当前位置:文档之家› 螺旋天线综述

螺旋天线综述

螺旋天线综述
螺旋天线综述

螺旋天线综述

1 引言

螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。

同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。

螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。

2 螺旋天线的发展

螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。

20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。

2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

图1 图2

3 螺旋天线的分类及特性

螺旋天线可分为立体螺旋天线(helical antenna)和平面螺旋天线(spiral antenna)。

立体螺旋天线根据绕成的形状的不同,又可分成圆柱形螺旋天线、圆锥形螺旋天线等等。圆锥形螺旋天线又称为盘旋螺线型天线,可同时在两个频率工作。平面螺旋天线的基本形式为等角螺旋天线和阿基米德螺旋天线。在结构上又有单臂、双臂、四臂之分。平面螺旋天线一般在后面添加背腔来提高增益。

立体螺旋天线的特性很大程度上决定于螺旋天线的直径与波长的比值,当该比值小于0.18时,天线的主射方向垂直与螺旋天线轴,如下图3(a)所示,这种工作模式称为法向模。此时它的特性与单极细线天线相仿,具有8字形方向图,并且频带很窄,一般用作小功率电台的通信天线。若在螺旋的中心轴线上放置一根金属导体,当螺旋一圈的周长l=Mλ(M=2,3,…整数)时,也在螺旋的法向产生最大辐射。这种天线可用作电视发射天线。

当该比值在0.25一0.42之间时,天线的主射方向在天线轴向上,如下图3(b)所示,这中工作模式称为轴向模,此种类型天线具有明显的端射特性且它的互阻抗几乎可以忽略,因此很容易用来组阵。许多美国的卫星,包括气象卫星、通信卫星(Comsat)、舰队通信卫星(Fleetsatcom)、全球定位卫星(GPS)、西联卫星(Westar)以及跟踪与数据中继卫星,全都采用这种螺旋天线,中继卫星还装置了个螺旋的阵列。

当 D/λ进一步增大时,最大辐射方向偏离轴线方向,天线的辐射呈圆锥状,如下图3(c)所示,一般用于电磁对抗天线。

图3

4 螺旋天线的原理

A. 单臂螺旋天线是阵列天线中的常用形式,使用轴向模工作,下面从单圈螺旋和多圈螺旋两个角度阐述其辐射原理:

图4

参考图如图4所示,螺旋天线的几何参数可用下列符号表示:

D ——螺旋的直径; a ——螺旋线导线的半径; S ——螺距,即每圈之间的距离; α——螺距角,

l ——一圈的长度,

N ——圈数;

h ——轴向长度,h=Ns 。 天线尺寸较波长很小时(N 0

l <<λ),此时天线可等效为小电流元和小电流环的叠加,

如下图5所示:

图5

对于小电流元,远场r 处的电场强度近似为 λθπθS

r

I j E sin ][60=

对于小电流环,设等效电流环面积为A ,则远场r 处的电场强度近似为 2

2

sin ][120λθπ?A

r

I E -

=

则螺旋线的场分布可视为二者的叠加。 把比值作为轴比, A

S E E πλ?

θ2=

轴比为1时,实现圆极化,此时

λπS D 2=

以上分析是将天线等效为小圆环和线电流的叠加进行分析,当螺旋N 圈后,螺旋天线可认为是由螺旋元素组成的天线阵,阵因子

n

Y 为:

2sin 2

sin 1φφn n Y n =

叠加后的方向图如图5所示:

图5

T

E θ为单螺旋元素的垂直极化方向图 T

E ?为单螺旋元素的垂直极化方向图 θ

E =T

E θ*n Y ?

E =

T

E ?*

n

Y

此时,我们发现E φ和E?的方向图变的比较接近,比较接近于阵因子的方向图。

B. 以阿基米德螺旋天线为例说明基本平面螺旋天线的原理;

天线的两个螺旋臂方程分别是 )

()

()0(0201π?π???≥-+=≥+=a r r a r r

式中r0为起始矢径,对应于φ=0的矢径。 a 为增长率。这一天线的性能基本上与等角螺旋天线类似。

图6

我们可以近似地将螺旋线等效为双线传输线,根据传输线理论,两根传输线上的电流反相,当两线之间的间距很小时,传输线不产生辐射。当螺旋线外径达到波长时,在图中分别用虚线和实线表示这两个臂。以图6简化模型研究图中P 、P ′点处的两线,设OQ PO =,即P 和Q 为两臂上的对应点,当螺旋线周长近似为辐射频率波长时,对应线段上的电流相位差为π+(2π/λ)πr ,为2π,相位增强,天线向外辐射。

