当前位置:文档之家› 单运放741

单运放741

单运放741

图6 12V的电池监视器图7 低功耗放大器

uA741M,uA741I,uA741C(单运放)是高增益运算放大器,用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。

这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。

uA741M,uA741I,uA741C芯片引脚和工作说明:

1和5为偏置(调零端),2为正向输入端,3为反向输入端,4接地,6为输出,7接电源8空脚

运放的应用实例和设计指南

1.1运放的典型设计和应用 1.1.1运放的典型应用 运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直流放大器、有源滤波器、振荡器及电压比较器。 1) 运放在有源滤波中的应用 图有源滤波 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。 其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为 巴特沃兹,单调下降,曲线平坦最平滑; 切比雪夫,迅速衰减,但通带中有纹波; 贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 二阶有源低通滤波 电路的画法和截止频率 2) 运放在电压比较器中的应用 图电压比较 上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。 该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。 该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3) 恒流源电路的设计

如图所示,恒流原理分析过程如下: U5B (上图中下边的运放)为电压跟随器,故V4 V1=; 由运算放大器的虚短原理,对于运放U4A (上图中上边的运放)有: V5 V3=; 而 () 421 2020 V4-Vref V5V R R R ++? =; ()019 1819 0-V2 V3++?=R R R ; 有以上等式组合运算得:Vref V1 V2=- 当参考电压Vref 固定为时,电阻R30为Ωk ,电流恒定输出。 该恒流源电路可以设计出其他电流的恒流源,其基本思路就是:所有的电阻都需要采用高精度电阻,且阻值一致,用输入的参考电压(用专门的参考电压芯片)比上阻值,就是获得的输出电流。 但在实际使用中,为了保护恒流源电路,一般会在输出端串一只二极管和一只电阻,这样做的好处第一是防止外界的干扰会进入恒流源电路,导致恒流源电路的损坏,二是可以防止外界负载短路时,不至于对恒流源电路造成损坏。

2016东南大学模电实验1运算放大器的基本应用

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路实验 第 1 次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化班 姓名:学号: 610142 实验室:实验组别: 同组人员:实验时间:2016年4月10日 评定成绩:审阅教师: 一、实验目的 1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法; 2.熟练掌握运算放大电路的故障检查和排除方法; 3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入 失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念; 4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;

5.掌握搭接放大器的方法及使用示波器测量输出波形。 二、预习思考 1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数 和极限参数,解释参数含义。

2.设计一个反相比例放大器,要求:|AV|=10,Ri>10K?,RF=100 k?,并用 multisim 仿真。 其中分压电路由100k?的电位器提供,与之串联的510?电阻起限流的作用。 3.设计一个同相比例放大器,要求:|AV|=11,Ri>10K?,RF=100 k?,并用 multisim 仿真。

三、 实验内容 1. 基本要求 内容一: 反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。 图 1.1 反相输入比例运算电路 LM324 管脚图 1) 图 1.1 中电源电压±15V ,R1=10k Ω,RF=100 k Ω,RL =100 k Ω,RP =10k//100k Ω。按图连接电路,输入直流信号 Ui 分别为-2V 、-0.5V 、0.5V 、2V ,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。其中 Ui 通过电阻分压电路产生。 Ui/V Uo/V Au 测量值 理论值 -2 13.365 -6.6825 \

集成运算放大器的基本应用

实验名称 集成运算放大器的基本应用 一.实验目的 1.掌握集成运算放大器的正确使用方法。 2.掌握用集成运算放大器构成各种基本运算电路的方法。 3.学习正确使用示波器交流输入方式和直流输入方式观察波形的方法,重点掌握积分输入,输出波形的测量和描绘方法。 二.实验元器件 集成运算放大器 LM324 1片 电位器 1k Ω 1只 电阻 100k Ω 2只;10k Ω 3只;5.1k Ω 1只;9k Ω 1只 电容 0.01μf 1只 三、预习要求 1.复习由运算放大器组成的反相比例、反相加法、减法、比例积分运算电路的工作原理。 2.写出上述四种运算电路的vi 、vo 关系表达式。 3.实验前计算好实验内容中得有关理论值,以便与实验测量结果作比较。 4.自拟实验数据表格。 四.实验原理及参考电路 本实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。 1. 反向比例运算 反向比例运算电路如图1所示,设组件LM324为理想器件,则 11 0υυR R f -=

