当前位置:文档之家› 开关电源中的功率变换器拓扑、分析与设计 3反激变换器的拓扑结构

开关电源中的功率变换器拓扑、分析与设计 3反激变换器的拓扑结构

此培训资料来源于德州仪器(TI)和中国电源学会(世纪电源网)合作举办的“TI 现场培训”课程,世纪电源网同意在 TI 网站上分享这些文档。

第二单元基本DC-DC变换器

1.Buck变换器

2.Boost变换器

3.Buckboost变换器

4.基本变换器总结

1

2

何为基本DC-DC 功率变换器?

g

V g

I o

I o

V on

t s

T s

on T t d =

由上图可知,当输入和输出不需要隔离时,一个最基本的DC-DC 功率变换器,其组成只能有也必须有下列四个元器件,它们分别是:有源开关(一般为MOSFET ),无源开关(一般为二极管),滤波电感和滤波电容。到目前为止,最基本的DC-DC 功率变换器共有3个,它们分别是Buck (降压式)变换器,Boost (升压式)变换器和Buckboost (升降式)变换器。

为了方便推导DC-DC 功率变换器的稳态关系,在介绍具体的基本DC-DC 功率变换器之前,先介绍一种获得PWM DC-DC 功率变换器在CCM 下的稳态关系的简单方法----电感电压的伏秒平衡定律。

3

电感电压的伏秒平衡定律

对于已工作在稳态的DC-DC 功率变换器,有源开关导通时加在滤波电感上的正向伏秒一定等于有源开关截止时加在电感上的反向伏秒。)

(t V L )

(t I L

I gs

V on

T s

T s

on

T T D =

)

(t V L 1

L V 2

L V )

(t I L 1

L I D 2

L I D 1

t D 2

t D t

t

t

因为:

1

1

1)(t i L dt t dI L

V L L L D D ==on

T t ££02

2

22)(t i L dt t dI L V L L L D D ==s

on T t T ££由于:01>L V 0

2

11>D ′=

D L

t V i L L 02

22

D L

t V i L L 稳态时,必有:2

1L L i i D -=D 否则的话,电感电流会朝一个方向增加而使电感饱和,并致电路工作不正常。所以有:L

t V i L t V i L L L L 2

22111D ′-=D -=D ′=

D 2

211t V t V L L D ′-=D ′所以:

稳态时电感上的伏秒定律证明完毕。

1.Buck 变换器

4

5

1:Buck 变换器的稳态电压增益:

g o DV V =s

on T t D /=1

0££D 其中:由电感电压伏秒平衡:s o g DT V V )(-正向伏秒:反向伏秒:s

o T D V )1(-所以:s o s o g T D V DT V V )1()(-=-有下列输入/输出稳态关系:

g

o DV V =2:Buck 变换器的特征:

--输出电压低于输入电压;--输出电流连续;--输入电流断续;--开关驱动需隔离;

--功率级的小信号特性非常优越。

L

S

D

C

g V o

V g

I o I

6

3:Buck 变换器的稳态关系总结:

D

V V M g o

==CCM :o

L I I =o

g MI I =DCM :

2

/4112D K V V M g o ++=

=2

M

R R g =R

Lf K s

2=

g o MV V =4:Buck 变换器用于补偿器设计的小信号传递函数:

220

?,0?11??)(o o zc

g

i v o vd s Q s s V d v s G o g w w w +++====是所有DC-DC 变换器中最简单的、也是最容易补偿的一个。

7

始祖:Buck 变换器5:Buck 变换器的家族:

正激变换器

桥式变换器

#1:三绕组去磁单正激#2:二极管去磁双正激#3:谐振去磁单正激#4:谐振去磁双正激#5:有源去磁单正激第三代:

#6:有源去磁双正激。。。其它

#1:对称驱动推挽#2:对称驱动半桥#3:对称驱动全桥#4:对称驱动推挽正激。。。其它

主要是各种软开关电路

如准谐振、多谐振电路、ZVS 、ZCS 、ZVT 、ZCT 等,太多了

主要是各种软开关电路

如相移控制全桥电路不对称半桥ZVZCS-PWM 全桥。太多了

第二代

。。。。。。。。

兄弟

#1:Boost #2:Buckboost

6:Buck变换器家族的特征:

---是电力电子中最庞大的家族;

---其家族成员是开关电源产品中用得最多的成员;

---在产品中用得最多的成员是;

--三绕组去磁单正激变换器;

--二极管去磁双正激变换器;

--谐振去磁单正激变换器;

--有源去磁单正激变换器;

--相移控制全桥变换器;

--不对称控制半桥变换器;

--对称驱动半桥变换器;

--对称驱动全桥变换器;

--对称驱动推挽变换器;

8

7:Buck变换器本身的应用:

也非常广泛,如:

--计算机CPU中的VRM;

--通信单板的负载端变换器(POL);

--多输出开关电源中辅路的后调变换器;等等。

9

2.Boost 变换器

10

11

1:Boost 变换器的稳态电压增益:

g o V D

V -=11s

on T t D /=1

0<£D 其中:由电感电压伏秒平衡:s

g DT V ′正向伏秒:反向伏秒:s g o T D V V )1)((--所以:s g o s g T D V V DT V )1)((--=′有下列输入/输出稳态关系:

g

o V D

V -=112:Boost 变换器的特征:

--输出电压高于输入电压;--输入电流连续;--输出电流断续;--开关驱动不需隔离;--功率级的小信号较差。

L

S

D

C

g V o

V g

I o I

12

3:Boost 变换器的稳态关系总结:

D

V V M g o -=

=11CCM :o

L MI I =o

g MI I =DCM :

2/4112K D V V M g o ++=

=2

M

R R g =R

Lf K s

2=

g o MV V =4:Boost 变换器用于补偿器设计的小信号传递函数:

比Buck 变换器要难补偿,因为有右半平面零点。

222

?,0?111??)(o o zc a g i v o vd s Q s s s D V d v s G o g w w w w +++-¢====)

()(

13

始祖;Boost 变换器5:Boost 变换器的家族:

单开关隔离Boost

多开关隔离Boost

#1:正激型隔离Boost #2:反激型隔离Boost 第三代:

。。。几乎没有研究

#1:电流型对称驱动推挽#2:电流型对称驱动全桥

以前很少研究,现在开始有研究,而且正在多起来。

???几乎没有研究

???几乎没有研究

第二代

。。。。。。。。

兄弟

#1:Buck #2:Buckboost

6:Boost变换器家族的特征:

--是电力电子中研究最少的家族;

--其始祖在AC-DC开关电源产品中用得较多(Boost PFC);

--其它成员很少使用,因而对其家族的研究也非常少;

--隔离Boost变换器已有应用需求,如低压输入的逆变器。估计这方面的研究也会多起来。

Boost变换器可以从Buck变换器通过一定的拓扑变换规则演变得到,也可将其看成是Buck 变换器的兄弟。但有不同的性格。

14

3.Buck/Boost 变换器

15

16

1:Buckboost 变换器的稳态电压增益:

g o V D

D

V --=1s

on T t D /=1

0<£D 其中:由电感电压伏秒平衡:s

g DT V ′正向伏秒:反向伏秒:s o T D V )1(--所以:s o s g T D V DT V )1(--=′有下列输入/输出稳态关系:

g

o V D

D

V --=12:Buckboost 变换器的特征:

--输出电压可高于、也可低于输入电压、且与输入电压反向;--输入电流断续;--输出电流断续;--开关驱动需隔离;--功率级的小信号较差。

L

S

D

C

g V o

V g

I o I

17

3:Buckboost 变换器的稳态关系总结:

D D V V M g o --==1CCM :

o

L I M I )1(+=o

g MI I =DCM :K

D

V V M g o -==2

M

R R g =R

Lf K s 2=

g o MV V =比Buck 变换器要难补偿,因为有右半平面零点。

222

?,0?111??)(o o zc a g i v o vd s Q s s s D V d v s G o g w w w w +++-¢====)

()(4:Buckboost 变换器用于补偿器设计的小信号传递函数:

18

始祖;Buckboost 变换器

5:Buckboost 变换器的家族:

反激变换器

兄弟

第三代:

#1:Buck ???几乎没有研究

第二代

。。。。。。。。

#2:Boost

#1:三绕组吸收单反激#2:二极管吸收双反激#3:RCD 吸收单反激#4:有源吸收单反激。。。其它

6:Buckboost变换器家族的特征:

--是电力电子中研究较少的家族;

--三绕组吸收反激变换器、RCD吸收反激变换器在小功率AC-DC、DC-

DC开关电源中有大量应用;

--其它吸收的反激变换器则应用不多、反激变换器的拓扑研究很少,故该家族的成员很少。

Buckoost变换器可以从Buck变换器通过一定的拓扑变换规则演变得到,也可将其看成是Buck 变换器的兄弟。但有不同的性格。

19

两电平及多电平变换器介绍

PWM变流器简介 电力电子技术的应用包括四大类基本变流电路,即AC-DC(整流)、DC-DC (升降压斩波)、AC-AC(变频变相)、DC-AC(逆变)变流电路。由此产生的整流器,逆变器,变流器(双向整流逆变)等装置在工业生活中的应用日益广泛,无论是在UPS,新能源发电(光伏、风电),电能质量治理(无功、谐波),还是电动汽车等领域,对系统效率的期望比以往更高。在市电等级应用领域中,通常采用的是两电平变流器拓扑结构,而多电平变流器拓扑的提出,就是为了实现中高压应用的目标。本文将对常见的两电平、三电平变流器拓扑原理进行分析介绍。 1.一种典型的两电平-三相电压型桥式PWM变流器电路拓扑如下图所示: 图1三相电压型桥式PWM变流器 电路直流侧通常只有一个电容器就可以,为了方便分析,画作串联的两个电容器并标出理想中点N。其基本工作方式为180度导电,即每个桥臂导电角度为180度,同一相(即同一桥)上下两个臂交替导电,各相开始导电的角度依次相差120度。在任一瞬间,将有三个桥臂同时导通,每次换流都是在同一相上下两个桥臂之间进行,因此也称为纵向换流。 下面来分析该电路的工作波形,对于U相输出来说,当V1导通时,Uun=Ud/2;V4导通时,Uun=-Ud/2.因此Uun的波形是幅值为Ud/2的矩形波。V,W两相情况类似,只是相位依次相差120度。通常我们所说的几电平指的是逆变器输出的相电压,对两电平而言,逆变器输出的相电压只有上述分析的两种电平:±Ud/2。 负载线电压可分别由公式求出: Uuv=Uun-Uvn; Uvw=Uvn-Uwn; Uwu=Uwn-Uun 可以看出负载线电压有三个值:±Ud,0.