5. 螺旋天线的应用及新技术

双臂螺旋天线一般采用馈电方式为折叠式非平衡-平衡馈电方式和λ/4开槽的同轴馈电方式。这样不仅可以实现非平衡与平衡的装换和可以同时实现阻抗的匹配。如下图7所示。

图7

此种形式的双臂螺旋天线具有较宽的主瓣宽度基本可以满足第一时间捕获卫星的要求。方向图如图8所示。

图8 双臂螺旋天线方向图

2 四臂螺旋天线不仅要有较宽的主瓣宽度,还要求在低仰角时也具有良好的圆极化特性,四臂螺旋天线就可以很好的满足此种要求,适用于GPS天线。四臂螺旋天线易于调节,调整四臂螺旋天线的D/λ,使其表现出边射特性,然后通过增大螺旋的圈数来提高天线的增益,通过改变螺距来调节天线的辐射仰角。

四臂螺旋天线一般采用无限巴伦或者微带功分网络进行馈电;相应的前者天线臂长为λ/4的偶数倍,后者天线臂长为λ/4的奇数倍。一般情况下四臂螺旋天线在低仰角的轴比不大于4dB,如果要求更高可采用八臂螺旋或是更多臂数的螺旋。

另外可以采用方形结构螺旋,从而由于增加辐射表面积, 具有更高的辐射效率。在四臂螺旋天线中间加载小型化介质则可以大大缩小天线的尺寸,在末端采用开放或者封闭的形式,也会对天线的性能进行影响。

6 结束语

螺旋天线以其特性阻抗平缓、圆极化特性好、端射和边射性能优越等特点广泛应用于航天、气象、定位、中继等诸多领域。随着科技的发展,螺旋天线优越的电气性能也得到更加广泛的应用,但是螺旋天线固有的群延迟特性而导致的色散限制了其应用,例如不能用作纯雷达天线,仍然需要解决。

天线极化综述

天线极化综述 班级:09电子(1)班 姓名:周绕 学号:0905072024 完成时间:2011年11月15日

目录 一、天线的极化概念描述 0 二、天线的极化分类 0 1、线极化 0 (1)、线极化描述 0 (2)、线极化的数学分析 0 2、天线的馈源系统 (1) 3、极化波 (2) (1)、极化波的简介与分类 (2) (2)、极化波的应用 (2) 4、圆极化 (2) (1)、圆极化的描述 (2) 5、椭圆极化 (4) 三、总结 (5)

一、天线的极化概念描述 天线的极化特性是以天线辐射的电磁波在最大辐射方向上电场强度矢量的空间取向来定义的,是描述天线辐射电磁波矢量空间指向的参数。由于电场与磁场有恒定的关系,故一般都以电场矢量的空间指向作为天线辐射电磁波的极化方向。 二、天线的极化分类 天线的极化分为线极化、圆极化和椭圆极化。线极化又分为水平极化和垂直极化;圆极化又分为左旋圆极化和右旋圆极化。 1、线极化 (1)、线极化描述 电场矢量在空间的取向固定不变的电磁波叫线极化。有时以地面为参数,电场矢量方向与地面平行的叫水平极化,与地面垂直的叫垂直极化。电场矢量与传播方向构成的平面叫极化平面。垂直极化波的极化平面与地面垂直;水平极化波的极化平面则垂直于入射线、反射线和入射点地面的法线构成的入射平面。 (2)、线极化的数学分析

