当前位置:文档之家› 60万吨煤制烯烃项目可研2(1)

60万吨煤制烯烃项目可研2(1)

60万吨煤制烯烃项目可研2(1)
60万吨煤制烯烃项目可研2(1)

第三章产品方案和生产规模

3.1 产品方案

新疆库车广汇新能源开发有限公司拟充分利用新疆南部阿克苏地区丰富的天然气和煤炭资源,在库车石化工业园规划建设年产60万吨烯烃项目。

本项目的终端产品为:聚乙烯和聚丙烯,聚乙烯和聚丙烯的生产能力分配可根据市场行情进行调节。

本项目的副产品为:丁烯和硫磺

3.2 生产规模

3.2.1 生产规模

本项目以天然气和煤为原料,采用一段蒸汽转化工艺、SHELL干煤粉气化工艺、LURGI甲醇合成、大连化物所DMTO工艺、BASELL的SPHERIPOL和DOW的UNIPOL工艺,装置的生产能力均可实现大型化生产,除煤气化及配套的空分、CO 变换按两个系列设计外,其它装置按一个系列设计。

本项目主导产品为聚乙烯和聚丙烯,生产规模总能力为60万吨/年,暂定聚乙烯和聚丙烯的产品比例为1:1,各30万吨/年,实际生产中将根据市场情况调整聚乙烯和聚丙烯的比例以及产品牌号。

本项目副产品规模:

丁烯:10万吨/年

硫磺:1.02万吨/年

3.2.2 操作制度

本项目建成后每天运行24小时,年操作8000小时。

第四章总工艺流程和装置组成

4.1 原料路线的选择

聚乙烯和聚丙烯是世界上重要的两个塑料产品,市场需求量大。由于当今聚乙烯和聚丙烯的生产主要由石油加工而来,因此其市场价格跟随石油价格而波动,其生产成本也在升高,市场价格高居不下,国内由于石油价格与国际接轨后生产成本也在升高。为了满足日益增长的市场需求,减少对石油的依赖,国际上开发出了由甲醇生产烯烃的工艺技术,从而使得天然气、煤或其它含有氢和一氧化碳的气体等作为原料生产甲醇进而生产出烯烃产品成为可能。由于以天然气和煤为原料生产甲醇的成本较低,甲醇生产烯烃的成本较当今由石油加工的烯烃产品在价格上有较大的成本优势。

由于以煤为原料流程比较复杂,投资较高,除南非等少数国家外,国外甲醇装置一般不以煤为原料。我国由于煤多、气少、缺油的能源结构及其它原因,先后建设了大批以煤为原料的甲醇装置,尤其近几年来采用先进的SHELL粉煤气化技术和TAXCO水煤浆技术建设了大批以煤为原料的大型甲醇装置。这类装置工艺流程较长,投资较高。

与煤、重油、石脑油相比,以天然气为原料具有流程短、投资省、能耗低、生产清洁的特点,目前全世界70%以上的甲醇装置以天然气或烃类加工尾气为原料。我国也先后建设了一批以天然气或烃类加工尾气为原料的甲醇装置,主要分布在油田或天然气产区,如川西北甲醇厂、川维甲醇厂、格尔木甲醇厂、大庆甲醇厂、长庆甲醇厂、中海油60万吨甲醇装置等,少数几个利用西气东输的天然气装置如中海油天野化工20万吨甲醇装置和河南驻马店30万吨甲醇装置等。

国内外甲醇原料路线的主流是天然气,总的趋势是生产装置不断向天然气丰富、廉价的国家和地区转移。由于我国特殊的能源结构、能源分布的不平衡、市场分布的不平衡,同时以天然气和煤为原料的局面将长期共存,预计今后新建的甲醇装置原料路线的主流是天然气或煤。

单纯以天然气为原料生产甲醇的装置一般在补碳前生产的甲醇合成气f=(H2-CO2)/(CO+CO2)≈2.9,与甲醇合成要求的合成气最佳f值2.05相差很大,因此补碳是必须的,一般将甲醇合成气补碳达到f值2.25。而单纯以煤为原料的甲醇装置因煤中氢碳比约0.8,为满足甲醇生产合成气要求的合成气最佳f值2.05,煤气化粗煤气中的CO需转化为H2,CO变换深度约60%,然后再脱除CO2,粗煤气中只有

约43%的碳源被利用,多余CO2直接放空。因此将一种生产甲醇合成气时氢多碳少与另一种生产甲醇合成气时碳多氢少的两种原料结合来生产甲醇是十分合理的选择。

本项目建设地库车县所在区域天然气和煤炭资源都很丰富,结合两种原料的特点,本项目生产烯烃原料拟以天然气和煤为原料生产甲醇。

本项目以天然气和煤为原料生产甲醇合成气,实现了两种原料的优势互补,不需从天然气转化炉的烟道气中回收CO2,而是通过降低粗煤气中CO变换深度,以更适合甲醇合成的CO气体来实现补碳,因此节省了烟道气回收CO2、粗煤气CO变换和脱除CO2过程中消耗的额外能量,降低了单位产品能耗,真正意义上实现了多种能源的综合利用,达到了循环经济的目的,也减少了温室气体CO2的排放。根据初步计算,与天然气和煤独立两条线的非碳氢互补方案相比,本项目每年可直接减少温室气体CO2排放量约9.5万吨。

由于将天然气和煤为原料结合生产甲醇合成气的组合工艺能量利用合理,既符合循环经济的特点又能大幅降低温室气体的排放,因此这种原料组合一直是甲醇研究专家极力推荐的。

4.2 全厂装置组成

本项目以天然气和煤为原料生产聚丙烯,全厂包括天然气转化、煤制合成气、甲醇合成、甲醇制烯烃和烯烃聚合五大部分工艺装置,以及配套的公用工程和辅助设施。(1)天然气转化部分

本部分的功能是将原料天然气通过蒸汽转化,生产出甲醇合成气。

天然气转化部分装置构成如下:

(2)煤制合成气部分

本部分的功能是将原料煤制备成合格合成气。

煤制合成气部分装置构成如下:

(3)甲醇合成部分

本部分的功能是将合格合成气在甲醇合成塔合成甲醇,为丙烯生产装置提供原料。

甲醇合成部分装置构成如下:

(4)甲醇制烯烃部分

(5)烯烃聚合部分

(6)公用工程和辅助设施部分

4.3 工艺技术及来源

本项目采用先进可靠的技术,确保生产操作长期、稳定、安全地运行,符合国家劳动保护和安全卫生各项规定。

各主要装置采用的技术如下:

4.4 总工艺流程说明

4.4.1 天然气转化装置

(1)天然气压缩

来自界区外5公里的原料天然气7MPa(G)、25℃进入天然气压缩机,经压缩后约2.9 MPa(G)、97℃去天然气转化工序。

(2)天然气脱硫

来自天然气转化工序的370℃天然气先进入钴钼加氢反应器将有机硫转化为无机硫,然后再进入氧化锌脱硫槽将总硫脱除至0.1PPm,脱硫后的天然气返回天然气转化工序。

(3)天然气转化

来自天然气压缩工序的原料气在一段炉对流段经两次预热温度达到370℃后去天然气脱硫工序,脱硫后的天然气与4.2 MPa(G)、400℃过热蒸汽按一定比列混合,混合气经对流段进一步预热到550℃进一段转化炉转化管,在转化管内发生烃类的蒸汽转化反应,出转化管的转化气温度约860℃。

高温转化气先经转化气废热锅炉冷却副产高压蒸汽,再经锅炉给水预热器降温至约180℃,然后去除盐水预热器、水冷器冷却至40℃后进入分离器,将转化气和工艺冷凝液分离开,转化气2.0MPa(G)、40℃去甲醇装置压缩工序。

4.4.2 空分装置

以空气为原料,通过离心式空气压缩、分子筛空气净化、两级空气精馏的方法将空气分离为氧气和氮气,同时联产工厂空气。氧气送煤气化装置用于煤气化,氮气作全厂公用工程氮气,工厂空气供全厂有关装置使用。

4.4.3 煤气化装置

(1)煤碳预干燥

合格粒度的原料煤(包括细渣和褐煤)(粒度≤50mm)由原料煤贮运系统送入管式干燥机前碎煤仓临时贮存,碎煤仓中的一定量的褐煤通过称重给煤机给到双辊式破碎机中破碎至合格的粒度(粒度≤6mm),然后送入管式干燥机中干燥。在干燥管外部

通入低压过热蒸汽进行热交换,使煤表面吸附水分受热蒸发。

煤中的水分随干燥机的废气通过排风机抽至袋式收尘器,分离出的煤粉通过旋转给料机、埋刮板输送机和干燥后合格的碎煤一起通过埋刮板输送机由原料煤贮运系统胶带输送机送至煤气化装置煤磨粉及干燥工序中的磨前碎煤仓。

分离后的尾气经排风机排入大气。

为防止褐煤自燃和控制排出气体的露点,在系统中设有CO和H2O在线分析仪,超标时,向系统补充氮气。

(2)煤粉制备

碎煤仓中的经预干燥的原料煤通过称重给煤机送到中速磨煤机中磨煤制粉。

中速磨磨煤系统是制粉和干燥同时完成的系统。出磨煤机粒度和水含量合格的煤粉吹入煤粉袋式收集器分离,收集的煤粉送入贮仓中贮存。

分离后的尾气经循环风机加压后大部分循环至热风炉循环使用,部分排入大气。磨机的干燥热源是工艺系统外排可燃气体在热风炉燃烧产生的热烟气。在热风炉中该热烟气与循环气、低压氮气和由稀释风机送入的冷空气混合,调配到需要的温度,控制氧气含量,变成安全的热惰性气体、送入中速磨煤机。