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

典型开关电源拓扑及特征

典型开关电源拓扑及特征(增加学习解读整理) Buck降压电路 特征: ■把输入降至一个较低的电压。 ■可能是最简单的电路。 ■电感/电容滤波器滤平开关后的方波。 ■输出总是小于或等于输入。 ■输入电流不连续(斩波)。 ■输出电流平滑 Boost升压电路 特征: ■把输入升至一个较高的电压。 ■与降压一样,但重新安排了电感、开关和二极管。 ■输出总是比大于或等于输入(忽略二极管的正向压降)。 ■输入电流平滑。 ■输出电流不连续(斩波)。

Buck-Boost升降压电路 特征: ■电感、开关和二极管的另一种安排方法。 ■结合了降压和升压电路的缺点。 ■输入电流不连续(斩波)。 ■输出电流也不连续(斩波)。 ■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。 SEPIC升降压电路 特征: ■输出电压共地同相。 ■输出电压可以大于或小于输入电压。 ■与升压电路一样,输入电流平滑,但是输出电流不连续。 ■能量通过电容从输入传输至输出。

■需要两个电感。 C’uk升降压电路 特征: ■输出反相 ■输出电压的幅度可以大于或小于输入。 ■输入电流和输出电流都是平滑的。 ■能量通过电容从输入传输至输出。 ■需要两个电感。 ■电感可以耦合获得零纹波电感电流。 Flyback反激变换 特征: ■最简单的隔离拓扑结构; ■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器(看

成2个具有一定相关的隔离电感)和电感。 ■输出电压可以大于或小于输入电压,由变压器的匝数比决定。电压等式在电流处于CCM(磁通量连续、输入电流与输出电流时序叠加后连续)方成立。在DCM 模式下,输出电压将高于上式,保持占空比不变,随着负载加大,输出电压会下降,这个过程功率保持不变,然后负载继续加大,进入CCM模式,然后上式成立,随着负载继续加大,电压不变电流增加,原边表现为电流上升,继续增加负载功率,将触发磁芯饱和。最大功率将受限饱和磁通,(原边电感/圈数越大传递的功率越小,PFC电感有类似也有区别,PFC电感影响输入功率不是因为磁通饱和,而是阻抗限流),此时提高控制频率只可非线性的提高少部分功率。 ■增加次级绕组和电路可以得到多个输出。 ■输出可以获得正负电源,有2绕组级联,取中线为0基准。 ■导通时前级蓄能,关断时后次级释放能量,并完成变压器去磁。 ■适用于较小功率场景,小功率辅助控制电源常用。 Forward正激变换 特征: ■降压电路的变压器耦合形式。 ■不连续的输入电流,平滑的输出电流。 ■输出整流类似buck降压回路。 ■因为采用变压器,输出可以大于或小于输入,可以是任何极性(因为是隔离)。■增加次级绕组和电路可以获得多个输出,同反激电路。 ■在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组(决定了占空比不大于50%,否则产生剩磁,绕组数量变化去磁时间如何变化?绕组数量少应该去磁时间更短!)。在开关接通阶段存储在初级电感中的能量,在断开阶段通过去磁回路释放回电源输入端。 ■正激变换传递的功率大小原理与反激完全不同,理论上与变压器磁通量无关。关于磁芯饱和只需要关注去磁处理以及最大导通时间限制即可。 ■开关管关断时产生2倍输入电压(励磁绕组相同时!越少电压更高),对管子耐压较高。

简介多电平高压变频器的两种拓扑结构

简介多电平高压变频器的两种拓扑结构 摘要:多电凭高压变频器自诞生以来就在节能和环保方面体现出极高的价值,也引起了众多的学者进行研究。本文对多电平高压变频器的两种主要拓扑结构及其原理进行分析。   关键词:三电平;单元串联多电平;应用 About multi-level high-voltage converter topology of the two TANG Xing Long LIU Hui Kang XIONG Wen SUN Kai (Wuhan University of Science and Technology College of Information Science and Engineering,Wuhan Hubei 430081)Abstract: With high voltage inverter, since its birth in the energy-saving and environmental protection reflects the high value, it also caused a lot of academics for research. In this paper, the multi-level high-voltage converter topology of the two main structure and principles for analysis.Key words: Level 3; Series multi-level unit; Application 1 前言 对于高压电动机,我们如果采用传统的三相六拍的结构变频器对电动机进行控制,由于电压过高,加上电力电子器件开关速度的提高,这样开关器件输出的值就会很大。由

开关电源拓扑结构对比(全)

开关电源拓扑结构概述(降压,升压,反激、正激) 开关电源拓扑结构概述(降压,升压,反激、正激) 主回路—开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL 四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck拓扑型开关电源就是属于串联式的开关电源 https://www.doczj.com/doc/5714469971.html,/blog/100019740 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff把电荷转化成电

开关电源常用拓扑结构图文解释

开关电源常用拓扑结构 开关变换器的拓扑结构是指能用于转换、控制和调节输入电压的功率开关器件和储能器件的不同配置。开关变换器的拓扑结构可以分为两种基本类型:非隔离型和隔离型。变换器拓扑结构是根据系统造价、性能指标和输入/输出负载特性等因素选定。 1、非隔离型开关变换器 一,Buck变换器,也称降压变换器,其输入和输出电压极性相同,输出电压总小于输入电压,数量关系为:其中Uo为输出电压,Ui为输入电压,ton为开关管一周期内的 导通时间,T为开关管的导通周期。降压变换器的电路模式如图2所示。工作原理是:在开关管VT导通时,输入电源通过L平波和C滤波后向负载端提供电流;当VT关断后,L通过二极管续流,保持负载电流连 续。 二,Boost变换器,也称升压变换器,其输入和输出电压极性相同,输出电压总大于输入电压,数量 关系为:。升压变换器的电路模式如图3所示。工作原理是:在VT导通时,电流通过L平波,输入电源对L充电。当VT关断时,电感L及电源向负载放电,输出电压将是输入电压加上输入电源电压,因而有升压作用。