(a)垂直极化 (b) 水平极化 在三维空间,沿Z轴方向传播的电磁波,其瞬时电场可写为: = + 。 若=ExmCOS(wt+θx),=EymCOS(wt+θy) ,且与的相位差为nπ(n=1,2,3,…) ,则合成矢量的模为: 这是一个随时间变化而变化的量,合成矢量的相位θ为: 合成矢量的相位为常数。可见合成矢量的端点的轨迹为一条直线。 与传播方向构成的平面称为极化面,当极化面与地面平行时,为水平极化,如图(a);当极化面与地面垂直时,为垂直极化波,如图(b)。 2、天线的馈源系统 馈源是天线的心脏,它用作高增益聚集天线的初级辐射器,为抛物面天线提供有效的照射。 (1)有合适的方向图。馈源初级方向图不能太窄,否则抛物面不能被全部照射;但也不能太宽,以免功率泄漏过多。另外,初级方向图应接近于旋转对称,最好没有旁瓣和尾瓣。 (2)有理想的波前。圆抛物面天线要求馈源的波前为球面,以确保该相位中心与焦点重合时抛物面口径场的相位均匀分布。否则,会引起天线方向图畸变、增益下降、旁瓣升高。 (3)无交叉极化。即无干扰主极化的交叉分量,要求馈源辐射场的交叉化分量尽可能小。 (4)阻抗变化平稳。要求在工作频段内,馈源的输入阻抗不应变化过大,以保证和馈线匹配。 (5)尺寸尽量小。完整的馈源系统主要由馈源喇叭、90°移相器和圆矩变换器几部分组成。馈源按使用的方式可分为前馈馈源和后馈馈源。按卫星频段可分为C频段馈源和Ku频段馈源;目前已开发出C和Ku频段的共用馈源。前馈馈源一般应用于普通的抛物面天线,后馈馈源一般应用于卡塞格伦天线。 抛物面天线常用馈源形式有角锥喇叭、圆锥喇叭、开口波导和波纹喇叭等。前馈馈源中使用最多的是波纹槽馈源;再有一种叫带扼流槽的同轴波导馈源。后馈馈源喇叭常用的是介质加载型喇叭,它是在普通圆锥喇叭里面加上一段聚四氟乙烯衬套构成的。偏馈天线要选用偏馈馈源,偏馈馈源盘的波纹呈漏斗状,而正馈馈源的波纹盘为水平状。

一种小型平面螺旋天线概要

一种小型平面螺旋天线 龙小专1 袁飞2 (西南电子设备研究所,成都四川,610036) 摘要:平面阿基米德螺旋天线是一种宽频带天线,其尺寸由低端工作频率决定,在许多实际应用中常需对其进行小型化设计。本文通过末端离散电阻加载设计,实现了天线的小型化。本文结合设计的小型平面马欠德平衡器馈电装置,得到了一种小型平面阿基米德螺旋天线。 关键词:平面阿基米德螺旋天线,小型化,电阻加载,平面马欠德平衡器 A Miniaturized Planar Spiral Antenna Long Xiaozhuan 1 Yuan Fei 2 (Southwest Institute of Electric Equipment, Chengdu, Sichuan, 610036) Abstract: Planar Archimedean spiral antenna was a broadband antenna, whose dimension was determined by its lowest working frequency, and it’s necessary to do some miniaturization design in many practical applications. The miniaturization of the antenna was realized by discrete resistance loading in the end of antenna. A miniaturized planar Archimedean spiral antenna was achieved, integrated with the feeding device of a miniaturized planar Marchand balun designed in this article. Keywords: Planar Archimedean Spiral Antenna; Miniaturization; Resistance Loading; Planar Marchand Balun 1 引言 2 电阻加载 平面阿基米德螺旋天线是一种宽频带天线,因其具有结构紧凑、重量轻、输入阻抗恒定、相位中心固定、辐射圆极化波等特点,在诸多领域有着重要的应用[1]。随着系统的发展要求,天线的小型化成为天线设计中的重要发展方向。一般来说,圆形平面阿基米德螺旋天线的外径至少应大于最低工作频率的波长除以π。若需再扩展天线的低端工作频率,或减小天线的尺寸,则需对天线进行小型化设计。在众多的小型化技术中,电阻加载不仅可以减小天线的驻波比,还可以显著减小天线的轴比,其应用最为广泛[2]。本文采用这种技术,对平面阿基米德螺旋天线末端进行离散电阻加载,并应用所设计的小型平面马欠德平衡器,最终得到一个工作于2.5GHz~6GHz的平面螺旋天线,其总尺寸仅为Ф30mm×25mm。 平面阿基米德螺旋天线一般由辐射螺旋面、馈电平衡器和背腔三大部分构成。在天线的设计中,可先分别对三个部分进行设计,然后再进行综合设计。辐射螺旋面一般是在一块圆形的介质基板的一个面上印制两根或多根螺旋线,螺旋线的半径随角度变化而均匀的增加,其极坐标方程可表示为: r=r0+aφ (1)

