高速高性能专用微处理器构成的运动控制器的数控系统成为数控技术的发展方向,运动控制器将成为未来数控系统的核心。

在本设计中,我们选用日本NOVA电子有限公司研制的DSP运动控制专用芯片MCX314。MCX314由硬件来实现复杂的运动控制算法,使得编程方便,接口简单,工作可靠,给运动控制带来极大方便,可广泛应用于数控机床、机器人等领域的运动控制。在MCX314的基础上,我们拟定了两种运动控制器的实现方案,并选定基于ARM芯片为主控制器的实现方案,即采用AT91FR40162和MCX314作为主要芯片,实现复杂的运动控制功能。设计完成基于AT91FR40162和MCX314的控制器硬件电路设计;设计了RS232串行接口和CAN总线接口实现与其他设备通信;分析了软件结构特点并完成部分程序编写,主要包含基本的测试操作函数和运动控制函数。

关键字:MCX314AT91FR40162 运动控制器

III

Title Design of Motion Controller Based On MCX314

Abstract

Numerical control machine is on the basic and kernel position in the modern manufacture. With the modern manufacture system integrated, colligated and intelligent, especial the computer technology development and dissemination, studying the new generation numerical control and dynamics control technology is significant. At present, the numerical control system with motion controller is becoming to the numerical control technique development tide, motion controller will be to kernel of future numerical control system. We select DSP dynamics control special-purpose chip MCX314 made in NOV A electron corporation in our design. MCX314 can realize the complex motion control allergic with hardware, so it has advantage of convenient programming, simple interface and reliable work. It‘s very convenient to motion control and can be applied to numerical control machine tool, robot, etc.

Based on MCX314, we design two scheme of motion controller and select the scheme which base on ARM, AT91FR40162 and MCX314 are main chips, the complex motion control function can be realized. In our design, the hardware circuit of controller was completed, the RS232 interface and CAN bus interface were designed so that the controller can communicate with other device. The software structure feature is discussed and some program was finished, including basic test function and motion control function.

keywords:MCX314, AT91FR40162, Dynamics Controller

IV

目次

1 绪论 ............................................................................................... 错误!未定义书签。

1.1 数控系统的发展 ........................................................................ 错误!未定义书签。

1.2 开放式数控系统及其研究现状 ................................................ 错误!未定义书签。

1.3论文主要工作 ............................................................................ 错误!未定义书签。

2 运动控制关键技术分析及方案制定 ........................................... 错误!未定义书签。

2.1 运动控制系统 ............................................................................ 错误!未定义书签。

2.2 步进电机运动控制系统 ............................................................ 错误!未定义书签。

2.3 方案的制定 ................................................................................ 错误!未定义书签。

2.4 MCX314芯片 ............................................................................ 错误!未定义书签。

2.5AT91FR40162芯片介绍 ........................................................... 错误!未定义书签。

2.6CAN总线技术........................................................................... 错误!未定义书签。

2.7本章小结 .................................................................................... 错误!未定义书签。

3 电路的运动控制器的硬件设计 ................................................... 错误!未定义书签。

3.1 硬件设计 .................................................................................... 错误!未定义书签。

3.2 电路的抗干扰设计 .................................................................... 错误!未定义书签。

3.3 本章小结 .................................................................................... 错误!未定义书签。

4 软件设计 ....................................................................................... 错误!未定义书签。

4.1 系统工作流程 ............................................................................ 错误!未定义书签。

4.2 控制程序特点与编写 ................................................................ 错误!未定义书签。

4.3串口通信 .................................................................................... 错误!未定义书签。

4.4 本章小结 .................................................................................... 错误!未定义书签。结论 ................................................................................................. 错误!未定义书签。致谢 ................................................................................................. 错误!未定义书签。参考文献 ....................................................................................... 错误!未定义书签。附录一:总体电路图 ......................................................................... 错误!未定义书签。附录二:总体电路的PCB图............................................................ 错误!未定义书签。

目次

1 绪论 (1)

1.1 数控系统的发展 (1)

1.2 开放式数控系统及其研究现状 (2)

V

1.3 论文主要工作 (4)

2 运动控制关键技术分析及方案制定 (5)

2.1 运动控制系统 (5)

2.2 步进电机运动控制系统 (6)

2.3 方案的制定 (7)

2.4 MCX314芯片 (9)

2.5 AT91FR40162芯片介绍 (13)

2.6 CAN总线技术 (14)

2.7 本章小结 (15)

3 电路的运动控制器的硬件设计 (16)

3.1 硬件设计 (16)

3.2 电路的抗干扰设计 (23)

3.3 本章小结 (24)

4 软件设计 (25)

4.1 系统工作流程 (25)

4.2 控制程序特点与编写 (26)

4.3 串口通信 (29)

4.4 本章小结 (30)

结论 (31)

致谢 (32)

参考文献 (33)

附录一: 电路原理图 (34)

附录二: 电路PCB图 .................................... 错误!未定义书签。

VI

1 绪论

制造业是国民经济的基础产业,制造业水平的高低是衡量一个国家工业发达程度的重要标志。大力发展先进的制造技术已成为世界各国最重要的几大技术战略之一,先进制造技术已经是国际竞争与产品革新的一种重要手段。近年来,世界范围内出现了研究应用先进制造技术的浪潮,以机械制造为代表的先进制造技术己成为当代国际间科技竞争的重点,许多国家制定了相应的计划,其中最具代表性的是美国的先进制造技术计划(AMT)、韩国的高级先进技术国家计划、日本的智能制造计划(IMS)和德国制造2000计划等。在我国,先进制造技术的重要性业已引起各界的认识和重视,被列为“九五”计划和2010年中长期科研发展规划中的主要关键技术和重要发展方向[5] [6] [44]。

数控机床在整个现代制造系统中处于基础性的、核心的地位[5]。因此,在现代制造系统朝着集成化、综合化和智能化发展的今天,特别是计算机技术发展与普及化,深入研究新一代数控技术具有重要的意义和实用价值。

1.1 数控系统的发展

数控系统(Numerical Control System)是一种控制系统,它能自动完成信息的输入、译码、运算,从而控制机床的运动和加工过程。

早期的数控系统采用数字逻辑电路构成。1952年诞生的第一代为电子管式,1959年发展为第二代晶体管式,1965年出现了第三代的小规模集成电路式数控系统。这三代数控系统的所有功能均由硬件实现,所以称为硬件数控系统。这种数控系统没有通用性和灵活性,所以其应用范围受到很大限制,可靠性较低,造价较高。

随着计算机技术的发展,1970年出现了通用小型计算机。于是将它移植过来作为数控系统的核心部件,出现了第四代数控系统,即计算机数控(CNC)系统。1974年,微处理器被应用于数控系统后,发展为第五代数控系统,即现代CNC系统。CNC系统特别是现代CNC系统的主要功能,如插补运算、刀具补偿、用户数控程序的预处理、刀具加工轨迹仿真等均由软件实现,所以CNC系统又称为软件数控系统。

自从出现了现代CNC系统以后,才从根本上解决了数控系统可靠性低、价格昂贵、应用不便(主要是编程困难)等关键问题。到70年代末80年代初,现代CNC系统进入成熟期,并在工业化国家形成产业化,数控系统及数控机床开始批量生产和投