三,Buck-Boost变换器,也称升降压变换器,其输入输出电压极性相反,既可升压又可降压,数量 关系为:。升降压变换器的电路模式如图4所示。工作原理是:在开关管VT导通时,电流流过电感L,L储存能量。在VT关断时,电感向负载放电,同时向电容充电。 四,Cuk变换器,也称串联变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为: 。Cuk变换器的电路模式如图5所示。工作原理是:在开关管VT导通时, 二极管VD反偏截止,这时电感L1储能;C1的放电电流使L2储能,并向负载供电。在VT关断时,VD 正偏导通,这时输入电源和L1向C1充电;同时L2的释能电流将维持负载电流。 2、隔离型开关电源变换器 一,推挽型变换器,其变换电路模型如图6所示。工作过程为:VT1和VT2轮流导通,这样将在二次侧产生交变的脉动电流,经过VD1和VD2全波整流转换为直流信号,再经L、C滤波,送给负载。

高压多电平双向DC-DC变换器文献综述

高压多电平双向DC-DC变换器文献综述 一、前言 本次文献调研的主题为高压多电平双向DC-DC变换器。下载到的文献中与该主题相关的有10篇,完全符合该主题的文献有参考文献[1][2][3][4],其它6篇文献则侧重于高压和双向这两个关键词。以下是文献调研的主要内容。 二、主要内容 文献[1] [2]介绍了一种电容箝位的模块化多电平双向DC-DC变换器。该变换器由5个独立的模块级联而成,每个模块由三个MOS管和一个箝位电容组成,如下图所示。通过控制每个模块中MOS管的通断可以使每个模块运行在正常工作和旁路状态,选定不同模块的工作状态可以实现不同电平的输出,并且可以使输入输出电压的比值不同。从每个模块的电路结构可以看出,能量可以实现双向流动。从下图1可以看出整个电路中没有像常规的DC-DC变换器那样使用电感作为储能装置,这种无感设计的原则提高了装置的效率和可靠性。 本文中作者的实验装置功率为5kW,电平数为6。当输入电压为250V,负载为1.76Ω时,装置效率达到了95.1%。 图1. 电容箝位的模块化多电平双向DC-DC变换器 文献[3]介绍的电容箝位的模块化多电平双向DC-DC变换器与上文介绍的拓扑结构一样。文中详细分析了该电路的不同工作状态和等效电路图,该拓扑相比传统的飞跨电容型多电平变换器可以减少开关管的数量和电容耐压等级。 文献[4]介绍的模块化多电平双向DC-DC变换器的拓扑结构类似于测井变频电源的拓扑结构,它的每个模块拓扑为移相全桥电路,整个变换器由模块的输入并联输出串联组合而成,如下图2所示。之所以采用这样的拓扑是与作者研究的方向——波浪能发电有关。 在文中,作者着重叙述了梯形载波的控制方法与三角载波控制方法的不同,提出了梯形载波控制方法能够提高装置的效率。梯形载波控制方法中的开关频率是通过迭代的算法计算得到的。该方法最大的优点是根据实际的功率需求情况,依据装置的效率曲线来决定每个模块是处于并联工作状态还是旁路工作状态。在文中作者通过两模块的实验来证明梯形载波控制方法能够使装置运行在最大效率点处。

多电平变换器

多电平变换器—— —高压大容量电能变换的新技术 特邀主编评述 李永东 (清华大学,北京!"""#$) 在%""$年第&期“电能质量控制”专辑成功出版的基础上,《电力电子技术》编辑部于北戴河全国电力电子年会上决定把“多电平变换器”作为第%期内容,并于今年第’期出版,由我来担任本期特邀主编,本人深感荣幸和责任重大。现在奉献在大家面前的专辑,是经过全国同行专家集体努力的结果。 多电平变换器及其相关技术的研究与应用,是现代电力电子技术的最新发展之一,它主要面向高压大容量的应用场合。与传统的两电平逆变器相比,多电平变换器能够减少输出谐波畸变,不用或只需很小的输出滤波器、整体效率高,同时可以用低压器件实现高压大容量输出。这一技术对于高压大容量电能变换、提高用电效率具有重要意义,是当前电力电子技术的研究热点之一。 多电平变换器的研究主要包括多电平电路拓扑结构的研究、多电平()*控制算法的研究,以及在此基础上的应用研究。自从日本长冈科技大学的南波江章(+,-./.0)等人在!1#"年2333工业应用(2+4)年会上提出三电平中点箝位式(-0567.8(9:;6!<8.=>0?,简称-(<)结构以来,多电平逆变器的拓扑结构主要发展出了单一直流电源的箝位式拓扑电路、分离直流电源的@桥单元串联式拓扑电路,以及在此基础上的一系列混合和派生电路。随后以高压2ABCD2A

最新开关电源拓扑结构

开关电源拓扑结构

开关电源拓扑结构回顾 Lloyd H·Dixon Jr 前言 本文回顾了在开关电源中常用的三种基本电路系列即降压变换电路、升压变换电路和反激(或升降压)电路的特性,这三种电路均可以工作于电感断流或续流模式下。工作方式的选择对整体电路特性有很大的影响。所使用的控制方式也能有助于减少与拓扑和工作模式相关的问题。三种以恒频率工作的控制方法包括:直接占空比控制、电压前馈、和电流模式(双环)控制。本文还论述了三个基本电路的一些扩展,以及每种拓扑、工作模式、组合控制方法的相对优点。