机载天线综述

直升机平台机载天线研究综述 李雪健 摘要:直升机作为一种快速灵活的机动装备,近几年在城市反恐处突及应急灾害救援等场合作用明显。机载天线作为通信系统的重要一环,它的性能好坏对直升机通信效果影响极大。本文介绍了机载天线的分类及特点,综述国内外当前对机载天线的主要研究方向和研究进展。介绍了以FEKO和HFSS软件为基础的直升机平台天线研究方法。 关键词:直升机平台;机载天线;研究现状 0、引言 自1907年法国人保罗·科尔尼发明直升机以来,直升机就作为人造飞行器中重要一支在人类历史上扮演着重要角色。机动灵活和起落条件要求低等特点使直升机在现代社会得到广泛应用。 机载天线是飞机系统与其它系统进行电磁能量交换的转换设备,是飞机感知系统的一部分[1]。从广义角度而言,以载机为工作平台的天线均可称为机载天线。机载天线在现代飞行器上应用十分广泛,如飞机上的通信、导航、敌我识别、电子战、雷达等。机载天线的好坏决定着整个系统通信的质量,研究机载天线有着重要的意义[2]。 关于机载天线的研究的文献众多,从事相关研究的专家学者和科研院所也非常之多。但大部分研究都是基于固定翼飞机作为平台研究的,专门以直升机作为平台研究机载天线的文章较少。但固定翼飞机与直升机所处的通信环境及对天线的要求相似,可以进行类比研究。本文以机载天线的主要研究方向及发展情况为主结合直升机平台特点进行综述。 一、机载天线研究背景 1.1机载天线的国内外研究现状 近一个世纪以来,无线电通信技术发展迅速,天线作为无线电波的入口与出口,是一切无线系统中必不可少的组成部分。天线性能的好坏直接影响整个无线系统的性能。飞机作为一种高新科技集成的载体,飞机上通信设备的数量和种类都达到了前所未有的程度,并且现代社会对各种载人、载物飞行器的功能的要求越来越高。并且随着新一代飞机的飞行速度高度等的提高以及现代社会电磁环境的日益复杂,实现飞机通信的顺畅难度变大。这就对机载天线的性能提出来更高的要求。 飞机上有很多天线,如:各式各样的导航通信系统、着陆系统、测高雷达等系统的天线。机载天线按照工作频段分类,可以分为机载中波天线、机载短波天线、机载超短波(VHF/UHF)通信天线、飞机导航天线,还有机载共形微带天线及飞机通信用的自适应阵天线等。如图1.1所示,是一个典型军用飞机上具有多达70多副天线[3]。

各种天线概念解析螺旋天线是一种具有螺旋形状的天线它由导电

各种天线概念解析 是一种具有螺旋形状的天线。它由导电性能良好的金属螺旋线组成,通常用同轴线馈电,同轴线的心线和螺旋线的一端相连接,同轴线的外导体则和接地的金属网(或板)相连接。螺旋天线的辐射方向与螺旋线圆周长有关。当螺旋线的圆周长比一个波长小很多时,辐射最强的方向垂直于螺旋轴;当螺旋线圆周长为一个波长的数量级时,最强辐射出现在螺旋 旋轴方向上。 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 所谓机械天线,即指使用机械调整下倾角度的移动天线。 所谓电调天线,即指使用电子调整下倾角度的移动天线。 移动基站BTS用的一种收发天线.也就是收发到用户(手机)的天线。 在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状 天线等。