(3)煤粉加压及给料

常压煤粉进入锁斗加压后自流进入煤粉给料仓中,由管道CO2密相输送导入气化炉烧嘴。锁斗是一个变压操作系统,实现煤粉由常压至加压的输送。

(4)气化及合成气冷却

煤气化烧嘴喷入的煤粉和氧气,在气化炉内反应区在4.0MPag 、1500℃高温下,瞬间完成煤的气化反应,生成(CO+H2)含量很高的粗煤气。为防止气化炉出口的高温煤气夹带的熔融飞灰粘结在后序设备,在气化炉上部激冷区喷入循环返回的低温煤气,以降低出炉煤气温度,使飞灰冷却为固态。煤气从气化炉顶排出,温度为900℃左右。

出炉煤气进入合成气冷却器回收热量,煤气温度降至350℃左右进入后序干法除灰设备。

高温粗煤气携带的大量显热,在合成气冷却器内得到回收,产生次高压饱和蒸汽送管网,约1/3用作工艺蒸汽,其余在工序外过热后用作动力蒸汽。

原料煤中的灰分,在高温下呈熔融态,沿水冷壁向下流动,在气化炉下部渣池水浴中,激冷、固化、脆裂成细小颗粒,经集渣罐定时排至脱水槽,再由捞渣机将其取

出转运至渣场。

(5)粗煤气净化

离开合成气冷却器的粗煤气通常夹带入炉煤中总灰量20~30%的飞灰,经过干法除尘和文丘里串洗涤塔两级湿法洗涤处理后,出口煤气中含灰量小于1mg/Nm3。干法除尘采用高温陶瓷过滤器,过滤掉大部分飞灰。经过滤后,煤气中含灰量通常小于5mg/Nm3。

出干法除尘煤气中的残余灰尘,在文丘里和洗涤塔中,被热水洗涤脱除,同时还洗涤除去煤气中所含微量卤化物、HCN和NH3等杂质。出洗涤塔煤气为蒸汽所饱和,温度约170℃, 水蒸汽含量为18.2%左右,送变换。

干法过滤得到的飞灰经过冷却、气提后送至飞灰储罐贮存、外售用作水泥添加料。

(6)灰水处理

从洗涤塔排出的含灰排放水,经过气提、澄清处理后,大部分循环利用,少量处理水被抽出送污水处理系统,以防止卤素等有害物质的累积。

(7)氮气/CO2系统

为降低甲醇合成气中氮含量和实现全厂燃料气自平衡,煤气化装置采用密相CO2输送煤粉、干法除尘器CO2反吹等措施。工程设置有氮气/CO2公用气体系统。

氮气/CO2公用气体系统是提供输送、反吹、保安的惰性气体分配系统。

4.4.4 净化装置

(1)CO变换

来自壳牌煤气化的粗煤气分离夹带的水分, 再通过粗煤气过滤器除掉其中对催化剂有害的固体杂质,然后分为三股:一股(流量约为总流量的40%)在粗合成气换热器中被第一变换炉出口变换气加热到250℃后,与过热蒸汽混合进入第一变换炉进行变换反应;一股(流量约为总流量的25%)与出锅炉给水换热器的变换气混合以调节变换气中的H2,CO和CO2之间的比例;另一股(流量约为总流量的35%)作为第一变换炉出口变换气的冷激气。出第一变换炉变换气温度450℃,CO含量12.6%(vol,湿基),然后通过粗合成气换热器被冷到400℃与冷激气混合后进增湿器用工艺冷凝液激冷到240℃,再进第二变换炉继续进行变换反应。出第二变换炉变换气温度404℃,CO 含量7.6%(vol,湿基)。经低压废锅副产低压蒸汽、锅炉给水预热器预热锅炉给水、除盐水换热器回收热量后,再在变换气水冷器中被冷到40℃后去酸性气体脱除工序。

(2)酸性气体脱除

来自煤气化工序的粗煤气经废热锅炉、除盐水预热器、水冷器冷却后与出工序的冷气体进一步热交换,然后进入吸收塔,利用低温甲醇溶液脱除气体中的H2S和部分CO2。

吸收H2S和CO2的甲醇富液经过减压闪蒸、低压氮气汽提、热再生、甲醇脱水等再生处理后循环使用。

在再生过程得到的富H2S酸性气,送硫磺回收装置,CO2气体和氮气提尾气放空。含甲醇的废水送全厂污水处理系统。

4.4.5 甲醇装置

(1)压缩工序

从天然气转化装置来的转化气、净化装置来的净化气和氢回收工序来的氢气混合,进入压缩机的新鲜气压缩段的一段进口,经压缩后压力升至4.1MPa(G),冷却至40℃后进入新鲜气压缩段二段进一步压缩,二段出口气体压力为8.0 MPa(G)。

合成工序来的循环气进入循环气压缩段压缩,加压到8.0MPa(G)后与新鲜气压缩段的气体汇合去合成工序。

(2)合成工序

从合成气压缩工序来的8.0MPa、61℃的合成气经入塔气换热器、气冷式甲醇合成塔与反应气换热升温至225℃,从水冷式甲醇合成塔上部进入催化剂床层,气体自上而下流经管内催化剂床层进行甲醇合成反应,合成塔壳侧锅炉给水吸收反应热而副产蒸汽。反应气由甲醇合成塔底部出来,经气冷式甲醇合成塔管间进一步反应并被入塔气移走热量,再经由锅炉给水预热器、入塔气换热器回收余热后,经除盐水换热器、甲醇水冷器冷却至40℃左右进入甲醇分离器分离出冷凝下来的粗甲醇。甲醇分离器顶部出来的气体,一部分作为弛放气去氢回收工序回收氢气,另一部分作为循环气去联合压缩机,如此继续循环。

粗甲醇从甲醇分离器底部排出,经闪蒸槽减压释放出溶解气后送甲醇精馏工序,闪蒸气送往燃料气管网。

(3)氢气回收

合成工序来的弛放气,被除盐水洗涤掉微量甲醇,分离水分后进入PSA变压吸附系统,得到氢气浓度大于99.95%的氢气,大部分氢气送至压缩工序,少量氢气去聚丙烯装置,尾气去燃料气管网。

(4)甲醇精馏和中间罐区

来自合成工序的粗甲醇经预塔、常压塔、加压塔精馏后得到精甲醇,精甲醇经甲醇计量罐计量后送丙烯装置合成丙烯。

加压塔底的含醇废水经回收塔回收甲醇,回收塔排放的废水送污水处理站。

4.4.6 甲醇制烯烃装置

甲醇制丙烯的DMTO工艺包括甲醇转化和烯烃回收两部分。甲醇转化采用硫化床催化反应器和高性能催化剂,乙烯、丙烯选择性高,结焦少,丙烷产率低。首先,甲醇经加热升温、气化后,送入DME(二甲醚)预反应器,在该反应器中,采用高活性、高选择性催化剂,甲醇在此转化为DME和水,然后这部分反应气体和后续装置回收的轻烃、甲醇汽提塔来的蒸汽、回收的甲醇合并送入DMTO反应器中,甲醇/DME转化率高达99%以上,丙烯、乙烯为主要产品。产品在丙烯、乙烯回收单元中分离、脱微量水、甲醇和DME后,乙烯、丙烯纯度达99.7%(wt)。副产品为液体燃料与汽油。4.4.7 聚乙烯装置

聚乙烯装置按气相法中Spherilene聚乙烯生产工艺设计,生产全密度聚乙烯。聚乙烯生产装置包括单体净化、预聚合、聚合、聚合物后处理和造粒等生产单元。从界区外来的原料乙烯、共聚单体丁烯等进入单体净化设施,除去其中的轻、重组份及导致催化剂中毒的其它杂质;催化剂进入预聚合反应器活化;净化后的乙稀和活化后的催化剂以及控制分子量的氢气一起进入第一反应器进行聚合反应(生产共聚产品时从第一反应器出来的产品再进入第二反应器进一步反应),反应后的物料送入汽蒸器,脱除未反应的单体并使催化剂失活;汽蒸后的聚乙烯去干燥床干燥;干燥后的聚乙稀进入挤出单元的粉料仓,与一定比例的添加剂熔融并挤出造粒。料粒均化后,送至包装工序。

4.4.8 聚丙烯装置

聚丙烯装置拟采用Dow公司的Unipol气相法聚丙烯生产工艺,生产均聚和共聚聚丙烯。聚丙烯生产装置包括单体净化、聚合、聚合物脱气和回收、添加剂进料和挤出、包装等生产单元。从界区外来的原料丙烯等进入单体净化设施,除去其中的轻、重组份及导致催化剂中毒的其它杂质;净化后的丙稀和即用型催化剂以及控制分子量的氢气一起先后进入流化床反应器进行聚合反应,反应后的物料送入产品接收器进行脱气和废气回收;而较为纯净的反应物送至产品清洗器,用热氮将其中所带的少量烃除去;然后进入挤出单元的粉料仓,与一定比例的添加剂熔融并挤出造粒。料粒均化后,送至包装工序。

4.4.9 硫回收装置

来自净化装置酸性气体脱除工序的酸性气,通过Claus催化反应被回收为液态硫磺。回收的硫磺作为产品切片包装后运出。

Claus尾气送热电站锅炉。

4.5 全厂工艺总流程图和总物料平衡

见全厂工艺总流程图和总物料平衡。

第五章自控技术方案

5.1全厂自控水平和主要控制方案

5.1.1概述

5.1.1.1研究范围

本项目为新疆库车广汇新能源开发有限公司库车60万吨/年聚丙烯项目可行性研究,研究范围包括天然气转化装置、空分装置、煤气化装置、净化装置、甲醇装置、甲醇制烯烃装置、聚乙烯装置、聚丙烯装置、硫回收装置以及与工艺生产装置相配套的公用工程部分的仪表及控制系统。

随设备或装置所带随机仪表及控制系统由设备供货商负责,不属本研究范围。5.1.1.2装置特征

天然气转化、煤气化、净化、甲醇、甲醇制烯烃、聚乙烯、聚丙烯工艺为易燃、易爆、有腐蚀性的工艺过程。因此,天然气转化、煤气化、净化、甲醇、甲醇制烯烃、聚乙烯、聚丙烯装置具有易燃易爆及腐蚀性的环境特征。