1

放市场,数控技术在其它领域也得到了普及应用。

CNC技术的应用为制造业带来异常深刻的变革,但是,随着现代制造技术的发展,对CNC系统提出了越来越高的要求。从完成功能上看,一方面CNC系统必须适应DNC、CAD/CAM及CIMS的发展,能提供一个可以集成不同开发商提供的软件并适合联网需要的平台;另一方面,随着数控系统在机械制造、冶金、纺织、印刷、军工等行业的应用日益增多,中小批量生产的趋势日益增强,必须根据不同的用户需求,迅速、高效、低成本地构筑面向用户的数控系统。这就要求CNC系统具有模块化和重新配置的特点:从使用的角度看,新型CNC系统应能运用于各种计算机软硬件平台上,并提供统一风格的用户交互环境,以便于用户的操作、维护和更新换代。还应能在普及型个人计算机的操作系统上,简便地应用系统所配置的软件模块和硬件运动控制插件卡;机床制造商和用户能够方便的进行软件开发,追加功能和实现功能的个性化,使CNC系统具有PC的高速分析运算能力,大容量存储功能,各种软件的支撑,图文显示的优势以及联网的灵活性。显然,现代的封闭式结构的CNC系统根本无法满足这些要求。

数控系统生产厂商为了保持自己的市场竞争力,必须寻求更好的技术手段,使他们的专用技术能够随着计算机技术的更新换代而顺利的升级,不必为CNC产品换代而自己开发所有的软、硬件功能模块。在这种情况下,基于PC(国外称为PC-BASED)的第六代数控系统——开放式结构数控系统便成应运而生[7][9][16] [17]。

1.2 开放式数控系统及其研究现状

进入90年代以来,为了适应时代的要求,世界上一些研究机构和生产厂商先后开展了开放式数控系统的研究。

1.2.1 开放式数控系统的概念

根据IEEE关于开放式系统的定义:能够在多种不同的平台上运行,可以和其他系统的应用互操作,并能给用户提供一种一致风格的交互方式。开放式体系结构普遍采用模块化、层次化的结构,并通过各种形式向外提供统一的应用程序接口,具有可移植性、可扩展性、互操作性和缩放性等特点,即系统组成的内部开放化和系统组成各部件之间的开放化[15][17]。开放式系统具有以下基本特征:

(1)开放性。提供标准化环境的基础平台,允许不同功能和不同开发商的软硬件模块介入。

2

(2)可互操作性。通过提供标准化接口、通信和交互机制,使不同的功能模块能与标准的应用程序接口运行于系统平台之上,并获得平等的相互操作能力,协调工作。

(3)可移植性。系统的功能软件与设备无关,即应用统一的数据格式、交互模型、控制机理,使构成系统的各个功能模块可来源于不同的开发商提供的硬件平台之上。

(4)可扩展性。CNC系统的功能、模块可以灵活设置,方便修改,既可以增加硬件或软件构成功能更强的系统,也可以裁减其功能以适应低端应用。

(5)可互换性。不同性能、不同可靠性和不同能力的功能模块可以相互替代,而不影响系统的协调运行。

具有上述基本特征的数控系统可以称为开放式数控系统,这种开放式控制系统体系结构并不是现有控制系统体系结构的简单集合,而是在博采众长的基础上,反映控制系统体系结构未来发展的产物,它将引导开放式控制系统产品的发展,并对技术的发展起一定的指导作用。在该体系结构中,提供的是概念性和功能性的结构,而不是系统设施和标准细节的精确定义。

1.2.2开放式数控系统的研究现状

国际上与开放性数控的项目相关的项目比较多,早在80年代,为了拟订并推进关于新一代开放式控制系统的详细分析与规范,美国国防部就开始了名为“下一代控制器(NGC)”的计划。目前最具影响力的是分别由欧洲各国、美国及日本进行的OSACA、OMAC、OSE,因而这三个计划的发展现状基本上代表了开放性数控的发展现状。

与国际先进水平相比,我国国内的开放式数控系统的研究还处于初级阶段,主要采用在工业PC或普通PC的总线插槽上插入运动控制卡和I/O卡,配以自行开发的控制软件来完成数控系统的基本功能。目前己有的开放性数控系统主要有四种:华中I型、中华I型、航天I型和蓝天I型。控制系统的开放式结构的出现将导致新一代控制器的产生,并成为未来制造业的一大支柱。控制器结构的开放性为数控技术能持续不断地吸收日新月异的计算机硬软件最新成果创造了条件,有利于数控产品自身的更新换代,提高性能,增强竞争力,这正是开放式NC控制器之所以被各发达国家视为重要的战略技术、纷纷投入研究的重要原因。制造业第三次革命的开放式控制系统的研究,为我国数控产业的发展带来了新的契机。我们应该抓住这一大好时机,迅速开

3

展并深化我国的开放性控制系统的研究,缩小我国制造业水平与发达国家之间的差距[18] [19] [36]。

1.3 论文主要工作

目前,由于以DSP为代表的高速高性能专用微处理器的出现和PC机的广泛普及,采用运动控制器的数控系统将成为新一代数控技术发展潮流,运动控制器将成为未来数控系统的核心。

在本设计中,我们选用日本NOV A电子有限公司研制的DSP运动控制专用芯片MCX314。MCX314由硬件来实现复杂的运动控制算法,使得编程方便,接口简单,工作可靠,给运动控制带来极大方便,可广泛应用于数控机床、机器人等领域的运动控制。基于MCX314运动控制器具有处理能力强、开放程度高、运动轨迹控制准确、通用性好的特点。

论文的内容包括:

(1)数控技术的研究现状与发展趋势,确定课题方案。

(2)AT91FR40162+MCX314运动控制器的硬件设计。

(3)运动控制器的测试软件设计,包括一些基本的功能函数和测试例程。

(4)总结和后期展望。

4

2 运动控制关键技术分析及方案制定

2.1 运动控制系统

运动控制的实质是根据预定的方案,将上位控制系统做出的决策命令变成某种期望的机械运动,以得到确定的位置、速度、加速度或特定的运动形式。一个完整的运动控制系统通常由上位控制器、驱动器、执行电机、机械传动机构和位置检测元件等组成,其结构框图如图2-1所示[26] [35]。

图2-1运动控制系统结构框图

上位控制器将分析、计算所得出的决策命令以数字脉冲信号或模拟电压信号的形式送到电机驱动器中,驱动器进行功率变换,并驱动伺服电机根据上位指令转动。电机通过传动机构带动机械结构运动,便可以得到预期的运动参数和运动形式。上位控制器通常是运动控制卡、具有运动控制功能的PLC、数控系统(CNC)或单片机系统等。

数字化执行电机的受控性能较好,已在运动控制系统中普遍应用,如步进电机或数字式交流伺服电机等。

位置检测装置有脉冲编码器、旋转变压器、感应同步器、光栅、磁尺及激光干涉仪等。

基于以上对运动控制系统的简要分析,可对其作如下定义:运动控制系统是集机械、电子、计算机技术于一体的软硬件系统,它根据预定的方案,将上位控制系统做出的命令变成某种期望的机械运动,使控制目标得到精确的位置、速度、加速度,或具有特定规律的运动形式。

5

2.2 步进电机运动控制系统

不管是那一种类型的步进电机,其运动控制系统都是相似的。如图2-2是典型的步进电机开环控制系统结构框图,主要由步进电机运动控制器、步进电机驱动器和步进电机三部分组成[35][39][40]。