R f 100k R 1 10k A 10k R L v o v 1 R 9k 图1 其输入电阻1R R if ≈,图中1//R R R f ='。 由上式可知,改变电阻f R 和1R 的比值,就改变了运算放大器的闭环增益vf A 。 在选择电路参数是应考虑: ○ 1根据增益,确定f R 与1R 的比值,因为 1 R R A f vf - = 所以,在具体确定f R 和1R 的比值时应考虑;若f R 太大,则1R 亦大,这样容易引起较大的失调温漂;若f R 太小,则1R 亦小,输入电阻if R 也小,可能满足不了高输入阻抗的要求,故一般取f R 为几十千欧至几百千欧。 若对放大器输入电阻有要求,则可根据1R R i =先确定1R ,再求f R 。 ○ 2运算放大器同相输入端外接电阻R '是直流补偿电阻,可减小运算放大器偏执电流产生的不良影响,一般取1//R R R f =',由于反向比例运算电路属于电压并联负反馈,其输入、输出阻抗均较低。 本次试验中所选用电阻在电路图中已给出。 2. 反向比例加法运算 反向比例加法运算电路如图2所示,当运算放大器开环增益足够大时,其输入端为“虚地”,11v 和12v 均可通过1R 、2R 转换成电流,实现代数相加,其输出电压 ??? ??+-=122111 v R R v R R v f f o 当R R R ==21时 ()1211v v R R v f o +- = 为保证运算精度,除尽量选用精度高的集成运算放大器外,还应精心挑选精度高、稳定性好的电阻。f R 与R 的取值范围可参照反比例运算电路的选取范围。 同理,图中的21////R R R R f ='。

运放基本应用电路

运放基本应用电路 运放基本应用电路 运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。当反馈网络为线性 电路时可实现乘、除等模拟运算等功能。运算放大器可进行直流放大,也可进行交流放大。 R f 使用运算放大器时,调零和相位补偿是必 须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。U O 1.反相比例放大器 电路如图1所示。当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1 R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。 若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。 放大器的输入电阻为:R i ≈R 1 直流平衡电阻为:R P = R f // R 1 。 其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。 R 1的值应远大于信号源的 O 内阻。 2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻 很低的特点,广泛用于前置放大器。电路原理 图如图2所示。当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为: 1 111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A uf 恒大于1。 同相放大器的输入电阻为:R i = r ic 其中: r ic 是运放同相端对地的共模输入电阻,一般为108Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。 若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。此时由于放大器几乎不从信号源吸取电流,因此 U 可视作电压源,是比较理想的阻抗变换器。 3.加(减)法器

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

运算放大器的基本应用

运算放大器的基本应用 东南大学电工电子实验中心 实验报告 课程名称: 第一次实验 实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化姓名:号: 实验室: 同组人员:无实验时间:xx年03月23日评定成绩:审阅教师: 实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增 益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念;

5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。 2、设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,将设计过程记录在预习报告上;(1)仿真原理图 (2)参数选择计算 因为要求|Av|=10,即|V0/Vi|= |-Rf/R1|=10,故取Rf=10R1,.又电阻应尽量大些,故取:R1=10kΩ,Rk=100 kΩ, RL=10 kΩ(3)仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知 |V0/Vi|=9.77≈10,仿真正确。 3、设计一个电路满足运算关系UO= -2Ui1 + 3Ui2 (1)仿真原理图 (2)参数选择计算 利用反向求和构成减法电路,故可取R1=10kΩ,RF1=30kΩ,R3=10k Ω,R2=RF2=20kΩ(3)仿真结果 输入Ui2为振幅等于2V的方波,Ui1为振幅等于1V的方波,因为输出为振幅等于4V的方波,故可知仿真正确。三、实验内容: 1、基本要求: 内容一:反相输入比例运算电路

集成运放基本应用之一—模拟运算电路

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

LM324四种运放的基本应用

LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo 的信号与该输入端的相位相同。LM324的引脚排列见图2。 图1图2 由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。 下面介绍其应用实例。 1、反相交流放大器 电路见附图。此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。电路无需调试。放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。 放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。负号表示输出信号

与输入信号相位相反。按图中所给数值,Av=-10。此电路输入电阻为Ri。一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。Co和Ci为耦合电容。 2、同相交流放大器 电路见附图。同相交流放大器的特点是输入阻抗高。其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。电路的电压放大倍数Av也仅由外接电阻决定: Av=1+Rf/R4,电路输入电阻为R3。R4的阻值范围为几千欧姆到几十千欧姆。 3、交流信号三分配放大器 电路见附图。此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。而对信号源的影响极小。因运放Ai 输入电阻高,运放A1-A4 均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0 的情况,故各放大器电压放大倍数均为 1 ,与分立元件组成的射极跟随器作用相同。

运放的应用汇总-学习笔记

运放的应用,原理与电路--学习汇总 一、原理 1.特性 运算放大器又称运放,其实就是一个差分输入、多级、直接耦合、高增益放大电路,用集成电路工艺生产在一个单芯片集成电路中。它是一种内部为直接耦合的高放大倍数的集成电路,其内部电路可由图①的方框图表示。它有两个差分输入端,一个或者两个输出端,两个供电电源端。 由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:Ri≈∞,Ro≈0,A≈∞。由A≈∞,得到U+≈U-,于是两个输入端可以近似看作短路(称为“虚短”); 如果同向输入端接地,反向输入端与地几乎同电位(称为“虚地”)。由Ri≈∞可知,输入端电路近似等于0,故可把输入端看作是断路(称之为“虚断”)。 2.注意点 1)运放可以放大直流信号,也可以放大交流信号 2)运放的供电方式有单电源和双电源;单电源供电无法输出零。 二、应用 运放常见电路图 1.放大电路 工作在线性状态,负反馈 1)反相放大器 闭环放大器的输入阻抗近似为R1