5.1.2自控水平

装置的自动化水平达到国内同类型装置的先进水平。

本可研遵循“技术先进、经济合理、运行可靠、操作方便”的原则, 根据工艺装置的生产规模、流程特点、产品质量、工艺操作要求,并参考国内外类似装置的自动化水平,对主要生产装置实施集中监视和控制;对辅助装置实施岗位集中监视和控制。

全厂设置上位管理计算机系统(MES),在信息和生产调度中心对各主装置的重要参数进行监视。

设置全厂中央控制室,采用DCS、紧急停车系统(ESD)和机组综合控制系统(ITCC)对全厂的生产装置及与工艺生产装置相配套的公用工程部分进行监控。

各装置的往复式压缩机组采用随机提供的监控系统进行监控。

各装置的离心式压缩机组采用机组综合控制系统(ITCC)进行监控。

空分装置和氢回收的现场仪表和控制系统随装置成套提供。

随装置或设备成套提供的控制系统和仪表的重要参数引入相关装置的DCS。

要求在生产过程中现场观察的过程变量,采用就地显示。必须现场操作的设备,采用就近安装的仪表盘或控制箱对其进行监控。

设置必要的能源消耗、原料、中间产品和最终产品的计量仪表,其精度符合本行

业有关规定的要求。

5.1.3主要控制方案

(1)常规控制

本研究采用的控制方案以P.I.D单参数控制为主,辅之以少量串级、分程等复杂控制。

(2)紧急停车和安全联锁(ESD)

本研究紧急停车和安全联锁系统的设计按照一旦装置发生故障,该系统将起到安全保护作用的原则进行。在系统故障或电源故障情况下,该系统将使关键设备或生产装置处于安全状态下。重要的现场安全联锁信号发讯仪表至少为双重化设置。

(3)信号报警

主装置工艺参数越限报警由DCS实现。所有的报警信息(过程报警、系统报警)可在DCS操作站上实现声光报警,并通过打印机输出。

采用常规仪表的辅助生产装置的工艺参数越限报警由安装在仪表盘上的闪光报警器实现。

采用独立设置的报警器盘实现可燃及毒性气体泄漏报警。

(4)防雷及浪涌保护

由于本项目是大型生产装置,安全生产十分重要,因此,各系统考虑防雷及浪涌保护。

5.1.4通讯网络

全厂计算机通讯网络由全厂信息管理网(主网)和各主装置相对独立的过程控制网(子网)构成。

信息管理网为以太网,过程控制网类别根据所采用DCS的网络类别确定。

信息管理网和过程控制网通讯控制符合TCP/IP协议和IEEE802协议族的有关协议。

信息管理网和过程控制网的操作系统为Windows NT。

5.1.5安全和保护措施

为保证操作人员和生产装置的安全,本研究考虑了以下必要的安全技术措施:所有控制室位于安全区域,并考虑防火、防水、防尘、防雷等安全措施。

设置必要的紧急停车和安全联锁系统(ESD)及报警系统。

安装于爆炸危险区域内的仪表符合防爆要求。

在可燃或有毒气体可能泄漏和聚积的场合,设置可燃气体或有毒气体检测报警器。

各主要装置的仪表及系统由不间断供电电源供电。

5.2仪表选型的确定

5.2.1选型原则

所选仪表及控制设备是先进的、可靠的,适用的,可以保证工艺装置的长期、安全生产和操作。

所采用的DCS、ESD和PLC将是国外著名厂商产品,并且这些产品在同类型或类似的装置有使用业绩。

主要生产装置的现场仪表选用国外著名厂商产品,,一般性生产装置或辅助生产装置采用国外引进生产线或合资厂制造的,能满足性能要求的产品。对用于重要场合的特殊控制阀(如进煤烧嘴煤调节阀、氧气调节阀等)、开关阀(如煤锁斗阀、渣锁斗阀)等亦由国外引进。

除就地控制、指示或特殊仪表外,现场变送器采用电子式智能型仪表(Hart协议)。控制阀采用气动执行机构。

所有进出控制室的信号都是电信号。除温度检测元件和特殊测量仪表外,标准的电动信号为4~20mA D.C或1~5VD.C。

除非对气动信号提出更高的压力要求,气动薄膜控制阀一般采用的气动信号为20~100kPa。

安装在爆炸危险区域的仪表采用本安防爆型或隔爆型。

所有现场仪表为全天候型,防护等级为IP54或更高。

现场仪表的材质满足工艺介质和现场环境条件的要求。

5.2.2控制室监控系统

(1)主装置

装置采用的集散型控制系统(DCS)是一个功能完善的系统,具有过程控制(连续控制和离散控制)、操作、显示记录、报警、制表打印、信息管理、与上位机或其它计算机(ESD、PLC等)通讯、系统组态以及自诊断等基本功能。

装置采用的集散型控制系统(DCS)是一个开放的系统,并采用WINDOWS NT操作系统,具有良好的人机界面,良好的控制和检测性能等,并提供丰富的多用途的实时数据库和历史数据库,硬件配置应易于升级和扩展,并具有与全厂信息管理网络通讯

的能力。

对集散型控制系统(DCS)的最基本要求为控制单元的CPU为1:1冗余或容错,控制回路的I/O卡为1:1冗余,DCS的电源和通讯总线均按1:1冗余设置。系统在硬件有故障的情况下,应仍能继续正常运行。

装置采用的ESD是一个基于微处理器技术的,具有高度安全性和可靠性,独立于DCS之外的安全系统。该系统具有实现装置紧急停车和安全联锁所必需的基本功能,如逻辑运算、事故顺序(SOE)、信息管理、与上位机或DCS通讯、系统组态以及自诊断等,并获得相关的安全认证。

(2)辅助装置

辅助装置的控制室仪表采用电子型仪表。

5.2.3现场仪表

(1)温度仪表

就地指示采用万向型双金属温度计, 刻度盘直径为Φ100。集中检测一般采用铠装热电偶(分度号为K)和铠装热电阻(分度号为Pt100)。

温度计保护套管材质根据工艺介质的特性选取,一般采用304不锈钢的保护管。在工艺管道上安装的温度计,连接形式一般为法兰式。

(2)压力仪表

就地压力指示仪表根据不同工况选用弹簧管压力表、膜盒压力表;对于易发生堵塞及强腐蚀性场合,选用隔膜压力表,隔膜材料根据工艺介质情况选用;泵出口就地压力测量尽可能选用耐震压力表。压力表刻度盘直径一般为100mm。

集中压力检测采用压力变送器。对于结晶、腐蚀、高粘度场合,采用法兰远传压力变送器。

(3)流量仪表

高精度的流量测量采用螺旋式涡轮流量计。

电磁流量计用于强腐蚀性或含有固体颗粒的导电介质的流量测量。

进口或合资的平衡式节流装置配差压变送器用于蒸汽流量的测量。

管道内径小于50mm的流量测量,一般采用金属转子流量计。

根据不同的工况,也可采用其它类型仪表如质量流量计和靶式流量计等进行流量测量。

(4)物位仪表

集中液位测量一般选用磁致伸缩液位计,对于腐蚀性、易结晶的介质采用隔膜密封型液位变送器。

根据不同的工况,也可采用其它类型仪表进行液位测量,如单/双法兰差压液位计、外浮筒液位计等。

煤锁斗仓、灰锁斗仓的料位测量采用γ射线料位计、超声波液位计和电容式料位计。

(5)分析仪表

根据工艺要求,采用不同的分析仪表对介质进行在线连续分析,如红外线气体分析仪、磁压式氧分析器、气相色谱仪、PH计、电导仪等自动在线分析仪表,气体分析仪设置在界区内防爆分析小屋内。

可燃气体检测器一般选用普通催化燃烧型。

有毒气体检测器一般选用定电位电解型。

(6)称重仪表

给煤仓、灰仓采用称重传感器测量其重量,原料煤输送采用电子皮带称。

(7)调节阀

一般情况下根据工况,分别选用单座阀、蝶阀、旋塞阀、迷宫阀或调节球阀等。

调节阀阀体材质不低于工艺管道的材料等级。阀内件材质根据介质情况确定。调节阀一般为法兰连接,法兰等级和连接面与工艺管道规格相匹配。阀芯的流量特性为线性、等百分比。阀体材料一般为304SS,阀芯材料一般为316SS,特殊要求将根据介质的情况确定。

通常情况下采用气动薄膜执行机构,弹簧范围为20~100kPa。

(8)开关阀

开关阀的执行机构一般为气动弹簧复位型,并带阀位开关和电磁阀。

开关阀的结构型式一般为球阀。对氮气等干净介质,阀座为软阀座,含固体介质、易燃易爆、有毒或高温高压介质采用金属阀座。阀与工艺管道采用法兰连接,法兰等级和连接面与工艺管道规格相匹配。阀体材料不低于工艺管道的材料等级。

(9)特殊阀门

根据工艺专利商的特殊技术要求,选用相应的特殊阀门。

(10)其它仪表

本装置还采用了密度计、尘度计等对相应的工艺参数进行测量。

5.3动力供应

5.3.1仪表电源

装置控制室的仪表电源为 380VAC±10%,50±1 Hz交流电源。其电源为两路自动切换的独立供电回路,分别取自不同的电气低压母线段。

装置控制室设置不间断电源(UPS)。蓄电池后备时间为30分钟,由UPS对仪表设备供电。

辅助装置仪表电源为 220VAC±10%,50±1 Hz单回路交流电源,取自电气独立供电回路。

5.3.2仪表气源

仪表空气质量符合《仪表供气设计规定》 HG/T20510-2000的有关要求。仪表空气的露点应比工作环境、历史上年(季)极端最低温度至少低10?C,含尘粒径不应大于3μm,油份含量应控制在8ppm (重量)以下。