是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。其结构如图4所示,它的终端可以开路,也可以接有电阻,其电阻的大小等于天线的特性阻抗。V形天线具有单向性,最大发射方向在分角线方向的垂直平面内。它的缺点是效率低、占地面积大。 介质天线是一根用低损耗高频介质材料(一般用聚苯乙烯)作成的圆棒,它的一端用同轴线或波导馈电。图15所示的天线是用同轴线馈电的棒状介质天线。图中1是介质棒;2是同轴线的内导体的延伸部分,形成一个振子,用以激发电磁波;3是同轴线;4是金属套筒。套筒的作用除夹住介质棒外,更主要的是反射电磁波,从而保证由同轴线的内导体 激励电磁波,并向介质棒的自由端传播。 介质天线的优点是体积小,方向性尖锐;缺点是介质有损耗,因而效率不高。 在一块大的金属板上开一个或几个狭窄的槽,用同轴线或波导馈电,这样构成的天线叫做开槽天线,也称裂缝天线。为了得到单向辐射,金属板的后面制成空腔,开槽直接由波导馈电。开槽天线结构简单,没有凸出部分,因此特别适合在高速飞机上使用。它的缺点 是调谐困难。 由喇叭及装在喇叭口径上的透镜组成,故称为喇叭透镜天线。透镜的原理参见透镜天线,这种天线具有相当宽的工作频带,而且比抛物面天线具有更高的防护度,它在波道数较多 的微波干线通信中用得很广泛。\ 待续 我也来说两句查看全部评论相关评论

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

手机双频天线设计论文综述

通信工程专业实训 题目:手机内置天线的设计 专业:通信2班 学号:1167119226 姓名:李盼 指导老师:杜永兴 分数:_________________

目录 摘要: 关键字: 第一章:背景介绍 第二章:实训过程记录第三章:实训结论 第四章:实训总结 第五章:参考文献

摘要:现在的电子通讯技术飞速发展,随着技术可经济的推进,人们对手机的要求越来越高,然而手机的基本功能就是打电话,而对手机的内置天线要求就更高难度更大,小型化,并且能工作在不同的频段下,文中主要研究双频手机PIFA天线。采用了开槽的的设计方法实现了天线的双频,工作性能良好,易于实现,现在大多数手机都使用这种天线。 关键字:PIFA天线,双频,GSM,DCS,HFSS 第一章:背景介绍 1.1 移动通信对手机天线的要求 天线最主要的功能在于转换两种不同传播介质中的电磁波能量。在能量转换的过程中,会出现收发信机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发信机、天线以及传播介质之间形成一个连续的能量传输路径。 移动通信手机对天线的要求: 外在要求: 天线尺寸小,重量轻,剖面低,携带方便,机械强度好 电性能要求: 水平面要求有全向辐射方向图,频带宽,效率高,增益高,受周围环境影响小,对人体辐射伤害小 1.2 手机天线的指标意义 天线输入阻抗: 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。这一数值对天线的辐射效率,天线的带内增益波动,天线前端的功率容量有很大的影响。手机天线是一种驻波天线,,天线的阻抗不匹配,将导致大量的信号反射,使天线的辐射效率降低,同时由于反射的影响使得天线在宽频带内的增益有抖动,如果天线的驻波为6,手机前端的击穿电压将降为原来的1/6,而功率容量就会下降。 手机天线驻波对天线效率的影响不可不慎。 天线的驻波要求,我们目前统一要求为小于3。

FPC类天线设计要求(天珑资料)