图2-2步进电机控制系统原理结构图

步进电机驱动器主要包括环形分配器和功率放大器两部分。其中环形分配器又称脉冲分配器,它根据运行指令按一定的逻辑关系分配脉冲,通过功率放大器加到步进电机的各相绕组,使步进电机按一定的方式运行;并实现正、反转控制和定位控制。由于输出的功率极小,只有几毫安电流,而步进电机相绕组一般需要几安至十几安的电流(脉冲电流幅值直接影响步进电机的转矩大小),所以脉冲分配器不能直接驱动步进电机工作,必须通过功率放大器进行放大,才能给步进电机各相绕组提供足够的电流。此外,步进电机驱动器在相数、通电状态、电压、电流上要符合所控制的步进电机的技术参数要求。

步进电机运动控制器则是控制系统的核心部分,它根据控制要求提供给步进电机驱动控制信号,该控制信号包括脉冲信号、脉冲方向信号、控制方式信号。运动控制器提供给步进电机的驱动信号是标准的信号,不论哪种驱动器都接受这样的标准信号,从而为开放式的控制提供了标准接口。这样为步进电机设计的运动控制器就可根据不同的需要与不同的驱动器连接使用。

为了控制的方便,步进电机一般可以有两种不同的控制模式可供选择。控制模式就是由控制方式信号来设置的。一种是方向/脉冲模式,在这种控制模式下,脉冲信号控制的是步进电机的运动,脉冲方向信号控制的是步进电机的运动方向(即正、反

6

转);另一种是脉冲模式,此时这两路信号分别控制步进电机的正转和反转运动,这样对于某些只需要一个方向运动的应用场合,可以省去一路信号,简化设计。

2.3 方案的制定

在本课题的总体方案中,我们首先选定的是日本NOV A电子有限公司研制的DSP 运动控制专用芯片MCX314。高集成度MCX314运动控制专用芯片能实现4轴3联动的位置、速度、加速度控制和直线、圆弧、位元3种模式的连续插补和位置闭环控制,其性能优良、接口简单、编程方便、工作可靠,给运动控制带来极大方便。可广泛应用于数控机床、机器人等领域的运动控制[1] [13] [14]。

然后,在MCX314的基础上,我们做了两种方式的运动控制器的研究和探讨。具体来说:第一种方式是做成外置式的独立运动控制器,通常采用微处理器或单片机构成控制系统,这种方法的软,硬件设计相对简单。传统的运动控制装置采用单片机为控制器,由于单片机处理速度较低,计算速度慢,在进行复杂运动控制中,系统的实时性能和可靠性受到制约,控制精度不理想。本方案拟采用ARM7芯片作为核心处理器来控制MCX314,ARM实现与PC机的通信,控制器还包含CAN总线接口来与其他设备通讯。

第二种方式是做成PCI总线的控制卡,可以直接嵌入到PC机内部。PC机通过PCI总线来访问和控制MCX314。整个板卡的结构如图2-3所示。

图2-3 板卡结构图

该方案是采用日本NOV A电子有限公司研制的DSP运动控制专用芯片MCX314,基于MCX314做成PCI总线接口的运动控制卡。有了相应的PCI驱动程序,运动控制卡便成为可以让PC机操作系统识别的一部分。主体是PC机通过PCI总线实现对

7

MCX314的控制,中间是一个PCI桥芯片PCI9052。还有输入输出电路和MCX314的基本外围电路。

在第二种方案中,由于MCX314是8/16位总线结构,属低端总线,方便与ISA 总线连接。而要实现与PC机PCI总线的接口设计,就必须有接口芯片作PCI总线到ISA总线的转换,相当于在PCI总线和ISA总线之间架设了一座桥梁,可以选用PCI9052芯片实现PCI总线与MCX314芯片的接口。由PC机通过PCI总线接口直接对MCX314进行控制,但设计的硬件和软件的复杂性加大,系统的可扩展性和开放性受到限制,系统的响应速度在很大程度上依赖于CPU,受处理器的影响比较大,成本也较高,系统升级较为困难,所以综合考虑本设计选用第一种方案。

采用ARM7系列中的AT91FR40162具有以下的好处[21][22][23]:

(1) 提高控制性能,采用成熟32位的ARM处理器来控制,可以提高系统可测的反映类型和相应的项目。

(2) 提高系统可靠性,AT91FR40162是一款基于ARM内核的32位RISC构架的处理器,其体积小,低功耗,低成本,性能高,支持Thumb(16位)、ARM(32位)双指令集,能很好的兼容8位/16位器件,采用此芯片后,控制器的硬件器件大为减少,软件程序大为缩短,均有助提高可靠性[21]。

(3) 提高系统实时性。

(4) 降低软件研发成本,软件开发简单,快捷,可以有更少的软件研发人员花更少的时间完成复杂的运动控制编程。

因此采用AT91FR40162作为中央处理器,能够提高系统性能,得到更优秀的控制特性,采用运动控制芯片MCX314,由其来完成复杂的运动控制算法,控制器具有精度高,运行稳定,实时性好,抗干扰能力强,性价比高的特点。该控制器包含CAN 总线和RS232串行接口来与其他设备通讯。功能更专、成本更低,另可实现基于操作系统的数控系统。加上嵌入式实时操作系统具有实时性、小型化、专用化和高可靠性,从而克服了传统的基于单片机控制系统功能不足。

本系统采用的是第一种方案,下面的章节对其作了详细地介绍,这里我们先分别谈一下课题总体方案中的几个重点部分:MCX314芯片,CAN总线,ARM微处理器。

8

2.4 MCX314芯片

MCX314是一个用于实现4轴运动控制的集成电路。通过这个集成电路可以控制由步进电机驱动器或由脉冲型伺服电机驱动的4轴的位置、速度、和插补。MCX314的所有功能都是由特定的寄存器控制的,例如命令寄存器、数据寄存器、状态寄存器和配置寄存器等[1] [13] [14] 。结构图见图2-4。

图2-4MCX314结构框图

2.4.1MCX314功能分析

(1)4轴控制

4轴都有着相同的功能能力,并且允许至多3轴联动,对于恒速驱动、线形或S 曲线驱动都有着相同的操作方法。

(2)脉冲输出

MCX314不仅可以输出固定的脉冲数,也可以连续不断地输出脉冲。输出脉冲的模式有两种:一种是脉冲/方向电平模式,另一种是正向脉冲/负向脉冲模式。

9

(3)恒速控制

恒速控制功能允许在不同的插补进行改换时保持运动速度不变。在插补驱动中,MCX314可以将2轴同步脉冲输出设置为1.44倍脉冲周期,而将3轴同步脉冲输出设置为1.732倍脉冲周期。

(4)速度控制

MCX314可以以较小的误差合成在其频率范围内的任何频率。每根单独的轴被独立的预置为S曲线或梯形加/减速。使用S曲线加/减速命令可以使输出脉冲按抛物线规律进行加/减速。除此之外,MCX314还有一套特殊的方法来防止当使用S曲线命令时产生三角形曲线情况的发生。对于恒速驱动、梯形或S曲线加/减速驱动,输出脉冲的频率范围从1Hz到4MHz;而输出脉冲频率的精度(在时钟频率为16MHz时)小于±0.1%。驱动脉冲输出的速度可以在不运行的时候自由改变。

(5)位置控制

每个轴都有1个32位的逻辑位置计数器和1个32位的实际位置计数器。逻辑位置计数器记录输出的位置脉冲,而实际位置计数器则记录从外部编码器或者线性比例尺中输入的反馈脉冲。