2)同相放大器 同相放大器的输入阻抗是非常高的 Vo=(1+R2/R1)Vin 还有一个特殊运用:跟随器/射随器,Rf=0ohm(直连线),放大倍数为1--带载能力强 3)差分电路(和差电路)

4)求和电路 ①反相求和 ②同相求和 输出公式为:UO=(1+Rf/R1)[U1×Ri2//Ri3/(Ri1+Ri2//Ri3)+U1×Ri1//Ri3/(Ri2+ Ri1//Ri3)+U1×Ri1//Ri2/(Ri3+Ri1//Ri2)], 当Ri1=Ri2=Ri3时,UO=1/3×(U1+U2+U3)×(1+Rf/R1), 若取Rf=2Ri1,则UO=U1+U2+U3,是一个完美的加法电路 5)积分电路 可用来计算一个连续变化信号的结果

运算放大器基本原理及应用

运算放大器基本原理及应用 一. 原理 (一) 运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线 图2运算放大器输入输出端图示 图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R ’=R 1 // R F 。 输出电压U 0与输入电压U i 称比例关系,方向相反,改变比例系数,即改变两个电阻的阻值就可以改变输出电压的值。反向比例电路对于输入信号的负载能力有一定的要求。 (b) 同向比例电路 同向比例电路如图4所示,跟反向比例电路本质上差不多,除了同向接地的一段是反向输入端: 图4 同相比例电路电路图 i 1 f O U R R U - =

实验--集成运算放大器的基本应用

实验集成运算放大器的基本应用(Ⅱ)——有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图9-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率围的信号通过,抑制或急剧衰减此频率围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频围。根据对频率围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图9-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图9-2(a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,引入适量的正反馈,以改善幅频特性。 图9-2(b)为二阶低通滤波器幅频特性曲线。

(a)电路图 (b)频率特性 图9-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图9-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图9-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。 (a) 电路图 (b) 幅频特性 图9-3 二阶高通滤波器 电路性能参数A uP 、f O 、Q 各量的函义同二阶低通滤波器。 图9-3(b )为二阶高通滤波器的幅频特性曲线,可见,它与二阶低通滤波器的幅频特性曲线有“镜像”关系。 3、 带通滤波器(BPF )

详解运放七大应用电路设计

运放的基本分析方法:虚断,虚短。对于不熟悉的运放应用电路,就使 用该基本分析方法。 运放是用途广泛的器件,接入适当的反馈网络,可用作精密的交流和直 流放大器、有源滤波器、振荡器及电压比较器。 1、运放在有源滤波中的应用 上图是典型的有源滤波电路(赛伦-凯电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性 对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R233 和R230的阻值选一致,C50和C201的容量大小选取一致(两级RC电路的电阻、电容值相等时,叫赛伦凯电路),这样就可以在满足滤波性能的情况下,将器件的种类归一化。其中电阻R280是防止输入悬空,会导致运放输出异常。 滤波最常用的3种二阶有源低通滤波电路为:巴特沃兹,单调下降,曲 线平坦最平滑;巴特沃兹低通滤波中用的最多的是赛伦凯乐电路,即仿真 的该电路。 一个滤波器,要知道其截至频率是多少,或者能写出传递函数和频率响 应也可以。如果该滤波器还有放大功能,要知道该滤波器的增益是多少。 当两级RC电路的电阻、电容值相等时,叫赛伦凯电路,在二阶有源电

路中引入一个负反馈,目的是使输出电压在高频率段迅速下降。二阶有源低通滤波电路的通带放大倍数为 1+Rf/R1 ,与一阶低通滤波电路相同;

截止频率为 注明,m的单位为欧姆, N 的单位为 u 所以计算得出截止频率为 切比雪夫,迅速衰减,但通带中有纹波;贝塞尔(椭圆),相移与频率成正比,群延时基本是恒定。 2、运放在电压比较器中的应用

上图是典型信号转换电路,将输入的交流信号,通过比较器LM393,将其转化为同频率的方波信号(存在反相,让软件处理一下就可以),该电路在交流信号测频中广泛使用。该电路实际上是过零比较器和深度放大电路的结合。 将输出进行(1+R292/R273)倍的放大,放大倍数越高,方波的上升边缘越陡峭。该电路中还有一个关键器件的阻值要注意,那就是R275,R275决定了方波的上升速度。 3、恒流源电路的设计 如图所示,恒流原理分析过程如下:U5B(上图中下边的运放)为电压跟随器,故V1=V4;由运算放大器的虚短原理,对于运放U4A(上图中上边的运放)有:V3=V5;

相关主题
文本预览
相关文档 最新文档