一、三种基本拓扑结构: 三种基本的拓扑结构降压式,升压式,反激式如图1所示。串联式变换器(CUK)是反激式拓扑的倒置(不宜翻译为逆变,因其意思为DC-AC的变换),不作论述。这三种不同的开关电路使用了三种相同的元件:电感,晶体管(晶体管包括三极管及MOSFET)和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。 有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。 三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个确定的关系。例如:降压调整器的功能是使输出电压V0小于输入电压V in,并和它V in有相同的极性。升压电路的作用是使V0大于V in,并且有相同的极性。反激拓扑电路的作用是使V0既可大于也可小于V in,但是两者极性相反。

(整理)开关电源拓扑结构详解

开关电源拓扑结构详解 主回路——开关电源中,功率电流流经的通路。主回路一般包含了开关电源中的开 入端和负载端。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源主回路可以分为隔离式与非隔离式两大类型。 1. 非隔离式电路的类型: 非隔离——输入端与输出端电气相通,没有隔离。 1.1. 串联式结构 串联——在主回路中开关器件(下图中所示的开关三极管T)与输入端、输出端、电感器L、负载RL四者成串联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T及电感器L对负载供电,并同时对电感器L充电,当开关管T关断时,电感器L中的反向电动势使续流二极管D自动导通,电感器L中储存的能量通过续流二极管D形成的回路,对负载R继续供电,从而保证了负载端获得连续的电流。 串联式结构,只能获得低于输入电压的输出电压,因此为降压式变换。例如buck 拓扑型开关电源就是属于串联式的开关电源。 上图是在图1-1-a电路的基础上,增加了一个整流二极管和一个LC滤波电路。其中L是储能滤波电感,它的作用是在控制开关K接通期间Ton限制大电流通过,防止输入电压Ui直接加到负载R上,对负载R进行电压冲击,同时对流过电感的电流iL 转化成磁能进行能量存储,然后在控制开关T关断期间Toff把磁能转化成电流iL继续向负载R提供能量输出;C是储能滤波电容,它的作用是在控制开关K接通期间Ton

把流过储能电感L的部分电流转化成电荷进行存储,然后在控制开关K关断期间Toff 把电荷转化成电流继续向负载R提供能量输出;D是整流二极管,主要功能是续流作用,故称它为续流二极管,其作用是在控制开关关断期间Toff,给储能滤波电感L释放能量提供电流通路。 在控制开关关断期间Toff,储能电感L将产生反电动势,流过储能电感L的电流iL 由反电动势eL的正极流出,通过负载R,再经过续流二极管D的正极,然后从续流二极管D的负极流出,最后回到反电动势eL的负极。 对于图1-2,如果不看控制开关T和输入电压Ui,它是一个典型的反г 型滤波电路,它的作用是把脉动直流电压通过平滑滤波输出其平均值。 串联式开关电源输出电压uo的平均值Ua为: 1.2. 并联式结构 并联——在主回路中,相对于输入端而言,开关器件(下图中所示的开关三极管T)与输出端负载成并联连接的关系。 开关管T交替工作于通/断两种状态,当开关管T导通时,输入端电源通过开关管T对电感器L充电,同时续流二极管D关断,负载R靠电容器存储的电能供电;当开关管T关断时,续流二极管D导通,输入端电源电压与电感器L中的自感电动势正向叠加后,通过续流二极管D对负载R供电,并同时对电容器C充电。

级联型多电平变换器构成及控制方法

Project No. 3 Report for High Power Conversion Systems Project Title: Cascade multi-level converter and its control method Student Name: Email Address: @https://www.doczj.com/doc/5714469971.html, Phone No. Date: 2012.6.15 Signature:

级联型多电平变换器构成及控制方法初探 浙江大学电气工程学院 【摘要】本文介绍了级联型多电平变换器的一般构成方法,并对构成原则进行了初步的讨论并提出了新型级联型拓扑结构。本文又对级联型多电平的控制策略进行了初探。最后,本文提出一种改进型级联多电平变换器,并对其进行了简要分析。 【关键字】级联多电平控制方法 Cascade multi-level converter and its control method ( , College of Electrical Engineering , Zhejiang University) Abstract: This article describes the general composition of the cascade multi-level converter, and constitutes the principle of a preliminary discussion. It also proposes a new cascade topology and cascaded multi-level control strategy . Finally, this paper presents an improved cascaded multilevel converter and makes a brief analysis. Key words: cascade, control strategy, multi-level 1.多电平变换器 多电平变换器技术是一种通过改进变换器自身拓扑结构来实现高压大功率输出的新型变换器,它无需升降压变压器和均压电路。在实现大功率变换的几种解决方案中,多电平变换器之所以受到研究者们的青睐,是因为它具有以下一些突出优点: (1)每个功率器件仅承受X/(n-1)的母线电压(n为电乎数),所以可以用低耐压的器件实现高压大功率输出,且无需动态均压电路; (2)电平数的增加,改善了输出电压波形,减小了输出电压波形畸变(nID); (3)可以以较低的开关频率获得和高开关频率下两电平变换器相同的输出电压波形,因而开关损耗小,效率高; (4)由于电平数的增加,在相同的直流母线电压条件下,较之两电平变换器,dr/dr应力大为减少,在高压大电机驱动中,有效防止电机转子绕组绝缘击穿,同时改善了装置的EMI特性 (5)无需输出变压器,大大地减小了系统的体积和损耗。相对于其他的高压大功率变换电路,多电平变换器技术由于具有了以上优点,受到了越来越广泛的关注、研究和应用。