(6)比较寄存器和软件限位

每个轴都有2个32位比较寄存器,1个为逻辑位置计数器,另外1个为实际位置计数器。比较结果可从状态寄存器读出,也可通过中断报出。这些寄存器也可被用来实现软件限位。

(7)直线插补

运用MCX314的直线插补,任意选择的2轴或3轴都可以实现线性运动。运动位置边界的坐标界于-8388608~+8388607之间,同时线性误差为±0.5最小插补单位。插补频率范围为1Hz~4MHz。

(8)圆弧插补

任意选择2轴都能实现圆弧插补。其边界坐标界于-8388608~+8388607之间,同时圆弧误差为±1.0最小插补单位。插补频率范围为1Hz~4MHz。

(9)位模式插补

对任意选择的2轴或3轴,MCX314可以实现位模式插补。这种插补的数据由上位机进行运算。上位机将插补结果写入MCX314,然后MCX314在预置的驱动速度下连续输出插补脉冲。这样,通过使用这种模式,MCX314可以实现各种形状的曲线

10

进行插补。

(10)连续插补

MCX314允许不同的插补方式连续使用,例如直线插补→圆弧插补→直线插补……不间断的连续插补时允许的最大速度为2MPPS。

(11)单步插补

MCX314还可以在单步插补情况下输出脉冲,即当所有参数设定完成之后,一旦上位机写入1次单步指令,或者外部输入1个下降沿信号,MCX314将输出1个脉冲。

(12)中断信号

中断信号可以由几种不同的情况产生,例如:恒速的开始/结束、移动的结束以及由比较寄存器触发等等。在插补运动过程中也可以产生中断信号。

(13)由外部信号驱动

每个轴的脉冲输出也可以是外部信号驱动的。选择定长脉冲驱动或是连续脉冲驱动由外部管脚控制。这个功能可用于低速运行或是示教,以减轻CPU的负载。

(14)输入/输出信号

除急停信号、硬件限位信号以外,每个轴都有4个输入信号来实现减速和制动。这些输入信号可以在机械原点附近以及在回零过程中对编码器零信号执行高速查询。每个轴另有8个通用输出点。

(15)伺服电机反馈信号

每一个轴都包括输入连接管脚。这些管脚用来接收在闭环位置控制中所需要的两相编码信号、伺服报警信号以及到位信号。

(16)实时监控

在驱动操作的任何一个状态,命令指定的位置、实际位置、驱动速度、加/减速等状态都可以被读出。

(17)可用8位或16位数据总线

MCX314可以与8位或16位CPU相连。使用不同的设置,进行8位或16位数据操作。

2.4.2 MCX314工作方式

与MCX314的数据交换,主要通过以WR开头的8个写寄存器和以RR开头的8个读寄存器,其中数字相同的寄存器有相同的映射地址。

(1)命令寄存器WR0

11

MCX314中的这个寄存器主要用来设定命令,包括用于轴设定、命令字以及复位命令的各位。在向此寄存器写入轴设定字和命令字后,它将立即执行。某些命令在写入WR0之前,应先写入WR6和WR7。

(2)模式寄存器WR1

4轴都有各自的状态寄存器。哪个寄存器被写,取决于由NOP指令的指定或写前的情况。WR1可以控制输入信号与中断信号的使能,并用于设定减速状态和比较结果寄存器。

(3)模式寄存器WR2

WR2被用于设定外部限位开关输入、反馈计数器脉冲类型以及伺服驱动的反馈信号。

(4)模式寄存器WR3

4根轴都有各自的WR3。哪个状态寄存器这会被读,同样取决于已被指定的轴或用NOP指令指定的轴。WR3可用于操作手动减速、单独减速、S曲线加/减速、外部操作模式设定和通用输出的设定。

(5)输出寄存器WR4

该寄存器用于设定轴的通用输出信号。

(6)插补模式寄存器WR5

该寄存器被用于指定插补轴,包括直线定速模式、单步插补输出模式和中断请求。

(7)数据寄存器WR6/WR7

数据寄存器WR6/WR7在操作与数据相关的命令时使用。在将命令字写入WR0之前,应先将数据写入WR6和WR7:WR6用来存放数据的低字,WR7用来存放数据的高字。

(8)主状态寄存器RR0

该寄存器用来显示轴驱动与错误的状态。此外,它还显示了插补、连续插补的就绪信号、圆弧插补的象限和BP插补的堆栈计数器。

(9)状态寄存器RR1

每个轴都有状态寄存器RR1。哪个状态寄存器被读取,决定于写入MCX314 的命令。它主要显示轴的运动状态和限位信号状态。

(10)状态寄存器RR2

同RR1,4根轴中每根轴都有自己的状态寄存器2。它主要显示出错的原因。

12

(11)状态寄存器RR3

同RR1和RR2,4根轴中的每根轴都有自己的状态寄存器3。它主要显示中断的来源。

(12)输入寄存器RR4/RR5

RR4和RR5为通用输入寄存器。

(13)数据寄存器RR6/RR7

RR6和RR7是数据寄存器并对应于相应的数据读取命令。低16位在RR6寄存器;高16位在RR7寄存器。

在进行位模式插补的时候,WR2、WR3、WR4、WR5、WR6、WR7、以及RR2、RR3、RR4、RR5、RR6、RR7将作为专用于位模式插补数据寄存器,不再实现原来的功能。

2.5AT91FR40162芯片介绍

AT91FR40162是美国ATMEL公司生产的AT91系列微控制器中的一员,具有ARM7TDMI核、大容量Flash存储器以及片内SRAM和外围。这种微控制器的特点是高性能--32位RISC体系结构、高密度--16位指令集、低功耗以及实时性,扩充的Flash存储器还增加了开发者使用的灵活性。除此以外,大量的内部分组寄存器加速了对异常的处理过程,从而使其更适合于实时控制的应用。8级基于向量的优先级中断控制器和外围数据控制器PDC大大增强了实时器件的性能。此器件适用于开发工业自动化系统、MP3、销售终端、GPS接收机以及无线网络产品等对功耗敏感而且要求具有实时性的产品。AT91FR40162微控制器的特点是在一个121-ball BGA封装中集成了256 KB的片内SRAM和16Mbit的Flash存储器。它为许多计算密集的嵌入式控制应用领域提供了功能强大、使用灵活而且性价比高的解决方案,同时还可以帮助用户减小PCB尺寸和系统成本。Flash存储器可以通过JTAG/ICE接口或者厂家编写的Flash Up loader软件进行编程,从而使AT91FR40162适合于在系统可编程应用[21] [22]。

2.5.1体系结构

AT91FR40162是由ATMEL公司的AT91R40008 ARM/Thumb微控制器和1个AT49BV1604A/1614A 16Mbit Flash存储器集成的121-ball BGA封装器件。除了Flash 存储器使能信号以外的所有地址、数据和控制信号都是内部互连的。AT91R40008体

13

系结构包括2条主要总线:先进的系统总线ASB和先进的外围总线APB。ASB被设计为最佳性能,由存储控制器控制。ARM7TDMI通过ASB与片内32位存储器、外部总线接口EBI和AMBA桥进行接口。AMBA桥驱动APB,APB被设计用于访问片内外围并且进行了低功耗优化。AT91FR40162将ARM7TDMI处理器的ICE端口接到一些专用的引脚上,从而为目标调试提供了完整、低价且易用的调试解决方案[28]。