仪表气源引自空压站。送至用气装置的仪表气源压力不低于0.6MPa(G)。空压站备用气源保持时间为15分钟。

5.4仪表修理车间

5.4.1仪表维修定员

本项目为新建项目,需设置仪表修理班负责各装置的仪表和控制系统的维护及检修工作。

仪表班由维修车间统一管理,下设各小组及其职责如下:

○1技术组:负责仪表班的行政与技术管理。

○2计量组:负责全厂进行经济核算的计量仪表的管理和维护。

○3DCS组:负责DCS、ESD、PLC及上位管理机的维护和软件的开发。

○4分析器组:负责分析仪器的检修和维护。

○5特殊仪表组:负责放射性仪表、衡器和超声波仪表等的检修和维护。

○6标准仪器组:负责维修设备及贵重仪器的管理和维护。

○7现场维护组:负责各生产装置仪表的维护和检修。

○8仪表金工组:负责控制阀的检修,孔板的拆卸以及简单安装零部件的制作。

仪表修理定员为40人。

5.4.2工作间设置

仪表班所属各组各设置一间工作间(现场维护组工作间分别设置在各主要生产装

置办公楼)。各工作间面积为30m2,采用水磨石地面,并考虑夏季风扇通风和冬季蒸汽采暖措施。

5.4.3维修设备选型

仪表修理车间配备的主要仪表维修设备有:精密压力表、压力校验仪(多量程)、多功能校验仪(多种信号发生器/校验仪)、温度校验炉、热电阻发生器/校验仪、热电偶/校验仪、电流发生器/校验仪、电压发生器/校验仪、频率发生器/校验仪、电感/电容测试仪、标准电容器、标准电感器、函数信号发生器、数字万用表、交/直两用示波器、半导体管特性图示仪、直流稳压电源、电子交流稳压器、自耦调压器、氮气(氧气、氢气)高压钢瓶及减压器、可燃气体标定箱、CO标定箱、H2S标定箱等、特殊仪表专用维修工具、DCS专用维修工具等。

仪表修理车间配备的主要机械维修设备有:精密仪表车床、台式钻床、手动/电动试压泵、立式沙轮机、交流弧焊机、直流弧焊机、手操葫芦等。

第六章原料、燃料及辅助材料供应

6.1 原料和燃料供应

本项目以天然气和煤为原料生产甲醇,再以甲醇为原料生产聚乙烯和聚丙烯。

本项目热电站用燃料为煤。

6.1.1原料和燃料的规格和用量

(1)天然气用量

本项目使用的天然气用量如下:

(2)煤用量

设计煤种分析数据表

项目信息汇总

大唐国际克什克腾煤制气项目正式核准批复 2009-08-28 信息类别:项目动态 所属行业:能源化工 所属地区:内蒙古 进展阶段:核准阶段 详细内容: 日前,国家发改委发改能源[2009]2163号文件正式批复大唐国际克什克腾煤制天然气项目。该项目总投资257亿元,2012年达产后,年产天然气40亿立方米,上缴税金11.6亿元。据悉,这是目前内蒙古自治区单体投资最大的工业项目,同时也是全世界煤制天然气产量最大的项目。 国家发改委在批文中说,为了充分利用内蒙古东部地区丰富的褐煤资源生产合成天然气,弥补北京地区天然气总量供给不足,增加北京市新的气源点,为北京地区冬夏季调峰提供稳定的气源保障,同意建设年产40亿立方米煤制天然气项目。 大唐国际克什克腾煤制气项目选址在克什克腾旗工业园区,由在建的大石门水电站提供水源,主要原料采用锡林浩特东胜利二号煤田生产的褐煤。全部项目包括建设化工生产厂区、煤制气配套输送管线、引水给水管道等工程。煤制气配套输送管线并入北京燃气管网,向北京供应天然气,配套天然气输送管线全长359公里。 大唐国际克什克腾煤制气项目设计规模为日产1200万立方米、年产40亿立方米煤制天然气。项目分三期连续建设,计划2010年具备年产13.4亿立方米煤制天然气的生产能力,2011年达到年产26.8亿立方米煤制天然气的生产能力,2012年达到年产40亿立方米煤制天然气的生产规模。

据悉,该项目的股东构成及出资比例情况为:大唐能源化工有限责任公司出资51%,北京市燃气集团有限责任公司34%,中国大唐集团公司10%,天津市津能投资公司5%。中国大唐集团公司是全国五大发电集团之一,是中央直接管理的国有独资公司,是国务院批准的国家授权投资机构和国家控股公司的试点。 大唐国际克什克腾煤制气项目建成投产后,将可以满足北京市及输气管路沿线地区对民用燃气的迫切需求,极大地缓解北京市天然气严重短缺的局面。对于我国优化能源结构,完成节能和替代油、气的目标,保障国家能源战略安全,落实科学发展观,实现可持续发展,具有重要意义。 3条生产线,每一条生产线与大平原厂相当,共48台lurgi气化炉,45开3备。 新疆庆华集团在伊犁州也在投建年产55亿立方米煤制天然气项目,十六台鲁奇炉已吊装完成,2011年10月空分车间计划开车调试(50000m³/h)出氧气产品,一期工程将在2012年底开车出天然气产品!(领导层不懂只是一厢情愿,详细庆华情况单列一个文件夹) 入网问题与中石油谈得如何了?从某种意义上,这个是制约项目能否尽快投产的一个很重要的非技术问题。有哪位大侠知道他们的空分设备是自己买的还是采用外包方式供气? 空分设备是哪个公司的?法液空、林德、杭氧? 据说是杭氧的,自建空分分厂 克旗项目的空分是自己建厂,机组采用的是MAN一拖二机组,空分设备是杭氧的,施工单位是中石化十公司,设计单位是化二院(空分设计?)。我们前一段时间去参观,设计水平以及安装质量真是不敢恭维。据介绍说是他们空分今年8月15日出产品。 空分安装已经基本完成,正在进行单试。计划6月中交,8月出产品。 空分现在已经逐步进行开始单体试车了,润滑油站油洗正在进行中,部分承压管道已开始水压试验。最快的话6月底能提供吹扫用空气,现在正在紧张的调试中。 气化设备已安装完全,部分炉单炉管线已配置完成70%以上。只要共用介质能到位,实现7月份试车点火还是有希望的。目前正在紧张配管中。 煤气水分离配管还未开始,设备刚安装完成。估计也马上开始配管了。 煤锁气压缩装置配管已接近收尾阶段,最快6月初能进行试车了。 空分机组是进口的,杭氧成套,华立油站,双良空冷 后期含酚废水处理的技术是填料萃取方案 5月7日至9日,内蒙古大唐国际克什克腾煤制气项目一期化工区初步设计审查会在北京召开。 在了解项目初步设计情况后,与会人员根据会务需要推选中国寰球工程公司副总工程师骆欣霖为初步设计审查会总组长,并分别推选了气化、空分、净化、甲烷化、全厂系统等5个专题小组组长,以小组的形式按区域进行讨论。 历经3天时间,与会人员分别对克旗煤制气项目气化、空分、净化、甲烷化、全厂系统及安全消防环保5部分内容进行了审查,为项目建设提供了宝贵经验和理论依据。下一步,克旗煤制气项目筹备处将针对疑难和重大技术问题,继续与专家进行研究磋商。

煤制烯烃研究报告范本

煤制烯烃研究报告

煤制烯烃工艺研究报告 一、煤制烯烃简介 制备丙烯的传统方法是采用轻油(石脑油、轻柴油)裂解工艺,但石油储量有限,因此世界各国开始致力于非石油路线制乙烯和丙烯类低碳烯烃的开发。其中,以煤或天然气为原料制甲醇,再由甲醇制低碳烯烃的工艺受到重视。 煤制烯烃主要指乙烯、丙烯及其聚合物。聚乙烯主要应用于粘合剂、农膜、电线和电缆、包装(食品软包装、拉伸膜、收缩膜、垃圾袋、手提袋、重型包装袋、挤出涂覆)、聚合物加工(旋转成型、注射成型、吹塑成型)等行业。 丙烯是仅次于乙烯的一种重要有机石油化工基本原料,主要用于生产聚丙烯、苯酚、丙酮、丁醇、辛醇、丙烯腈、环氧丙烷、丙二醇、环氧氯丙烷、合成甘油、丙烯酸以及异丙醇等。 煤制烯烃简单来说可分为煤制甲醇、甲醇制烯烃这两个过程。主要有四个步骤:首先经过煤气化制合成气,然后将合成气净化,接着将净化合成气制成甲醇,甲醇在催化剂的作用下脱水生成二甲醚(DME),形成甲醇、二甲醚和水的平衡混合物,然后转化为低碳烯烃,烯烃经过聚合反应生产聚烯烃。当前,国际上有几种领先的甲醇制烯烃工艺,如美国UOP公司与挪威海德鲁(Lydro)公司的甲醇制烯烃工艺(MTO)、德国鲁奇(Lurgi)公司的甲醇制丙烯工艺(MTP)、美国AtoFina与UOP公司的烯烃裂

解工艺等,其中Lurgi公司的MTP工艺已经在国内的生产装置上应用,在最先实现工业化。 二、国外煤制烯烃技术 MTO是国际上对甲醇制烯烃的统一叫法。最早提出煤基甲醇制烯烃工艺的是美孚石油公司(Mobil),随后巴斯夫公司(BASF)、埃克森石油公司(Exxon)、环球石油公司(UOP)及海德鲁公司(Hydro)等相继投入开发,在很大程度上推进了MTO 的工业化。1995年,UOP与挪威Norsk Hydro公司合作建成一套甲醇加工能力0.75 吨/天的示范装置,连续运转90天,甲醇转化率接近100%,乙烯和丙烯的碳基质量收率达到80%。1998年建成投产采用UOP/Hydro工艺的20万吨/年乙烯工业装置,截止已实现50万吨/年乙烯装置的工业设计,并表示可对设计的50万吨/年大型乙烯装置做出承诺和保证。UOP/Hydro的MTO工艺能够在比较宽的范围内调整反应产物中C2与C3;烯烃的产出比,可根据市场需求生产适销对路的产品,以获取最大的收益。 惠生(南京)清洁能源股份有限公司甲醇制烯烃装置采用环球油品公司(UOP)的甲醇制烯烃(MTO)/烯烃裂化(OCP)技术,是全球首套采用霍尼韦尔先进技术(Honeywell)的装置,与传统工艺相比,该项工艺被验证拥有高收率和低副产品形成的优点。