开关电源拓扑结构优缺点

为了表征各种电压或电流波形的好坏,一般都是拿电压或电流的幅值、平均值、有效值、一次谐波等参量互相进行比较。在开关电源之中,电压或电流的幅值和平均值最直观,因此,我们用电压或电流的幅值与其平均值之比,称为脉动系数S;也有人用电压或电流的有效值与其平均值之比,称为波形系数K。 因此,电压和电流的脉动系数Sv、Si以及波形系数Kv、Ki分别表示为: Sv = Up/Ua ——电压脉动系数(1-84) Si = Im/Ia ——电流脉动系数(1-85) Kv =Ud/Ua ——电压波形系数(1-86) Ki = Id/Ia ——电流波形系数(1-87) 上面4式中,Sv、Si、Kv、Ki分别表示:电压和电流的脉动系数S,和电压和电流的波形系数K,在一般可以分清楚的情况下一般都只写字母大写S或K。脉动系数S和波形系数K都是表征电压或者电流好坏的指标,S和K的值,显然是越小越好。S和K的值越小,表示输出电压和电流越稳定,电压和电流的纹波也越小。 反激式开关电源的优点和缺点 1 反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。 反激式开关电源在控制开关接通期间不向负载提供功率输出,仅在控制开关关断期间才把存储能量转化为反电动势向负载提供输出,但控制开关的占空比为0.5时,变压器次级线圈输出的电压的平均值约等于电压最大值的的二分之一,而流过负载的电流正好等于变压器次级线圈最大电流的四分之一。即电压脉动系数等于2,电流脉动系数等于4。反激式开关电源的电压脉动系数,和正激式开关电源的脉动系数基本相同,但是电流的脉动系数是正激式开关电源的电流脉动系数的两倍。由此可知,反激式开关电源的电压和电流的输出特性要比正激式开关电源的差。特别是,反激式开关电源使用的时候,为了防止电源开关管过压击,起占空比一般都小于0.5,此时,流过变压器次级线圈的电流会出现断续,电压和电流的脉动系数都会增加,其电压和电流的输出特性将会变得更差。 2 反激式开关电源的瞬态控制特性相对来说比较差。 由于反激式开关电源仅在开关关断期间才向负载提供能量输出,当负载电流出现变化时,开关电源不能立即对输出电压或电流产生反应,而需要等到下一个周期事,通过输出电压取样和调宽控制电路的作用,开关电源才开始对已经过去了的事情进行反应,即改变占空比,因此,反激式开关电源的瞬态控制特性相对来说比较差。有时,当负载电流变化的频率和相位与取样、调宽控制电路输出的电压的延时特性在相位保持一致的时候,反激式开关电源输出电压可能会产生抖动,这种情况在电视机的开关电源中最容易出现。 3 反激式开关电源变压器初级和次级线圈的漏感都比较大,开关电源变压器的工作效率低。 反激式开关电源变压器的铁芯一般需要留一定的气隙,一方面是为了防止变压器的铁芯因流过变压器的初级线圈的电流过大,容易产生磁饱和。另一方面是因为变压器的输出功率小,需要通过调整电压器的气隙和初级线圈的匝数,来调整变压器初级线圈的电感量的大小。因此,反激式开关电源变压器初级和次级

多电平变换器现状和发展

受制于电力电子器件发展水平,传统的两电平变换器拓扑不能满足高压大功率电力电子变换的要求,而且电力电子器件的功率处理能力和开关频率之间是矛盾的,往往功率越大,开关频率越低,高性能的控制实现起来就愈发困难。基于这一背景,多电平变换器逐渐成为高压大容量电力电子领域中最为热门的研究课题之一。 多电平变换器大多是采用结构、器件串并联、功率模块多重化和变压器结合使用等方案来提高变换器的电压和功率等级。目前广泛应用在高压大容量变换器场合的典型电力电子拓扑结构主要有:以美国ROBICON公司为代表的H桥级联式结构以及以德国SIMENSE和瑞士ABB公司为代表的二极管中点箝位式(Neutrals Point Clamped/NPC)结构。 H桥级联式变换器是对单个H桥电路进行串联,可以很简单的将电平数任意增加,不受最高承受电压的限制。但是,这种变换器有两个重要的缺点:首先,由于每个单元需要独立电源,通常的做法采用曲折变压器,大大增加了装置的成本和体积。其次,到目前为止,尚无有效的方法实现能量的双向流动,这不仅造成了能量的浪费,更重要的是无法完成四象限运行和高性能的加减速控制。因此,这种结构一般应用在一些调速要求不高的场合。 德国学者Holtz于1977年首次提出三电平逆变器。而后,日本长冈科技大学A.Nabae 等人于1980年进一步完善构成二极管箝位式的三电平变换器,它的出现为高压大容量电压型变换器的研制开辟了一条新思路,从20世纪80年代开始逐渐成为研究重点。对三电平变换器拓扑结构稍加改动,可扩展为任意电平的多电平变换器,电平数越多,输出波形越接近正弦,谐波含量越小。然而在实际应用中,由于受到硬件条件和控制复杂性的制约,通常在满足性能指标的前提下,并不追求过多的电平数。目前三电平结构最为成熟,应用最多,与传统的两电平相比,三电平变换器功率器件承压低、开关损耗低;输出谐波和dv/dt小,有利于电机或滤波器的绝缘和安全运行;此外三电平变换器共有27个电压空间矢量可供选择,开关矢量组合可供选择的余度大,开关顺序灵活多样,为系统性能的提高提供了可能。这些优点使得三电平变换器成为高压大容量领域中拓扑结构的主要选择之一,越来越多地应用于高压大容量电力电子变换装置中。目前针对三电平变换器的研究工作主要集中在高性能控制策略、软开关技术以及在工业实际应用(大容量变频调速、可再生能源利用、电能质量控制)等多个方面。