(1)存储器

AT91FR40162嵌入了256 KB的内部SRAM。这个内部存储器是单周期访问的,它直接与32位数据总线相连。这样通过使用微控制器的ARM指令集在66 MHz下可以提供60 MIPS的最高性能,同时降低了系统功耗。AT91FR40162以拥有1个外部总线接口EBI为特性,它用于连接外部存储器和专用外围设备。EBI支持8或16位器件并且可以使用2个8位器件来仿真1个16位器件。EBI执行早读协议,与标准的存储器接口相比,能够提供更快的存储器访问速度。AT91FR40162嵌入了1个由1024K字16位字组成的Flash存储器,通过EBI可以访问它。Flash的主要功能是作为程序存储器。1条16位的Thumb指令可以在1个访问周期从Flash存储器被加载。分离的MCU和Flash复位输入(NRST和NRSTF)是为了得到最大的系统灵活性,方便用户自由地根据应用选择复位操作。AT91FR40162集成了一个叫AT91 Flash Up loader的驻留引导软件。AT91 Flash Up loader软件能够向Flash存储器加载应用软件。

(2)外围

AT91FR40162集成了多个外围,它们被分成2类:系统外围和用户外围。所有的片内外围都可以通过AMBA桥接受32位的访问。外围寄存器由控制寄存器、模式寄存器、数据寄存器、状态寄存器和使能/禁止/状态寄存器组成。外围数据控制器PDC 在片内USART和片内或片外的存储器之间传输数据,并且无需处理器的介入。最重要的一点是,PDC消除了数据传输中断的额外开销,从而在不需要重新编程起始地址的情况下可以连续传输高达64 KB的数据。这样不仅增加了微控制器的性能,而且降低了功耗[21][22][23] [27]。

2.6CAN总线技术

CAN全称为"Controller Area Network",即控制器局域网,是国际上应用最广泛的现场总线之一;它是一种多方式的串行通讯总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测产生的任何错误;能有效支持分布式控制或实时控制

14

的串行通讯网络。CAN总线是一种多主机局域网,由于其卓越性能现已广泛应用于工业自动化、多种控制设备、交通工具、医疗仪器以及建筑、环境控制等众多部门。

CAN总线的主要特性:

(1)具有实时性强、传输距离较远、抗电磁干扰能力强、成本低等优点;

(2)采用双线串行通信方式,检错能力强,可在高噪声干扰环境中工作;

(3)具有优先权和仲裁功能,多个控制模块通过CAN控制器挂到CAN-bus上,形成多主机局部网络;

(4)可根据报文的ID决定接收或屏蔽该报文;

(5)可靠的错误处理和检错机制;

(6)发送的信息遭到破坏后,可自动重发;

(7)节点在错误严重的情况下具有自动退出总线的功能;

(8)报文不包含源地址或目标地址,标志符来指示功能信息、优先级信息。

CAN总线作为工厂数字通信网络的基础,沟通了生产过程现场与控制设备之间及其与更高控制管理层次之间的联系,使企业信息沟通的覆盖范围一直延伸到生产现场“采用现场总线来构建集成系统,其网络拓扑结构具有比点-点型连线少,灵活性高,故障率低;比局域网连接方式结构简单,造价底”。

2.7本章小结

本章介绍了运动控制相关的关键技术。以日本NOV A电子有限公司研制的DSP 运动控制专用芯片MCX314为核心,讨论了两种方案,分析了各自特点,根据设计要求选用ARM7芯片来控制MCX314构成外置式的运动控制器的方案。并对主要芯片作了介绍。

15

3 电路的运动控制器的硬件设计

该方案选用ATMEL 公司的AT91FR40162作为主控制芯片,由它来控制运动控制专用芯片MCX314。再加上外围电路,就构成了整个运动控制器系统。简单的说,整个系统的工作机制就是通过主CPU对MCX314的寄存器的写和读,来完成脉冲输出驱动步进电机以及查询系统的工作状态。整个系统的结构框图如图3-1所示:

图3-1系统整体框图

从图中我们可以看出,该系统分为几个模块:电源模块、复位模块、时钟模块、调试接口模块、输入输出通道模块、通信模块等。

3.1 硬件设计

3.1.1电源模块设计

电源为整个系统提供能量,是整个系统工作的基础,具有极其重要的地位,如果电源系统处理得好,整个系统的故障往往能减少一半。在本系统中,MCX314采用5V电源供电,必须将它的7个VDD引脚连接到5V电源[1]。同时在MCX314的VDD 和GND之间加放1~2个高频特性好的0.1uF左右的电容。而AT91FR40162内核需

16

基于51单片机的步进电机控制-设计报告(说明书)及源程序

南京XX大学 指导老师:张X 课程设计基于51单片机的步进电机控制 机械电子工程学院 测控技术与仪器 XXXXX Xxx 2012年1年4日

步进电机控制系统 [摘要]本课程设计的内容是利用51单片机,达到控制步进电机的启 动、停止、正转、反转、两档速度和状态显示的目的,使步进电机控制更加灵活。步进电机驱动芯片采用ULN2803,ULN2803具有大电流、高电压,外电路简单等优点。利用四位数码管增设电机状态显示功能,各项数据更直观。实测结果表明,该控制系统达到了设计的要求。 关键字:步进电机、数码管、51单片机、ULN2803 一步进电机与驱动电路 1.1 什么是步进电机 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 1.2 步进电机的种类 步进电机分永磁式(PM)、反应式(VR)、和混合式(HB)三种。永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛。 1.3 步进电机的特点 1.精度高一般的步进电机的精度为步进角的3-5%,且不累积。可在宽广的频率范围内通过改变脉冲频率来实现调速,快速起停、正反转控制及制动等,这是步进电动机最突出的优点 2.过载性好其转速不受负载大小的影响,不像普通电机,当负载加大时就会出现速度下降的情况,所以步进电机使用在对速度和位置都有严格要求的场合; 3.控制方便步进电机是以“步”为单位旋转的,数字特征比较明显,这样就给计算

基于单片机的步进电机课程设计报告

设计题目:基于单片机的步进电机控制系统设计 设计目的: 综合运用所学的《单片机原理及应用》的理论知识,通过实践加强对所学知识的理解,具备设计单片机应用设计系统的能力。以单片机为核心设计一个步进电机控制系统,要求能够通过键盘设置步进电机的正转和反转,加速和减速。并在LED 数码管显示器上显示步进电机转速。通过了解系统的软硬件构成及其特点,详细掌握怎样通过单片机控制其输出来控制步进电机的运转,并对应地在数码管上显示出来,更加系统的了解步进电机的组成,工作原理,控制方法。 设计要求: 【1】进行方案论证,说明步进电机控制系统的工作原理 【2】设计控制系统所需的硬件电路,给出电路原理图和元器件清单。 【3】给出软件流程图并编写程序源代码。 【4】完成系统的调试,给出调试结果并分析。 【5】了解单片机的内部结构,组成,学习单片机的工作原理以及内部工作状态,并熟悉在不同时刻,单片机的输入输出情况 【6】了解步进电机的分类和用途,掌握步进电机的内部结构以及工作原理,并学习单片机简单控制步进电机的正转和反转,加速和减速 【7】使用keil和proteus等软件进行系统的仿真,并在开发板硬件上实现。锻炼自己的编程,调试能力。 设计条件: 步进电机的工作原理 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件步进电机。在非超载的情况下,电机的转速,停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号时,它就驱动步进电机按设定的方向转动一个固定的角度。称为“步距角”。它的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时也可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 电机的位置和速度与导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定