年产60万吨煤制甲醇项目合成气、氨气压缩机组施工方案

1综述 1.1编制说明 本方案以说明机组施工程序,各工序的施工方法和操作要领为主要内容进行编制,各工序的操作细则及详细的安装技术数据等通过现场技术交底、工程质量单及安装指导图等形式体现。压缩机系统出厂前进行了机械运转试验和性能试验,故本机组在安装和以后的调试、试运阶段中,在没有发现异常问题的前提下,原则上不予以解体。油系统的清洗、循环工作将列入试车方案中。安装人员应熟悉施工设计方案、图纸、技术文件,了解其所承担的安装项目各技术要求的前提下,方可进行施工。1.2编制依据 制造厂商提供的技术文件与图纸; 《电力建设施工及验收技术规范(汽轮机篇)》DJ5011—92 1.3工程概况 内蒙蒙大项目压缩机厂房长58米,宽24米,高20米。在厂房内布置两台压缩机组:合成气离心压缩机组,氨气离心压缩机组。 各机组的组成状况如下: 合成气离心压缩机组由一缸两段九级组成(一段七级,二段二级),压缩机与原动机由膜盘联轴器联接,压缩机和汽轮机公用底座,整个机组采用润滑联合油站供油,压缩机的轴端密封采用约翰克兰鼎名密封(天津)有限公司的干气密封,原动机采用杭州中能汽轮动力有限公司的凝汽式汽轮机。机组布置示意图如下:

氨气离心压缩机组主要由MCL707+2MCL707离心压缩机、汽轮机、气体冷却器、气体分离器及润滑油站等组成。MCL707+2MCL707型离心压缩机是一种多级压缩机,机壳为水平剖分式,压缩机主要由定子(机壳、隔板、密封、平衡盘密封)、转子(轴、叶轮、隔套、平衡盘、轴套、半联轴器等)及支撑轴承、推力轴承、轴端密封等组成。 压缩机由三段十四级组成;MCL707为一段压缩(共7级叶轮)时轮顺排布置,叶轮最大名义直径为700mm;2MCL707为二段压缩(共7级叶轮)叶轮背靠背布置,叶轮最大名义直径为700mm;轴端密封采用干气密封。原动机为杭州中能汽轮动力有限公司提供(机型:NH32/01)。压缩机与汽轮机之间、高压缸和低压缸之间均采用膜片联轴器联接。整个机组由同一润滑油站提供润滑油。压缩机高低压缸及汽轮机布置在同一个底座上,机组布置示意图如下: 1.4机组主要技术参数 1.4.1空气透平压缩机组 1)合成气离心压缩机设计工况:

煤制甲醇项目(最终版)

雄伟煤化有限公司 60万t/a煤制甲醇项目建议书 项目人员:曾雄伟毛龙龙方建李永朋 时间:2015年10月

第一部分项目背景 甲醇是结构最为简单的饱和一元醇,又称“木醇”或“木精”,是仅次于烯烃和芳烃的重要基础有机化工原料,用途极为广泛。主要用于制造甲醛、二甲醚、醋酸、甲基叔丁基醚( MTBE) 、甲醇汽油、甲醇烯烃等方面。近年来,国内外在甲醇芳烃方面进行了应用。 我国甲醇工业始于20 世纪50 年代,随着国内经济发展的不断增长,甲醇下游产品需求的拉动,甲醇行业发展迅猛。从2004 年到2012 年甲醇产能和产量大幅增长,2012 年产能首次超过5 000 万t,产量也达到2 640 万t。2013 年我国甲醇产能已达5650 万t,产量约2 878 万t,已经成为世界第一大甲醇生产国,见图1。 从甲醇产能的区域分布来看,甲醇的产能主要集中在西北、山东、华北等地区。从2013 年各省市产量分布情况来看,排名前五的有内蒙、山东、陕西、河南及山西,内蒙古精甲醇的产量达563 万t[2],约占全国总产量20%,其次是山东、陕西、河南和山西,这五省合计约占总产量的63%。内蒙古、山西、陕西等地凭借其资源优势,成为甲醇生

产企业最为青睐的地区,向资源地集中成为我国甲醇产能布局的主导趋势。受资源因素限制,我国的甲醇生产多以煤为原料,并有焦炉煤气和天然气工艺。2013 年我国甲醇产能中,煤制甲醇产能3 610 万t,占比64%,天然气制甲醇产能1 080 万t,占比19%,焦炉煤气制甲醇产能960 万t,占比17%[3]。受国家治理大气污染、加快淘汰钢铁等“两高”行业落后产能以及经济增速放缓等因素的影响,对焦炭的需求将会减少,从而使焦炉煤气制甲醇装置面临原料短缺的局面,因此焦炉煤制甲醇产能会降低。天然气制甲醇装置,则受到天然气供应不足和气价攀升双重制约,也将大幅限产。据金银岛统计数据显示,截至2013 年12月中旬,国内气头装置开工负荷在三成左右,低于国内平均开工水平,甘肃及新疆气头企业普遍停车。2013 年全国甲醇生产企业有300 余家,其中产能在100 万t 以上的企业占总产能的58.9%,形成了神华、中海油、兖矿、远兴能源、华谊、久泰、河南能化、大唐、晋煤、新奥、新疆广汇等18 家百万吨级超大型甲醇生产企业,见表1。这些百万吨甲醇企业大致可以分为三类,第一类是以神华集团、久泰化工为代表的大型化、规模化、基地化的煤制甲醇企业,靠近煤炭资源富集区域,其综合竞争力在当前竞争环境下最强,也符合国家产业政策方向; 第二类是以晋煤集团、河南能源化工集团为代表的,在国内多地分布,有多个较小规模的煤制甲醇装置构成的甲醇企业,在煤价下降的情况下,其竞争力有所提升; 第三类是以“三桶油”为代表的天然气路线企业,在天然气价格高企的情况下,这类企业的产量将受到抑制。

煤制烯烃技术大全

煤制烯烃技术大全 我国的能源结构是“富煤、缺油、少气”, 石油资源短缺已成为我国烯烃工业发展的主要瓶颈之一。国民经济的持续健康发展要求我国企业必须依托本国资源优势发展化工基础原料, 煤制烯烃技术是以煤炭替代石油生产甲醇, 进而再向乙烯、丙烯、聚烯烃等产业链下游方面发展。国际油价的节节攀升使MTO/MTP 项目的经济性更具竞争力。采用煤制烯烃技术代替石油制烯烃技术,可以减少我国对石油资源的过度依赖, 而且对推动贫油地区的工业发展及均衡合理利用我国资源都具有重要的意义。 技术进展 煤经甲醇制烯烃工艺主要由煤气化制合成气、合成气制取甲醇、甲醇制烯烃三项技术组成。煤经气化过程生成CO 和H2 ( 合成气) , 然后合成甲醇, 再借助类似催化裂化装置的流化床反应形式,生产低碳烯烃( 乙烯和丙烯) 。其中, 为满足经济规模甲醇制烯烃装置所需的大型煤气化技术、百万吨级甲醇生产技术均成熟可靠, 关键是甲醇制烯烃技术。目前, 世界上具备商业转让条件的甲醇制烯烃技术的有美国环球油品公司和挪威Hydro 公司共同开发的甲醇制低碳烯烃( MTO)工艺、德国Lurgi 公司的甲醇制丙烯( MTP) 工艺、中国科学院大连化学物理研究所的甲醇制低碳烯烃( DMTO) 工艺。这三种工艺虽然还没有工业化装置运行, 但经多年开发, 已具备工业化条件。

第一部分 MTO装置介绍 1.MTO装置主要组成部分 MTO装置可年处理180万吨甲醇,年生产60万吨烯烃产品。其以甲醇为原料,经过MTO反应单元,在催化剂作用下,生成多种烃类、水、和其它杂质,反应后物料进入急冷塔和水洗塔,裂解气中水在急冷塔和水洗塔脱除后,裂解气进入烯烃分离单元,裂解气在烯烃单元被进一步除去杂质,并经过冷却、精馏,分离出乙烯、丙烯、碳四、碳五、燃料气。其中液体产品进入烯烃罐区储存,燃料气进入瓦斯管网供各用户使用。MTO装置包括三部分,即甲醇制烯烃单元、烯烃分离单元和烯烃罐区。 2.MTO装置平面布置 MTO主装置位于煤制烯烃项目用地的东面,东邻第三循环水厂,西邻PP装置,北面为净水厂,占地面积390×200m2。烯烃罐区东邻第一循环水厂,北为MTO装置二期预留地,具体位置如下。 :

年产60万吨焦炉煤气制甲醇融资投资立项项目可行性研究报告(非常详细)