开关电源各种拓扑集锦

开关电源拓扑六种基本DC/DC变换器拓扑: 1、Buck 2、Boost 3、Buck-Boost 4、CUK 5、Zeta 6、Sepic

基本拓扑是Buck,Boost,其他是演变。Buck为降压变换器,常用的拓扑基本上是Buck的:正激,半桥,全桥,推挽等等。Boost变换器为Buck的对偶拓扑,是升压变换器,常用于小功率板载电源,大功率PFC电路上, 对于隔离的Boost变换器也有推挽,双电感,全桥等电路。Buck-Boost是反激变换器的原型,属于升降压变换器。 后面三种电路不是很常用,都是升降压变换器。 一、 反激 1、单端反激 2、双端反激 二、 正激 1、绕组复位正激 2、R CD复位正激 3、L CD复位正激

4、有源钳位正激 ● Flyback钳位 ● Boost钳位 5、双管正激 6、无损吸收双正激

7、有源钳位双正激 8、原边钳位双正激 9、软开关双正激

三、 推挽 1、推挽 2、无损吸收推挽 3、推挽正激

推挽变换器是双端变换器。其实是两个正激变换器通过变压器耦合而来,基本推挽变换器好处是驱动不需隔离,变压器双端磁化,只要两个开关管。但是,变压器绕组利用率低,开关管电压应力为输入两倍,所以一般只适合低压输入的场合。而且有个问题就是会出现偏磁,所以要采用电流型控制等方法来避免。 如果将两个双管正激同样耦合,可以构成四开关管的推挽变换器,也就是所谓的双双管正激。其管子电压应力下降为输入电压。其他等同。 推挽正激是通过一个电容来解决变换器漏感尖峰,偏磁等问题 四、 半桥 1、半桥 2、不对称半桥 3、谐振半桥 4、移相半桥

多电平变换器的拓扑结构和控制策略

0 引言 多电平变换器的概念自从A.Nabael在1980年的IAS年会上提出以后,以其独特的优点受到广泛的关注和研究。首先,对于n电平的变换器,每个功率器件承受的电压仅为母线电压的1/(n-1),这就使得能够用低压器件来实现高压大功率输出,且无需动态均压电路;多电平变换器的输出电压波形由于电平数目多,使波形畸变(THD)大大缩小,改善了装置的EMI特性;还使功率管关断时的d v/d t应力减少,这在高压大电机驱动中,有效地防止了电机转子绕组绝缘击穿;最后,多电平变换器输出无需变压器,从而大大减小了系统的体积和损耗。因此,多电平变换器在高电压大功率的变频调速、有源电力滤波装置、高压直流(HVDC)输电系统和电力系统无功补偿等方面有着广泛的应用前景。 1 多电平变换器的拓扑结构 国内外学者对多电平变换器作了很多的研究,提出了不少拓扑结构。从目前的资料上看,多电平变换器的拓扑结构主要有4种: 1)二极管中点箝位型(见图1); 2)飞跨电容型(见图2); 3)具有独立直流电源级联型(见图3); 4)混合的级联型多电平变换器。 图1 二极管箝位型三电平变换器 图2 飞跨电容型三电平变换器

图3 级联型五电平变换器 其中混合级联型是3)的改进模型,它和3)的结构基本上相同,唯一不同的就是3)的直流电源电压均相等,而4)则不等。从图1至图3不难看出这几种拓扑的结构的优缺点。 二极管箝位型多电平变换器的优点是便于双向功率流控制,功率因数控制方便。缺点是电容均压较为复杂和困难。在国内外这种拓扑结构的产品已经进入了实用化。 飞跨电容型多电平变换器,由于采用了电容取代箝位二极管,因此,它可以省掉大量的箝位二极管,但是引入了不少电容,对高压系统而言,电容体积大、成本高、封装难。另外这种拓扑结构,输出相同质量波形的时候,开关频率增高,开关损耗增大,效率随之降低。目前,这种拓扑结构还没有达到实用化的地步。 级联型多电平变换器的优点主要是同数量电平的时候,使用二极管数目少于拓扑结构1);由于采用的是独立的直流电源,不会有电压不平衡的问题。其主要缺点是采用多路的独立直流电源。目前,这种拓扑结构也有实用化的产品。 2 多电平变换器的控制策略 从目前的资料来看,多电平变换器主要有5种控制策略,即阶梯波脉宽调制、特定消谐波PWM、载波PWM、空间矢量PWM、Sigma-delta调制法。 2.1 阶梯波脉宽调制[1][2][3] 阶梯波调制就是用阶梯波来逼近正弦波,是比较直观的方法。典型的阶梯波调制的参考电压和输出电压如图4所示。在阶梯波调制中,可以通过选择每一个电平持续时间的长短,来实现低次谐波的消除。2m+1次的多电平的阶梯波调制的输出电压波形的傅立叶分析见式(1)及式(2)。消除k次谐波的原理就是使电压系数b k为0。这种方法本质上是对做参考电压的模拟信号作量化的逼近。从图4中不难看出这种调制方法对功率器件的开关频率没有很高的要求,所以,可以采用低开关频率的大功率器件如GTO来实现;另外这种方法调制比变化范围宽而且算法简单,控制上硬件实现方便。不过这种方法的一个主要缺点就是输出波形的谐波含量高。 图4 九电平阶梯波输出电压波形 v t(t)=b n sin nωt(1) b n=[V cos nα1+2V cosnα1+……+jV cos nαj+……+mV cosnαm](2) 2.2 多电平特定消谐波法[4][5][6] 多电平的特定消谐波法也被称作开关点预制的PWM方法。这种方法是建立在多电平阶梯波调制方法的基础之上的。这种方法的原理就是在阶梯波上通过选择适当的“凹槽” 有选择性地消除特定次谐波,从而达到输出波形质量提高和输出THD减小的目的。这种方法的消谐波和阶梯波的消谐波一样,唯一不同的就是输出电压波形的傅立叶分析后的系数 b n有所不同。现以五电平的特定消谐波的一个输出电压波形(如图5所示)来分析傅立叶分解