步进细分的算法

1、步进电机的步距角,比如说,1.8度,则一个圆周360/1.8=200,也就是说200个脉冲,电机旋转一周。 2、驱动器设了几个细分,请查阅相关资料,比如说4细分,则承上所述,200*4=800,等于说800个脉冲电机才旋转一周。 3、一周的导程:如果是丝杠,螺距*螺纹头数=导程,如果是齿轮齿条传动,分度圆直径(m*z)即为导程,导程/800=一个脉冲的线位移。 有关步进电动机驱动系统的基本知识 1、系统常识:步进电动机和步进电动机驱动器构成步进电机驱动系统。步进电动机驱动系统的性能,不但取决于步进电动机自身的性能,也取决于步进电动机驱动器的优劣。对步进电动机驱动器的研究几乎是与步进电动机的研究同步进行的。 2、系统概述:步进电动机是一种将电脉冲转化为角位移的执行元件。当步进电动机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电动机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。 3、系统控制:步进电动机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电动机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途:步进电动机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电动机驱动器性能提高),步进电动机的需求量与日俱增。步进电动机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类:步进电动机也叫脉冲电机,包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)等。 (1)反应式步进电动机:也叫感应式、磁滞式或磁阻式步进电动机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到10?);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电动机:通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电动机:也叫永磁反应式、永磁感应式步进电动机,混合了永磁式和反应式的优点。其定子和四相反应式步进电动机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩

步进电机实验报告剖析

北华航天工业学院 课程设计报告(论文) 课程名称:微机控制技术课程设计 设计课题:步进电机的控制系统 专业班级: 学生姓名: 指导教师: 设计时间:2013年06月11日

北华航天工业学院电子工程系 微机控制技术课程设计任务书 姓名:专业:班级: 指导教师:职称:教授时间:2013.6.11 课程设计题目:步进电机的控制系统 设计步进电机单片机控制系统,其功能如下: 1.具有对步进电机的启停、正反转、加减速控制; 2.控制按钮分别为正转、反转、加速、减速、以及停止键; 3.能够通过三位LED数码管(或液晶显示器)显示当前的转动速度,并且由两只不同颜色的发光二极管分别指示正转和反转,因此可以清楚的显示当前转动方向和转速; 4.要求每组选择的步进电机控制字不同; 5.用单片机做控制微机; 应用软件:keil protues 成果验收形式: 1.课程设计的仿真结果 2.课程设计的报告书 参考文献: 【1】张家生. 电机原理与拖动基础【M】. 北京:北京邮电大学出版社,2006. 【2】马淑华,王凤文,张美金. 单片机原理与接口技术【M】.北京:北京邮电大学出版社,2007. 【3】顾德英,张健,马淑华.计算机控制技术【M】. 北京:北京邮电大学出版社,2006. 【4】张靖武,周灵彬. 单片机系统的PROTEUS设计与仿真【M】. 北京:电子工业出版社,2007 第16周 时间 安排 指导教师教研室主任: 2013年06 月11日

内容摘要 步进电机是一种进行精确步进运动的机电执行元件,它广泛应用于工业机械的数字控制,为使系统的可靠性、通用性、可维护性以及性价比最优,根据控制系统功能要求及步进电机应用环境,确定了设计系统硬件和软件的功能划分,从而实现了基于8051单片机的四相步进电机的开环控制系统。控制系统通过单片机存储器、I/O接口、中断、键盘、LED显示器的扩展、步进电机的环形分频器、驱动及保护电路、人机接口电路、中断系统及复位电路、单电压驱动电路等的设计,实现了四相步进电机的正反转,急停等功能。为实现单片机控制步进电机系统在数控机床上的应用,系统设计了两个外部中断,以实现步进电机在某段时间内的反复正反转功能,也即数控机床的刀架自动进给运动,随着单片机技术的不断发展,单片机在日用电子产品中的应用越来越广泛,自六十年代初期以来,步进电机的应用得到很大的提高。 关键词:步进电机单片机数码管显示

步进电机驱动及控制专业技术解答

步进电机驱动及控制技术解答 1.步进电机为什么要配步进电机驱动器才能工作? 步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。所以无论旋转多少次,始终没有积累误差。由于控制方法简单,成本低廉,广泛应用于各种开环控制。步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器必须与步进电机的型号相匹配。否则将会损坏步进电机及驱动器。 2.什么是驱动器的细分?运行拍数与步距角是什么关系? “细分”是针对“步距角”而言的。没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。步进电机的参数,都会给出一个步距角的值。如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。以110BYG250A电机为例,列表说明: 可以看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。例如,驱动器工作在10细分状态时,其步距角只有步进电机固有步距角的十分之一。当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,步进电机旋转1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18°。其实,细分就是步进电机按照微小的步距角旋转,也就是常说的微步距控制。当然,不同的场合,有不同的控制要求。并不是说,驱动步进电机必须要求细分。有些步进电机的步距角设计为3.6°、7.5°、15°、36°、180°,就是为了加大步距角,以适应特殊的工况条件。细分功能,只由驱动器采用精确控制步进电机的相电流方法,与步进电机的步距角无关,而与步进电机实际工作状态相关。 运行拍数与驱动器细分的关系是:运行拍数指步进电机运行时每转一个齿距所需的脉冲数。例如:110BYG250A电机有50个齿,如果运行拍数设置为160,那么步进电机旋转

步进电机设计报告

步进电动机的设计报告 题目:步进电动机的设计与制作 学院:大数据与信息工程学院 专业:计算机科学与技术 班级:电信113 学生姓名:王浩 指导教师:马光喜老师 2015年1月6日

目录 前言---------------------------------------------------------------2 1.设计目标及内容------------------------------------------------3 1.1 设计内容---------------------------------------------------4 1.2 设计目的---------------------------------------------------4 2.硬件原理及设计分析--------------------------------------------4 2.1 步进电机的工作原理-----------------------------------------5 2.2 液晶显示原理 ----------------------------------------------5 2.3 步进电机转速控制及显示设计(LCD显示转速)的硬件框图--------6 2.4 总的硬件电路图---------------------------------------------7 3.软件分析及设计------------------------------------------------8 3.1 软件需求分析-----------------------------------------------8 3.2 程序流程图-------------------------------------------------8 3.3 软件代码---------------------------------------------------9 4.操作说明及结果分析-------------------------------------------18 5.调试过程中遇到的问题和解决方法-------------------------------18 6.硬件实习总结-------------------------------------------------19 7.参考文献-----------------------------------------------------19

步进电机常识与矩频曲线

步进常识 1.什么是步进电机? 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种? 步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。 这种步进电机的应用最为广泛。 3.什么是保持转矩(HOLDING TORQUE)? 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进

电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m 的步进电机。 4.什么是DETENT TORQUE?(起动转扭) DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少?是否累积? 一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少? 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 7.为什么步进电机的力矩会随转速的升高而下降?