F P C类天线设计要求 综述:FPC类天线最主要的问题是:1.起翘问题2.成本问题3.生产操作问题4.断裂问题 §1FPC类天线主要的结构组装方式 一.FPC+支架 FPC直接粘贴在支架表面,金手指一般设计到支架底面,在PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指,天线(支架加FPC)固定在PCB上,或者PCB固定在下图右图的支架中间。 二.FPC+机壳 FPC直接粘贴在机壳表面,金手指部分穿过机壳预留的间隙,延伸到机壳另一面,PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指。 此类天线特殊要求: a所有的转角都至少金手指所粘贴部位不能有顶针. c不能打脱模剂,做好不使用自带脱模剂的材料. 2.如果机壳表面有喷油工艺,则FPC的粘胶面尽量远离喷油面的边缘,喷油区常有飞油导致FPC粘帖不良. §2FPC类天线塑胶部件设计技术要求 一.贴FPC的塑胶件表面要设计得尽量平缓,避免R值1mm--4mm之间的小圆弧面,大于5mm的圆弧尽量改为斜平面组合模拟大圆弧,其中每个斜平面的宽度尽量大于等于4mm。 二.在塑胶件表面的合适位置设计加一些定位柱或热熔柱,以帮忙FPC粘贴时的定位和预防FPC的起翘,每个平面上的定位柱不得超过2个。柱子为直径高。如设计为热熔柱,则柱子为直径,高。 三.塑胶件开模时要求在贴FPC的表面顶针印痕和和其他印痕,断差应控制在以内,以免表面起台阶和披峰导致FPC起翘起皱,同时表面抛光处理或DVI-27或花纹,以便FPC跟塑胶件粘贴更牢固. 四.金手指部位所贴的面为一个平面,并且不准在此平面设置顶针,尽量为光面或细火花纹,必须 实心,不准为中空的结构. 五.FPC所要贴到的面都要求有圆角,一般以上(不超过,特殊部位以上(不超过,不能为尖角. 如下图紫色位置是准备贴FPC的部位,红色位置是要求到圆角的位置。 六.机壳上的缝隙设计要求其长度和宽度要能穿过相应FPC金手指的长度和宽度(根据金手指尺寸而定,两者相差单边以上). 七.塑胶件在注塑生产时,要求不能打脱模剂,同时在图纸中注明. 八.塑胶件(支架和机壳)生产可选用ABS和普通PC或是PC+ABS等原材料,但避免选用PC141R和PC241R等型号原材料,因为此类带”R”型号的原材料本身带脱模剂. §3FPC的设计技术要求和选材参考 一.普通FPC的结构 普通的单面板FPC由以下5层材料构成: 背胶+基材+AD+铺铜+油墨 背胶厚度一般为, 基材厚度(普通Pi和PET基材为,Pi半对半基材为 AD厚度一般为. 铜箔的厚度一般为. 油墨的厚度一般为和. 所以普通的单面板FPC的总厚度在左右. 二、FPC基材的选材 基材: 这种基材耐高温,可焊接,能制作双面板或是多面板的FPC,可用于须制作双面板或多面板的FPC天线项目中,也可以用于FPC金手指需要焊接的项目中. 根据Pi基材的厚度可分为Pi半对半基材(T=和Pi一对半基材(T=25um)等, Pi半对半基材是目前较薄且较柔软的一种基材,这种基材贴服性好,可用于弯折面多,圆弧面陡峭的天线项目中.背胶基层胶层AD铜箔油墨镀镍层镀金层基材.

等角螺旋天线

等角螺旋天线仿真分析 Abstract:本文基于等角螺旋天线的基本原理,利用电磁让真软件HFSS构建并仿真分析了一个基本的等角螺旋天线。通过仿真结果,得到了一个频带为442MHz~929MHz,频带内S参数小于-10dB的天线,并分别给出450MHz,670MHz,900MHz处的E、H面方向图。关于结果的分析也列于最后。 1.引言 螺旋天线属于非频变天线,具有可观的带宽比,通常都具有圆极化特性,半功率带宽一般约为70°~90°。由于螺旋天线具有体积小,宽带宽的特性,因而广泛应用于国防,遥感等方面。螺旋天线阵列还用于1~18GHz的军用飞行器方面。 2.天线设计 本文仿真的等角螺旋天线如图1所示,可由4个公式表示定义每个支臂的内外半径 r1=r0e aφ(1) r2=r0e a(φ-δ)(2) r2=r0e a(φ-π)(3) r2=r0e a(φ-π-δ)(4) 式中r0为φ=0时的矢径,a为一个常数,用于控制螺旋的张率。用式(1)可以建立起图1所示的平面等角螺旋天线。当δ=π/2时,图1所示的结构是自补的,在这种情况下,方向图对称性最好。 自补天线有如下特性: Z金属=Z空气=η/2=188.5Ω(5) 这就要求在HFSS中仿真的时候馈电对口阻抗大致设为188.5Ω。 等角螺旋天线工作频带的上限f u 由亏点结构决定,最小半径r0在馈电区的周长2πr0=λu=c/f u。当然,螺旋在该店终止,连接到馈电传输线。下限频率通过天线整体半径R来限制,使其约为f L的1/4波长。 实验发现半圈到三圈的螺旋对参数a和δ相对来说不敏感。一圈半的螺旋约为最佳。 本文利用HFSS构建模型,并进行仿真分析。构建的模型如图2所示。仿真的天线最终选定参数如下:r0=27.5cm,a=0.27,n=0.92。 图1 平面等角螺旋天线几何模型 图2 等角螺旋天线(a)斜视图(b)顶视图(c)侧 视图 3.仿真分析 3.1 S参数 图3所示为S 参数仿真结果,由