开关电源三大拓扑

开关电源三大基本拓扑 1、摘要 开关电源已经深入到国民经济的各个行业当中,设计师或是自行设计电源或是购买电源模块,但是这些电源都离不开电源的各种电路拓扑。本文先介绍了开关电源的三大基础拓扑:Buck、Boost、Buck-Boost,并就这三者拓扑之间进行了简单地组合,得到了非常巧妙的电路,例如:正负输出电源、双向电源等,能够满足诸如运放供电、电池充放电等某些特殊的需求。 2、开关电源基础拓扑 开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关电源都是采用这几种基础拓扑或者其对应的隔离方式,下面以电感连续模式进行简单介绍。 2.1Buck降压型 Buck降压型电路拓扑,有时又称为Step-down电路,其典型的电路结构如下图1所示: Buck电路的工作原理为: 当PWM驱动高电平使得NMOS管T导通的时候,忽略MOS管的导通压降,等效如图2,电感电流呈线性上升,MOS导通时电感正向伏秒为:

当PWM驱动低电平的时候,MOS管截止,电感电流不能突变,经过续流二极管形成回路(忽略二极管电压),给输出负载供电,此时电感电流下降,如下图3所示,MOS截止时电感反向伏秒为: D为占空比,0 2.2Boost升压型 Boost升压型电路拓扑,有时又称为step-up电路,其典型的电路结构如下图4所示: 同样地,根据Buck电路的分析方式,Boost电路的工作原理为:

2.3Buck-Boost极性反转升降压型 Buck-Boost电路拓扑,有时又称为Inverting,其典型的电路结构如下图5所示: 同样地,根据Buck电路的分析方式,Buck-Boost电路的工作原理为: 3、Buck与Buck-Boost组合 金升阳K78系列的产品采用了Buck降压型的电路结构进行设计,是LM78XX系列三端线性稳压器的理想替代品,效率最高可达96%,不需要额外增加散热片,同时还兼有短路保护和过热保护,值得说明的是它能够完美支持负输出。 上面提到金升阳K78系列产品可以支持负输出,这是怎么做到的呢? 从上面Buck电路以及Buck-Boost电路结构原理来看,主要的区别是两者二极管与功率电感的位置互换。因此,若将Buck电路的输出Vo引脚接成输入的GND,而之前的输入GND 就变成了负电压输出了,即变成了Buck-Boost的电路结构。对应到金升阳K78xx-500R2系列的产品就变成了如下图6所示的负输出。

模块化多电平变换器

模块化多电平变换器(MMC)的脉冲宽度调制的实验和控制 摘要:模块化多电平变换器(MMC)是新一代不需要变压器而实现高、中压电力转换的多级转换器中的一种。MMC的每相是基于多个双向斩波单元的串级连接。因此需要对每个浮动的直流电容器进行电压平衡控制。然而,目前还没有文章涉及到通过理论和实验验证来实现电压平衡控制的明确讨论。本文涉及两种类型的脉冲宽度调制模块化多电平转换器(PWMMMCs)来解决他们的电路配置和电压平衡控制。平均控制和平衡控制的结合使脉冲宽度调制模块化多电平转换器(PWMMMCs)在没有任何外部电路的情况下实现电压平衡。脉冲宽度调制模块化多电平转换器(PWMMMCs)的可行性,以及电压平衡控制的有效性,通过仿真和实验已经被证实。 关键词:电压电力转换,多级转换器,电压平衡控制 一、介绍: 大功率的转换器的应用需要线性频率变压器来达到加强电压或电流的额定值的目的(见参考文献【1】——【4】)。2004年投入使用的80MW的静态同步补偿器的转换侧由18个中点箝位(NPC)式转换器组成(文献【4】),每个系列的交流双方串联相应的变压器。线性变压器的使用不仅使转换器笨重,而且也导致当单线接地故障发生时出现直流磁通偏差(文献【5】)。 最近,许多关于电力系统和电力电子的多级转换的科学家和工程师,参与到多电平变换器为了实现无需变压器而实现中压电力转】换(文献【6】-【8】)。两种典型的方法有: (1)多级多电平转换(DCMC) (文献【6】, 【7】); (2)飞跨电容型多电平变换器(FCMC)(文献【8】)。 三电平多级多电平转换器(DCMC)或者NPC转换器已经被投入实际使用,如果在DCMC中电平的数量超过三个,容易导致串联的直流电容内在电压的不平衡,因此两个直流电容需要一个外部电路(例如buck—boost斩波电路)(文献【11】),此外,一个箝位二极管耐压值的增长是非常有意义的,而且这种增长需要每相串联多个模块,这就造成一些困难。因此合理的电平数量应该根据实际需要考虑但至多不能超过五个。至于FCMC,四级的脉冲宽度调制(PWM)换流器目前已经被一个制造中压驱动器的企业大量生产。然而,较低的载波频率(低于1KHz)的

相关主题
文本预览
相关文档 最新文档