步进电机细分控制(英文)

1/17 AN1495 APPLICATION NOTE 1INTRODUCTION Microstepping a stepper motor may be used to achieve one or both of two objectives; 1) increase the position resolution or 2) achieve smoother operation of the motor. In either case the basic the-ory of operation is the same. The simplified model of a stepper motor is a permanent magnet rotor and two coils on the stator separated by 90 degrees, as shown in Figure 1. In classical full step operation an equal current is delivered to each of the coils and the rotor will align itself with the resulting magnetic vector along one of the 45 degree axis. To step the motor, the current in one of the two coils is reversed and the rotor will rotate 90 degrees. The complete full step sequence is shown in figure 2. Half step drive,where the current in the coil is turned off for one step period before being turned on in the opposite direction, has been used to double the step resolution of a motor. In either full and half step drive,the motor can be positioned only at one of the 4 (8 for half step) defined positions.[4][5] Therefore,the number of steps per electrical revolution and the number of poles on the motor determine the resolution of the motor. Typical motors are designed for 1.8 degree steps (200 steps per revolution)or 7.5 degree steps (48 steps per revolution). The resolution may be doubled to 0.9 or 3.75 degrees by driving the motor in half step. Further increasing the resolution requires positioning the rotor at positions between the full step and half step positions. Figure 1. Model of stepper motor MICROSTEPPING STEPPER MOTOR DRIVE USING PEAK DETECTING CURRENT CONTROL Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo sys-tems. However their resolution, when driven in the conventional full or half step modes of operation, is limited by the configuration of the motor. Many designers today are seeking alternatives to increase the resolution of the stepper motor drives. This application note will discuss implementation of microstepping drives using peak detecting current control where the sense resistor is connected between the bottom of the bridge and ground. Examples show the implementation of microstepping drives with several currently available chips and chip sets. REV . 2AN1495/0604

机器人课程设计报告范例

机器人课程设计报告范例

**学校 机器人课程设计名称 院系电子信息工程系 班级10电气3 姓名谢士强 学号107301336 指导教师宋佳

目录 第一章绪论 (2) 1.1课程设计任务背景 (2) 1.2课程设计的要求 (2) 第二章硬件设计 (3) 2.1 结构设计 (3) 2.2电机驱动 (4) 2.3 传感器 (5) 2.3.1光强传感器 (5) 2.3.2光强传感器原理 (6) 2.4硬件搭建 (7) 第三章软件设计 (8) 3.1 步态设计 (8) 3.1.1步态分析: (8) 3.1.2程序逻辑图: (9) 3.2 用NorthStar设计的程序 (10) 第四章总结 (12) 第五章参考文献 (13)

第一章绪论 1.1课程设计任务背景 机器人由机械部分、传感部分、控制部分三大部分组成.这三大部分可分成驱动系统、机械结构系统、感受系统、机器人一环境交互系统、人机交互系统、控制系统六个子系统现在机器人普遍用于工业自动化领域,如汽车制造,医疗领域,如远程协助机器人,微纳米机器人,军事领域,如单兵机器人,拆弹机器人,小型侦查机器人(也属于无人机吧),美国大狗这样的多用途负重机器人,科研勘探领域,如水下勘探机器人,地震废墟等的用于搜查的机器人,煤矿利用的机器人。如今机器人发展的特点可概括为:横向上,应用面越来越宽。由95%的工业应用扩展到更多领域的非工业应用。像做手术、采摘水果、剪枝、巷道掘进、侦查、排雷,还有空间机器人、潜海机器人。机器人应用无限制,只要能想到的,就可以去创造实现;纵向上,机器人的种类会越来越多,像进入人体的微型机器人,已成为一个新方向,可以小到像一个米粒般大小;机器人智能化得到加强,机器人会更加聪明 1.2课程设计的要求 设计一个机器人系统,该机器人可以是轮式、足式、车型、人型,也可 以是仿其他生物的,但该机器人应具备的基本功能为:能够灵活行进,能感知光源、转向光源并跟踪光源;另外还应具备一项其他功能,该功能可自选(如亮灯、按钮启动、红外接近停止等)。 具体要求如下: 1、根据功能要求进行机械构型设计,并用实训套件搭建实物。 2、基于实训套件选定满足功能要求的传感器; 3、设计追光策略及运动步态; 4、用NorthStar设计完整的机器人追光程序;

怎么确定步进电机脉冲频率

怎么确定步进电机脉冲频率 步进电机驱动及控制技术解答 南京步进电机厂技术部 1.步进电机为什么要配步进电机驱动器才能工作? 步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。所以无论旋转多少次,始终没有积累误差。由于控制方法简单,成本低廉,广泛应用于各种开环控制。步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器,必须与步进电机的型号相匹配。否则,将会损坏步进电机及驱动器。 2.什么是驱动器的细分?运行拍数与步距角是什么关系? “细分”是针对“步距角”而言的。没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。步进电机的参数,都会给出一个步距角的值。如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。以110BYG25 0A电机为例,列表说明: 电机固有步距角运行拍数细分数电机运行时的真正步距角 0.9°/1.8°8 2细分,即半步状态0.9° 0.9°/1.8°20 5细分状态0.36° 0.9°/1.8°40 10细分状态0.18° 0.9°/1.8°80 20细分状态0.09° 0.9°/1.8°160 40细分状态0.045° 可用看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。例如,驱动器工作

步进电机实验报告

单片机实验 课程名称:步进电机表实验 授课班级:2010级自动化三班 任课教师:文远熔 计划学时:32学时 实验组员:张藤耀赵福亮王聪慧 秦菱蔚梁钦郑欢

目录 摘要………………………………………………………………………… 第一章概述…………………………………………………………………………………………. 1.1实验目的………………………………………………………………………… 1.2实验要求………………………………………………………………………… 1.3步进电机的介绍…………………………………………………………………… 1.4 研究思路………………………………………………………………………… 第二章硬件设计………………………………………………………….. 2.1 51单片机介绍…………………………………………………………………… 2.2 UIN2003A…………………………………………………………………………… 2.3 ZLG7290…………………………………………………………………………… 2.3.1 7290工作原理………………………………………………………………… 2.3.2 7290引脚图…………………………………………………………………… 第三章相关图像………………………………………………………………. 3.1 总电路图……………………………………………………………………… 3.2 7290控制数码管……………………………………………………………………… 3.3 程序流程图………………………………………………………………………… 3.3.1 控制框图………………………………………………………………………… 3.3.2 流程图………………………………………………………………………… 第四章调试………………………………………………………………………第五章心得体会…………………………………………………………………附录【一】系统程序……………………………………………………………附录【二】参考文献…………………………………………………………….

步进电机的细分

步进电机的细分 步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC 单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。 细分电流波形的选择及量化 步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。 图中,a为电机转子偏离参考点的角度。ib滞后于ia,ic超前于ia。此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。且步进电机在这种情况下也最为平稳。将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。这些工作大部分由计算机来完成。 步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。

步进电机驱动方式(细分)概述

步进电机驱动方式(细分)概述 众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述。 如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。 既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。 有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。 整步驱动 对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。

下图是整步驱动方式中,电机定子的电流次序示意图: 由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下: BB’→A’A→B’B→A A’→B B’ 下图是这种驱动方式的电流矢量分割图: 可见,整步驱动方式的电流矢量把一个圆平均分割成四份。 下图是整步驱动方式的A、B相的电流I vs T图: 可以看出,整步驱动描出的正弦波是粗糙的。使用这种方式驱动步进电机,低速时电机会抖动,噪声会比较大。但是,这种驱动方式无论在硬件或软件上都是相对简单,从而驱

微机原理步进电机控制课程设计报告

科技大学 课程设计报告 学生:学号: 专业班级: 课程名称: 学年学期:2 0 —2 0 学年第学期 指导教师: 20 年月

课程设计成绩评定表

目录 一、设计题目………………………………………………………………. 二、设计目的………………………………………………………………. 三、设计原理及方案……………………………………………………….