年产60万吨焦炉煤气制甲醇立项投资融 资项目 可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司

地址:中国〃广州

目录 第一章年产60万吨焦炉煤气制甲醇项目概论 (1) 一、年产60万吨焦炉煤气制甲醇项目名称及承办单位 (1) 二、年产60万吨焦炉煤气制甲醇项目可行性研究报告委托编制单位 1 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、年产60万吨焦炉煤气制甲醇产品方案及建设规模 (6) 七、年产60万吨焦炉煤气制甲醇项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (7) 十一、年产60万吨焦炉煤气制甲醇项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章年产60万吨焦炉煤气制甲醇产品说明 (15) 第三章年产60万吨焦炉煤气制甲醇项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (17) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17) 六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (19) (二)设备购臵 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (21) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (23) 第七章工程技术方案 (24) 一、工艺技术方案的选用原则 (24) 二、工艺技术方案 (25) (一)工艺技术来源及特点 (25) (二)技术保障措施 (25) (三)产品生产工艺流程 (25) 年产60万吨焦炉煤气制甲醇生产工艺流程示意简图 (25) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (28) 第八章环境保护 (28) 一、环境保护设计依据 (29) 二、污染物的来源 (30) (一)年产60万吨焦炉煤气制甲醇项目建设期污染源 (30) (二)年产60万吨焦炉煤气制甲醇项目运营期污染源 (30)

年产50万吨煤制甲醇生产的工艺设计

年产50万吨煤制甲醇生产的工艺设计 目录 1 前言 .............................................................. 错误!未定义书签。 1.1 合成甲醇的发展历程.......................................... 错误!未定义书签。 1.2 合成甲醇的重要性............................................ 错误!未定义书签。 1.3 国内外甲醇的生产和供需概况.................................. 错误!未定义书签。 1.3.1 国外甲醇的生产和供需概况.............................. 错误!未定义书签。 1.3.2 国内甲醇的生产和供需概况.............................. 错误!未定义书签。 1.4 甲醇的生产方法.............................................. 错误!未定义书签。 1.5 甲醇的生产规模.............................................. 错误!未定义书签。 1.6 粗甲醇的精制原理 (7) 1.6.1 粗甲醇的组成 (7) 1.6.2 粗甲醇中杂质的分类 (8) 1.6.3 精甲醇的质量标准 (9) 1.7 几种典型的甲醇精制工艺流程 (10) 2 甲醇合成催化剂及合成工艺选择 (13) 2.1 催化剂选择 (13) 2.2 反应温度 (13) 2.3 反应压力 (13) 2.4 气体组成 (14) 2.5 空速 (14) 3 原料气的制取工艺 (16) 3.1 煤的选用 (16) 3.2 气化工艺 (16) 3.3 原料气的变换 (18) 3.4 脱硫脱碳工艺 (19) 3.5 合成工艺流程 (21) 3.6 精馏方案选择 (22) 4 物料衡算 (23) 4.1 合成过程的反应方程 (23)

年产80亿立方米煤制气融资投资立项项目可行性研究报告(非常详细)

年产80亿立方米煤制气立项投资融资项 目 可行性研究报告 (典型案例〃仅供参考) 广州中撰企业投资咨询有限公司

地址:中国〃广州

目录 第一章年产80亿立方米煤制气项目概论 (1) 一、年产80亿立方米煤制气项目名称及承办单位 (1) 二、年产80亿立方米煤制气项目可行性研究报告委托编制单位 (1) 三、可行性研究的目的 (1) 四、可行性研究报告编制依据原则和范围 (2) (一)项目可行性报告编制依据 (2) (二)可行性研究报告编制原则 (2) (三)可行性研究报告编制范围 (4) 五、研究的主要过程 (5) 六、年产80亿立方米煤制气产品方案及建设规模 (6) 七、年产80亿立方米煤制气项目总投资估算 (6) 八、工艺技术装备方案的选择 (6) 九、项目实施进度建议 (6) 十、研究结论 (6) 十一、年产80亿立方米煤制气项目主要经济技术指标 (9) 项目主要经济技术指标一览表 (9) 第二章年产80亿立方米煤制气产品说明 (15) 第三章年产80亿立方米煤制气项目市场分析预测 (15) 第四章项目选址科学性分析 (15) 一、厂址的选择原则 (15) 二、厂址选择方案 (16) 四、选址用地权属性质类别及占地面积 (17) 五、项目用地利用指标 (17) 项目占地及建筑工程投资一览表 (17) 六、项目选址综合评价 (18)

第五章项目建设内容与建设规模 (19) 一、建设内容 (19) (一)土建工程 (19) (二)设备购臵 (20) 二、建设规模 (20) 第六章原辅材料供应及基本生产条件 (20) 一、原辅材料供应条件 (21) (一)主要原辅材料供应 (21) (二)原辅材料来源 (21) 原辅材料及能源供应情况一览表 (21) 二、基本生产条件 (22) 第七章工程技术方案 (23) 一、工艺技术方案的选用原则 (23) 二、工艺技术方案 (24) (一)工艺技术来源及特点 (24) (二)技术保障措施 (25) (三)产品生产工艺流程 (25) 年产80亿立方米煤制气生产工艺流程示意简图 (25) 三、设备的选择 (26) (一)设备配臵原则 (26) (二)设备配臵方案 (27) 主要设备投资明细表 (27) 第八章环境保护 (28) 一、环境保护设计依据 (28) 二、污染物的来源 (29) (一)年产80亿立方米煤制气项目建设期污染源 (30) (二)年产80亿立方米煤制气项目运营期污染源 (30)

中国煤制烯烃产业现状简评

中国煤制烯烃产业现状简评 2015.6 2010年我国煤制烯烃产能仅50万吨,2011年突破100万吨,2013年突破200万吨,2014年产能630万吨。截至目前,我国煤制烯烃产能接近750万吨,预计随着后期新项目的投产,我国煤制烯烃产能将突破1000万吨。 烯烃是国民经济重要的基础原料,在石化和化学工业发展中占有重要的战略地位。其中乙烯是石油化工产业的核心;丙烯是塑料、合成橡胶和合成纤维三大合成材料的基本原料,是最为基础有机化工原料之一;丁二烯是制造合成橡胶、合成树脂、尼龙等的原料;苯乙烯是合成树脂、离子交换树脂及合成橡胶等的重要单体。此外乙烯的生产规模和水平还成为衡量一个国家石油化工发展水平的重要标志之一。 不过由于我国富煤少油,石油资源需要大量进口(中国原油对外依存度在前年已达到59%)。基于这种背景下,煤制烯烃逐渐被国家层面认可为减少烯烃对外依赖性、有助于烯烃产业安全的新型煤化工路径。 2006年12月11日,位于内蒙古自治区包头市九原区哈林格尔镇西南的神华包头煤制烯烃项目得到了国家发展和改革委员会的正式核准,这也是国家"十一五"期间核准的唯一一个煤制烯烃项目。该项目于2010年底2011年初投产,并与2011年11月1日进行商业化运行。在此之前,最先投产的煤制烯烃项目为神华宁煤一期年产50万吨装置,该装置于2010年10月4日建成投产。神华煤制烯烃项目的顺利投产,为中国煤制烯烃市场注入较大动力,此后几年间,我国煤制烯烃行业发展速度较快,尤其以2014年发展迅猛。

中国煤制烯烃产能变化情况 上图所示,2010年我国煤制烯烃产能仅50万吨,2011年突破100万吨,2013年突破200万吨,2014年产能630万吨。截至目前,我国煤制烯烃产能接近750万吨,预计随着后期新项目的投产,我国煤制烯烃产能将会很快突破1000万吨。从中远期来看,后期规划项目众多,我国煤制烯烃产能有可能会突破2000万吨甚至更多。 从第一个项目投产时间2010年算起截止到发稿时为止,如果剔除2014年末原油暴跌以来项目经济性受影响以外,在此之前的时间里,我国煤经甲醇制烯烃项目盈利十分可观。 上图所示,通过对比不同工艺路线制烯烃盈利,多数时间段内CTO、PDH盈利好于MTO及油制烯烃。原油低位运行,油制烯烃成本

年产20万吨煤制甲醇项目环境影响报告书

天富热电股份有限公司 年产20万吨煤制甲醇项目环境影响报告书 (送审稿)

目录 第一章总论 (1) 1.1项目背景和任务由来 (1) 1.2评价目的和指导思想 (3) 1.3编制依据 (5) 1.4评价等级 (7) 1.5评价重点 (7) 1.6评价范围 (7) 1.7评价标准采用 (8) 1.8环境敏感因素及保护目标 (10) 第二章项目所在区域环境概况 (11) 2.1 地理位置 (11) 2.2 自然环境状况 (11) 2.3 生态环境 (16) 2.4 社会环境状况 (17) 2.5 城市规划 (19) 第三章工程分析 (21) 3.1建设项目概况 (21) 3.2建设项目生产工艺过程简述 (27) 3.3配套公用工程 (39) 3.4主要原辅材料供应及消耗 (41) 3.5拟建工程物料、硫、水、汽平衡分析 (42) 3.6施工期污染影响分析及防治对策 (47) 3.7运营期大气污染影响分析及防治对策 (48) 3.8废水污染影响分析及防治对策 (51) 3.9固体废物影响分析及防治对策 (53) 3.10噪声影响分析及防治对策 (54) 3.11非正常生产状况分析 (54) 第四章工艺先进性及清洁生产分析 (58) 4.1生产工艺先进性 (58) 4.2清洁生产评述 (63) 第五章环境空气影响评价 (65)

5.1污染源调查与评价 (65) 5.2环境空气质量现状监测与评价 (67) 5.3污染气象特征分析 (73) 5.4环境空气影响预测与评价 (88) 第六章地表水环境影响评价 (107) 6.1地表水污染源调查与评价 (107) 6.2地表水环境质量现状监测与评价 (110) 6.3废水排放方案及排水去向 (115) 6.4地表水环境影响评价 (115) 第七章地下水环境影响分析 (117) 7.1地下水环境现状监测与评价 (117) 7.2地下水水文地质特征分析 (121) 7.3本工程用水水源可行性分析 (122) 7.4地下水环境影响分析 (125) 第八章噪声影响分析 (129) 8.1声环境现状监测及分析 (129) 8.2施工期的噪声环境影响分析 (130) 8.3运行期声环境影响预测 (132) 8.4本工程拟采取的噪声防治措施 (133) 第九章固体废物影响分析 (135) 9.1拟建甲醇工程固废概况 (135) 9.2固体废物分析 (135) 9.3固体废物的合理处置与综合利用途径 (136) 9.4工程投产后固体废物影响分析 (137) 第十章生态环境影响分析 (138) 10.1 生态环境与生态资源状况 (138) 10.2污染物排放对生态环境的影响 (139) 第十一章环境风险评价 (146) 11.1环境风险评价等级 (146) 11.2环境风险评价范围 (146) 11.3环境风险识别 (146) 11.4源项分析 (150) 11.5环境风险预测 (151)

煤制甲醇项目投资分析报告

煤制甲醇项目投资分析报告 规划设计 / 投资分析

摘要说明— 煤制甲醇即以煤为原料生产甲醇。甲醇原料为煤炭、天然气、焦炉气 三者并举,且以煤炭为主,这种结构符合我国油气资源不足、煤炭资源相 对丰富的国情。我国利用高硫、劣质煤生产甲醇的技术处于世界前列,且 原料来源稳定可靠,已初步形成了规模生产能力。在我国新一代煤化工技 术的支撑下,开发推广煤制甲醇的时机已经成熟。化工产业的蓬勃发展拉 动我国甲醇消费量快速增长。随着甲醇下游产品的开发和甲基叔丁基醚(MTBE)、农药、醋酸、聚甲醛等新装置的建设,以及甲醇燃料的推广和 应用,甲醇的需求市场进一步扩张。国内煤炭企业为增强核心竞争力、调 整产品结构、延长产业链,注重上下游一体化发展,有效带动了大型煤制 甲醇装置的建设。受制于中国的资源配置,国内甲醇生产主要以煤为原料。截至2010年底,中国煤制甲醇企业229家,产能2068万吨;焦炉煤气制 甲醇企业21家,产能279万吨。各路企业及资本对煤制甲醇项目投资热情 高涨,一方面是看好其长远发展前景,另一方面由于甲醇是煤化工产业链 中第一环节的产品,其下游可延伸至多种其他化工产品。甲醇可以按5%、15%或25%的比例添入汽油,得到的甲醇燃料称为M5、M15、M25,现有发动 机无须改造即可使用,同时甲醇的下游产品二甲醚可作为柴油替代品。在2011年初,工信部已指定国内三家汽车企业生产高比例的甲醇汽油车,这 也是国家层面首次主导开展甲醇汽油推广试点工作。另外,行业酝酿已久 的M15甲醇国标已经临近出台。根据国家规划,在2020年以前我国要建设

七大煤化工产业基地,稳步发展煤制石油替代产品。规划中明确提出,要 在煤炭资源丰富的地区建设大型煤制甲醇生产基地及输配系统,将产品输 往消费市场。到2020年,我国煤制甲醇产能有望突破6000万吨。 该煤制甲醇项目计划总投资14759.88万元,其中:固定资产投资10539.52万元,占项目总投资的71.41%;流动资金4220.36万元,占项目 总投资的28.59%。 达产年营业收入29495.00万元,总成本费用23181.40万元,税金及 附加273.31万元,利润总额6313.60万元,利税总额7457.75万元,税后 净利润4735.20万元,达产年纳税总额2722.55万元;达产年投资利润率42.78%,投资利税率50.53%,投资回报率32.08%,全部投资回收期4.62年,提供就业职位468个。 本报告是基于可信的公开资料或报告编制人员实地调查获取的素材撰写,根据《产业结构调整指导目录(2011年本)》(2013年修正)的要求,依照“科学、客观”的原则,以国内外项目产品的市场需求为前提,大量 收集相关行业准入条件和前沿技术等重要信息,全面预测其发展趋势;按 照《建设项目经济评价方法与参数(第三版)》的具体要求,主要从技术、经济、工程方案、环境保护、安全卫生和节能及清洁生产等方面进行充分 的论证和可行性分析,对项目建成后可能取得的经济效益、社会效益进行 科学预测,从而提出投资项目是否值得投资和如何进行建设的咨询意见,

我国煤制气产业发展前景分析

我国煤制气产业发展前景分析 摘要:近几年,我国煤制气产业发展迅速,多个大型煤制气项目开始工业化运营。从短期来看,煤制气经济性较强,且能有效破解我国“富煤少气”的能源禀赋限制,具有一定的发展优势。但从长期看,资源的损耗、环保的压力成为制约煤制气可持续发展的重要因素。因此,国家应统筹考虑经济与环境因素,坚持清洁高效转化、科学合理布局的原则,科学有序发展煤制气产业。 关键词:煤制气发展前景政策建议 随着《天然气发展“十二五”规划》及《大气污染防治行动计划》等重大政策的发布,加之石油对外依存度不断提高、国内煤价持续低迷、清洁能源需求不断增加等因素的影响,国家对煤制气的禁令渐行渐缓,项目审批明显加速,一时间,煤制气项目如雨后春笋。但是,水资源承载、能源消耗、环境容量、管网配套等方面的挑战制约着煤制气项目的可持续发展。 一、国内外煤制气发展情况 (一)国外煤制气发展现状 美、英、德等西方发达国家早在20世纪上半叶就已开展煤制气技术研发,但多数只作为技术储备而未投入商业运行。1984年建成的美国大平原煤制气厂是目前全球除中国外唯一一家商业化运行的煤制气工厂。近几年,由于页岩油气革命的冲击,西方发达国家煤制气发展几乎停滞不前。 (二)国内煤制气发展现状 我国煤制气发展主要经历了“十一五”末至“十二五”初的严控审批,以及“十二五”中期的扶持发展2个阶段。截至2014年,国家发改委共核准4个煤化工示范项目:一是庆华位于新疆伊宁的55亿立方米项目,总投资264.38亿元,其中一期13.5亿立方米;二是大唐在赤峰克什克腾旗的40亿立方米项目,项目分三期建设,总投资为257.1亿元,配套建设359公里输气管道;三是大唐能源在辽宁阜新的40亿立方米项目,该项目工程总投资为245.7亿元,配套建设334公里输气管道;四是内蒙汇能在鄂尔多斯的16亿立方米项目,该项目总投资88.7亿元。其中,大唐克旗一期和庆华伊犁一期工程均已建成投产,其它项目预计在近几年陆续投产。 据统计,近两年来,先后有20余个煤制气项目获国家发改委批准允许开展前期工作,但受环保政策、配套管网建设等因素制约,预计近期开工建设及投产的可能性较低。总的来说,未来一段时间国内煤制气项目将处于示范阶段,难以开启规模商业化进程。 二、我国煤制气发展优势

煤制烯烃项目一览表

我国煤(甲醇)制烯烃项目情况 序号项目名称建设规模(万吨/年)总投资(亿元)项目进展 1神华宁煤宁东MTP项目521852010年10月投产2大唐公司多伦MTP项目461802010年11月投产3中原石化SMTO项目20152011年10月投产4宁波禾元DMTO项目60582013年2月投产5惠生南京MTO项目30202013年9月投产6联想集团滕州DMTO项目4035预计2014年投产7陕煤化蒲城DMTO项目682782014年投产 8中煤榆林DMTO项目682262014年投产 9延长石油靖边DMTO项目602332014年投产10神华包头DMTO项目601702010年8月投产11青海盐湖公司(格尔木)100158预计2014年投产12宁夏宝丰集团(宁东)60142预计2014年投产13神华宁东二套MTP项目506预计2015年投产14神华乌鲁木齐DMTO68245预计2015年投产15神华榆林DMTO项目60110预计2015年投产

16山东恒通3063预计2015年投产17山西焦化(洪洞县)6086预计2015年投产18久泰能源(准格尔)6083预计2015年投产19甘肃华亭煤业集团2025预计2015年投产20中煤蒙大(纳林河)60104预计2015年投产21江苏盛虹(连云港)120235正在设计 22兴兴新能源(嘉兴)60120在建 23同煤集团(大同)60101在建 24中电投/Total(内蒙)80254已发路条 25黑龙江龙泰公司60157已发路条 26中石化贵州织金60167已发路条,报批27神华/陶氏(榆林)1201200已发路条,完成环评28河南煤业中石化,鹤壁60173已发路条 29中天合创(内蒙图克)127416已发路条 30中安联合(安徽淮南)60209已发路条 31平凉华泓DMTO项目70243已发路条 32神华呼伦贝尔DMTO项目68前期工作 33盘江煤电(贵州)60284前期工作 34国电准东(新疆)60209前期工作