四、实现方法………………………………………………………………. 五、实施结果………………………………………………………………. 六、改进意见及建议………………………………………………………. 七、设计体会………………………………………………………………. 、 一、设计题目 编程实现步进电机的控制 二、设计目的 1.了解步进电机控制的基本原理 2.掌握控制步进电机转动的编程方法 3.了解8086控制外部设备的常用电路 4.掌握8255的使用方法 三、设计原理及方案 3.1设计原理 步进电机驱动原理是通过对每相线圈中的电流的顺序切换(实验中的步进电机有四相线圈,每次有二相线圈有电流,有电流的相顺序变化),来使电机作步进式旋转。驱动电路由脉冲信号来控制,所以调节脉冲信号的频率便可改变步进电机的转速。 利用8255对四相步进电机进行控制。当对步进电机施加一系列连续不断的控制脉冲时,它可以连续不断地转动。每一个脉冲信号对应步进电机的某一相或两相绕组的通电状态改变一次,也就对应转子转过一定的角度(一个步距角)。当通电状态的改变完成一个循环时,转子转过一个齿距。四相步进电机可以在不同的通电方式下运行,常见的通电方式有单(单相绕组通电)四拍(A-B-C-D-A…),双(双相绕组通电)四拍(AB-BC-CD-DA-AB…),八拍(A-AB-B-BC-C-CD-D-DA-A…)等。 通过编程对8255的输出进行控制,使输出按照相序表给驱动电路供电,则步进电机的输入

步进电机实验报告

步进电机实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

Arduino步进电机实验报告 步进电机是将电信号转变为或的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。在非超载的情况下,的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制来控制电机转动的和,从而达到调速的目的。 实验目的: (1)了解步进电动机工作原理。 (2)熟悉步进电机驱动器使用方法。 (3)掌握步进电动机转向控制编程。 实验要求: (1)简要说明步进电动机工作原理。 (2)熟记步进电机驱动器的使用方法。 (3)完成步进电动机转速转向控制编程与实现。 (4)提交经调试通过的程序一份并附实验报告一份。 实验准备: 1. ArduinoUNOR3开发板 Arduino是一块基于开放原始代码的Simplei/o平台,并且具有开发语言和开发环境都很简单、易理解的特点。让您可以快速使用Arduino做出有趣的东西。它是一个能够用来感应和控制现实物理世界的一套工具。它由一个基于单片机并且开放源码的硬件平台,和一套为Arduino板编写程序的开发环境组成。Arduino可以用来开发交互产品,比如它可以读取大量的开关和传感器信号,并且可以控制各式各样的电灯、电机和其他物理设备。Arduino项目可以是单独的,也可以在运行时和你电脑中运行的程序(例如:Flash,Processing,MaxMSP)进行通讯。

步进电机课程设计报告

摘要:步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给步进电机加一个脉冲信号,步进电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性频率来实现步进电机的调速,并且步进电机没有积累误差。使得在速度、位置等控制领域用步进电机来控制变得非常的简单。步进电机的调速一般是改变输入步进电机的脉冲的转动一个固定的角度,这样就可以通过控制步进电机的一个脉冲到下一个脉冲的时间间隔来改变脉冲的频率,延时的长短来具体控制步进角来改变电机的转速,从而实现步进电机的调速。在本次设计中步进电机的给定速度由电位器通过A/D转换输入。 关键词:步进电机调速单片机 A/D转换器

前言 把电脉冲信号变换成角位移以控制转子转动的微特电机。在自动控制装置中作为执行元件。每输入一个脉冲信号,步进电动机前进一步,故又称脉冲电动机。步进电动机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。步进电动机的驱动电源由变频脉冲信号源、脉冲分配器及脉冲放大器组成,由此驱动电源向电机绕组提供脉冲电流。步进电动机的运行性能决定于电机与驱动电源间的良好配合。主要用于数字控制系统中,精度高,运行可靠。如采用位置检测和速度反馈,亦可实现闭环控制。步进电动机已广泛地应用于数字控制系统中,如数模转换装置、数控机床、计算机外围设备、自动记录仪、钟表等之中,另外在工业自动化生产线、印刷设备等中亦有应用。 现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进电机一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛,本次设计使用四相步进电机。

步进电机细分驱动方式的研究

步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。 1 细分驱动原理 步进电机控制中已蕴含了细分的机理。如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。显然,IAB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb 变为0.5θb,从而也就实现了2步细分。由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。 在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。但4步细分与2步细分是不同的,由于I1、I2、I33个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。细分程度越高,阶梯波越复杂。 在三相步进电机整步工作时,实现2步细分合成磁势转动过程为 IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转

步进电机系统设计实验报告

专业课程设计Ⅰ 题目一 步进电机控制系统设计 院系:动化学院 专业班级:智能0801班 小组成员: 指导教师:王曙光 日期:2011.05.23-2011.06.03 目录 1课程设计描述 (2)

2.课程设计具体要求 (3) 3.主要元器件 (3) 4.基本原理阐述 (3) 4.1 步进电机的工作原理 (3) 4.2 步进电机的启停控制 (3) 4.3 步进电机的转向控制 (4) 4.4 步进电机的速度控制 (4) 4.5 步进电机的换向控制 (4) 5.实验方案 (4) 5.1 控制系统的硬件设计 (4) 5.2 电路设计 (5) 5.3 系统软件设计 (5) 5.3.1主程序图 (6) 5.3.2显示子程序 (6) 5.3.3键盘扫描子程序 (7) 5.4源程序 (7) 6.设计中的问题分析 (11) 7.参考资料 (12) 8.实验总结................................. 错误!未定义书签。 1课程设计描述: 设计一个以8051单片机作为主控制器的步进电机控制器,实现对步进电机的转速、转向的控制和显示。

2. 课程设计具体要求: (1)可通过按键设置步进电机的转向(正/反转)、转速(增/减速); (2)可通过按键设置步进电机的励磁方式(单/双相); (3)可通过数码管将步进电机的转速显示出来; (4)设计电路,编写程序,软件硬件仿真、调试。 3.主要元器件: 实验板(中号)、STC89C51、电容(30pFⅹ2、10uFⅹ2)、数码管(共阳、四位一体)、晶振(12MHz)、小按键(5个)、步进电机(25BY)、ULN2003等 4.基本原理阐述: 4.1 步进电机的工作原理 步进电机由定子和转子两部分组成,下面以两相反应式步进电机为例说明步进电机工作原理。 两相步进电机的定子上有两对磁极,按N、S、N、S分配,每两个相对的磁极组成一队。每对磁极都缠有同一个绕组,形成一相。转子是由软磁材料制成的,其外表面均匀分布着小齿,他们大小相同,间距相等。这些小齿与定子磁极上的小齿的锯齿相同,形状相似。 如果按下表的时序给步机绕组通电,步进电机将产生转动,改变相序通电,步进电机的转向将反相,停止发送脉冲,步进电机将停止运转。 图一步进电机结构通电相序 4.2 步进电机的启停控制 步进电机由于其电气特性,运转时会有步进感 ,即振动感。为了使电机转动平滑 ,减小振动 ,可在步进电机控制脉冲的上升沿和下降沿采用细分的梯形波 ,可以减小步进电机的步进角 ,提高电机运行的平稳性。在步进电机停转时 ,为了防止因惯性而使电机轴产生顺滑 ,则需采用合适的锁定波形 ,产生锁定磁力矩 ,锁定步进电机的转轴 ,使步进电机的转轴不能自由转动。

相关主题
文本预览
相关文档 最新文档