内蒙古自治区煤制甲醇项目汇总

1.内蒙古远兴能源股份有限公司 甲醇产能达135万吨/年 前身系“内蒙古远兴天然碱股份有限公司”,坐落在神奇、美丽、富饶的鄂尔多斯高原,是一家以新能源为主导,天然气化工和天然碱化工为两翼,多极产业并存的跨地区、跨行业的大型现代化工企业。公司成立于1997年1月23日,公司股票“天然碱”于1997年1月31日在深圳证券交易所挂牌上市,股票代码为000683,2007年8月,公司证券简称变更为“远兴能源”。公司资产总额20多亿元,是内蒙古自治区重点化工企业。公司主营甲醇、二甲基甲酰胺、合成氨、尿素、甲醛、二甲醚、纯碱、小苏打、烧碱等化工产品。年综合生产能力近200万吨,是全国最大的小苏打生产企业。随着100万吨甲醇投产,公司将成为国内最大的甲醇生产企业。“远兴”牌商标是中国驰名商标,“远兴”牌纯碱是中国名牌产品,小苏打是国内唯一通过“绿色食品标识认证”的碱类产品。公司现拥有全资、控股分公司10家,各生产企业已全部通过ISO9001质量体系认证,主要企业通过ISO14001环境管理体系和OHSAS18001职业健康安全管理体系认证。公司技术力量雄厚,拥有国家级企业技术中心,近年来取得了50多项科研成果,其中17项获国家或自治区科技进步奖。企业主导产品的核心技术拥有自主知识产权,国家知识产权局批准发明专利11项,实用新型专利3项。所属生产企业均为内蒙古自治区高新技术企业。公司在国内建立了完善的营销网络和物流配送体系,产品远销日本、韩国、东盟、中东及南美等国家和地区。依托鄂尔多斯丰富的煤炭资源,公司目前正在进行煤化工的开发与研制,先后建立了内蒙古蒙大新能源化工基地、内蒙古博源煤化工有限公司,致力于新能源的开发与研究。“十一五”期间,公司将依托鄂尔多斯丰富的资源优势,立足乌审召生态工业园区,重点发展能源化工产业,走“资源开发高效化、园区布局规模化、产业集群化、产品链条化”的集中发展道路。进入新世纪,公司确定了“加大天然碱开发力度;加快天然气深度开发;拓展产业开发领域,进入新能源产业”的发展战略,以循环经济理念为指导,以市场为导向、以信息化和技术创新为助推力,全力打造天然碱、天然气和煤化工三大产业板块。西部大开发风帆正举,资源富集、投资环境优越、人文环境卓越的鄂尔多斯高原,是投资的热土,创业的摇篮,公司真诚地希望国内外各界有识之士来我公司洽谈业务、开展合作、共抓商机、共创伟业、共享成果。 2. 神华集团包头煤化工有限公司 180万吨/年煤制甲醇、60万吨/年甲醇制烯烃、30万吨/年聚乙烯、30万吨/年聚丙烯神华包头煤化工项目厂址位于九原区哈林格尔镇包头市规划的新型工业基地内,总体工程包括180万吨/年煤制甲醇装置和60万吨下游产品装置、22.4万标准立方米(氧气)/小时空分装置等,总投资124亿元,拟采用国际上没有实施的尖端技术,建设世界一流的煤化工基地。这是包头市继包钢之后建设的最大工业项目。神华集团煤制油/煤化工发展战略和神华包头煤制烯烃项目: 神华集团高度重视国家能源战略安全,大力发展煤炭替代石油产业,逐步建立了煤制油/煤化工研究开发、工程建设、生产运营、物流销售等四大业务板块,规划在内蒙古、宁夏、陕西、新疆等四个省区建立7个大型的煤制油/煤化工基地,预计总投资将超4000亿元,到2020年形成年产煤制油3000万吨和煤制化工品400万吨的生产能力。目前,已有3个大型煤化工基地实质性开工建设,一是在内蒙古自治区鄂尔多斯市建设的世界首套100万吨/年的煤制油工业化工厂,将在2008年投入运营;

年产50万吨甲醇合成工艺初步设计

年产50万吨甲醇合成工艺初步设计 摘要 本设计重点讨论了合成方案的选择,首先介绍了国内外甲醇工业的现状、甲醇原料的来源和甲醇本身的性质及用途。其次介绍了合成甲醇的基本原理以、影响合成甲醇的因素、甲醇合成反应速率的影响。在合成方案里面主要介绍了原料路线、不同原料制甲醇的方法、合成甲醇的三种方法、生产规模的选择、改善生产技术来进行节能降耗、引进国外先进的控制技术,进一步提高控制水平,来发展我国甲醇工业及简易的流程图。在工艺条件中,主要介绍了温度、压力、氢与一氧化碳的比例和空间速度。主要设备冷激式绝热反应器和列管式等温反应器介绍。最后进行了简单的物料衡算。 关键词:甲醇,合成塔

一、综述 (一)国内外甲醇工业现状 甲醇是重要的化工原料,应用广泛,主要用于生产甲醛,其消耗量约占甲醇总量的30%~40%;其次作为甲基化剂,生产甲胺、丙烯酸甲酯、甲基丙烯酸甲酯、甲基叔丁基醚、对苯二甲酸二甲酯;甲醇羰基化可生产醋酸、酸酐、甲酸甲酯、碳酸二甲酯等。其次,甲醇低压羰基化生产醋酸,近年来发展很快。随着碳化工的发展,由甲醇出发合成乙二醇、乙醛、乙醇等工艺正在日益受到重视。国内甲醇装置规模普遍较小,且多采用煤头路线,以煤为原料的约占到78%;单位产能投资高,约为国外大型甲醇装置投资的2倍,导致财务费用和折旧费用高,这些都会影响成本。据了解,我国有近200家甲醇生产企业,但其中10万吨/年以上的装置却只占20%,最大的甲醇生产装置产能也就是60万吨/年,其余80%都是10万吨/年以下的装置。根据这样的装置格局,业内普遍估计,目前我国甲醇生产成本大约在1400,1800元/吨(约200美元/吨),一旦出现市场供过于求的局面,国内甲醇价格有可能要下跌到约2000元/吨,甚至更低。这对产能规模小,单位产能投资较高的国内大部分甲醇生产企业来讲会加剧增。 而以中东和中南美洲为代表的国外甲醇装置普遍规模较大。目前国际上最大规模的甲醇装置产能以达到170万吨/年。2008年4月底,沙特甲醇公司170万吨/年的巨型甲醇装置在阿尔朱拜勒投产,使得

年产60万吨煤制甲醇合成工艺设计说明书 (1)

《过程装备成套技术》课程设计 煤制甲醇合成工段工艺流程及典型题目 设备的设计 组别第四组 姓名 学号 院(系) 化学与化工学院 专业过程装备与控制工程 指导教师高勇 日期2016年6月27日至2016年7月3日

目录 1甲醇的合成 (1) 1.1甲醇合成的基本原理 (1) 1.1.1甲醇合成反应步骤 (1) 1.1.2合成甲醇的化学反应 (1) 1.2甲醇合成催化剂的选用 (2) 1.3铜基催化剂的中毒和寿命 (2) 1.4甲醇合成的工艺条件 (2) 1.4.1反应温度 (2) 1.4.2压力 (2) 1.4.3空速 (3) 1.4.4气体组成 (3) 1.5甲醇合成的工艺流程 (3) 1.5.1甲醇合成的方法 (3) 1.5.2本设计的合成工艺 (4) 1.5.3甲醇合成塔的选择 (4) 1.5.4甲醇合成工艺流程 (5) 2列管式换热器设计及相关计算 (6) 2.1设计任务及操作条件 (6) 2.2方案简介 (6) 2.3设计方案 (6) 2.3.1.确定设计方案 (6) 2.3.2确定物性数据 (7) 2.3.3计算总传热系数 (7) 2.3.4计算传热面积 (8) 2.3.5工艺结构尺寸 (9) 2.3.6换热器核算 (11) 3参考文献 (17)

1甲醇的合成 1.1甲醇合成的基本原理 1.1.1甲醇合成反应步骤 对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程按下列过程进行: a)扩散——气体自气相扩散到催化剂的界面; b)吸附——各种气体在催化剂的活性表面进行化学吸附,其中CO在Cu2+上吸附,H2在Zn2+上吸附并异裂; c)表面反应——化学吸附的反应物在活性表面上进行反应,生成产物; d)解析——反应产物脱附; e)扩散——反应产物气体自催化剂界面扩散到气相中去; 以上五个过程中a、e(扩散)进行得最快,b(吸附)、d(解析)进行的速度较快,而过程c(表面反应)分子在催化剂活性界面的反应速度最慢,因此,整个反应过程取决于表面反应的进行速率[1]。 提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、CO2和H2合成甲醇的反应是强放热的体积缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。 1.1.2合成甲醇的化学反应 甲醇是甲醇合成反应是多项铜基催化剂上进行的复杂的、可逆的化学反应[2]。(1)主要的化学反应 CO+ 2H2=CH3OH (1-1) CO2+ 3H2=CH3OH+ H2O(1-2)(2)甲醇合成的副反应 2CO+ 4H2=CH3OH CH3+ H2O (1-3) CO+ 3H2=CH4+ H2O (1-4) 4CO+ 8H2=C4 H9OH+ 3H2O (1-5) CO2+ H2=CO+ H2O (1-6)

【全析】大唐克旗40亿立方煤制气项目

【全析】大唐克旗40亿立方煤制气项目 ■大唐克旗40亿立方/年煤制天然气示范项目 【1】项目介绍 大唐克旗煤制天然气项目是我国首个煤制天然气示范项目,该项目位于内蒙古赤峰市克什克腾旗。总投资257.1亿元,建设规模为年产40亿立方米,分三个系列连续滚动建设,每系列13.3亿立方米。一系列装置于2013年12月18日投运成功,二、三系列将分别于

2014年和2016年建成投产。届时,该项目所产40亿立方米天然气将通过配套输气管线途经赤峰市、锡林郭勒盟、承德市,在北京市密云县古北口站经中石油输气管路并入北京天然气管网,线路全长430千米。 2007年 大唐国际委托化学工业第二设计院,完成项目可行性研究报告; 2009年8月20日 大唐克旗40亿m3/a煤制天然气项目获得国家发改委核准; 2009年8月30日 项目正式开工建设。该项目分三个系列连续滚动建设,每个系列均为13.3亿立方米。项目主要建设内容包括碎煤加压气化炉48台,低温甲醇洗装置 6套,甲烷合成装置6套。 2010年4月7日 气化界区气化炉、废热锅炉全部吊装就位; 2010年8月11日

净化界区最重的二氧化碳吸收塔吊装就位,项目建设大件吊装工作顺利完成; 2010年12月4日 动力区1#、2#机组相继冲转定速成功,为项目建设提供了稳定的电力、蒸汽保障; 2011年6月10日 甲烷化界区破土动工,项目各界区全面开工建设; 2011年8月26日 218#气化炉首炉点火一次成功,拉开了项目投料试车的序幕; 2011年11月28日 空分装置成功产出合格氧氮气,标志着项目进入了整体试运阶段; 2012年5月18日 世界首台4.0兆帕操作压力的碎煤加压气化炉切氧成功,产出合格粗煤气;

相关主题
文本预览
相关文档 最新文档