螺旋天线设计

天线 ――螺旋天线物理尺寸对天线效率的影响 一、天线概览 绝大多数天线具有可逆性:即天线用作接收天线时的特性与其处于发射状态时的特性时相同的。 辐射方向图:表示给定距离下天线的辐射随角度的变化,辐射的强弱由离天线给定距离r处的功率密度S来评价。接收模式下,天线对于某方向来波的响应正比于辐射方向图上该方向的值。 方向系数:表示最大辐射强度于全空间均匀辐射时的平均辐射强度之比。 极化:描述了天线辐射时电场矢量的特征,瞬时电场矢量随时间的轨迹图决定波动的极化特性。 天线的输入阻抗:是天线终端电压与电流之比,通常的目的是使天线的输入阻抗与传输线的特征阻抗相匹配。 §天线分类 依据频率特性的不同,可以把天线分成四种基本类型。 ◎电小天线:天线的尺寸比一个波长l小很多。特征:很弱的方向性,低输入电阻,高输入电抗,低辐射效率。适合于VHF或更低的波段。如短振子,小环。 ◎谐振天线:在谐振频率点或某个窄频带内工作令人满意。特征:低或中等增益,实输入阻抗,带宽狭窄。主要用于HF到低于1GHz的频段。如半波振子,微带贴片,八木天线。 ◎宽带天线:在一个很宽的频率范围内,方向图、增益和阻抗几乎是常数,并且能够用有效辐射区的概念表述其特征,该区域在天线上的位置随频率的变化而变化。特征:低到中等增益,增益恒定,实输入阻抗,工作频带宽。主要用于VHF直至数个GHz的频段。如螺线天线,对数周期天线。 ◎口径天线:由一个供电磁波通过的开放的物理口径。特征:高增益,增益随频率增大,带宽中等。用于UHF和更高的频段。如喇叭天线,反射面天线。 §天线的电气特性 (1)方向特性――方向图(BW0.5,FSLL)、方向系数D、增益G。 (2)阻抗特性――输入阻抗Zin、效率 2 640 r h R l 骣 ÷ ? ?÷ ?÷ ?桫 A h,(辐射阻抗Z S) (3)带宽特性――带宽、上限频率f1,下限频率f2。(4)极化特性――极化、极化隔离度。

天线近场测量的综述

天线近场测量的综述

内部☆ 天线近场测量的综述 An OutIine of Near Field Antenna Measurement 一引言 天线工程一问世.天线测量就是人们一直关注的重要课题之一,方法的精确与否直接关系到与之配套系统的实用与否。随着通讯设备不断更新,对天线的要求愈来愈高,常规远场测量天线的方法由于实施中存在着许多困难,有时甚至无能为力,于是人们就渴望通过测量天线的源场而计算出其辐射场的方法。然而由于探头不够理想和计算公式的过多近似,致使这种方法未能赋于实用。为了减小探头与被测天线间的相互影响,Barrett等人在50年代采用了离开天线口面几个波长来测量其波前的幅相特性,实验结果令人大为振奋,由此掀开了近场测量研究的序幕,这一技术的出现,解决了天线工程急待解决而未能解决的许多问题,从而使天线测量手段以新的面目出现在世人的面前。 四十多年过去了,近场测量技术已由理论研究进入了应用研究阶段,并由频域延拓到了时域,它不仅能够测量天线的辐射特性,而且能够诊断天线口径分布,为设计提供可靠、准确设计依据;与此同时,人们利用它进行了目标散射特性的研究,即隐身技术和反隐身技术的研究,从而使该技术的研究有了新的研究手段,进而使此项研究进入了用近场测量的方法对目标成像技术的探索阶段。 二、近场测量技术发展的过程 近场测量的技术研究从五十年代发展至今,其研究方向大致经历四个阶段,如表1所示。 表1 近场测量技术所经历的时间

各个时期的研究内容可概述为以下几个方面 1.理论研究 在Barrett等人的实验之后,Richnlond等人用空气和介质填充的开口波导分别测量了微波天线的近场,并把由近场测量所计算得到的方向图与直接远场法测得的结果相比较,其方向图在主瓣和第一副瓣吻合较好,远副瓣和远场法相差较大。于是人们就分析其原因,最终归结为探头是非理想起点源所致,因此,出现了各种方法的探头修正理论。直到1963年Karns等人提出了平面波分析理论才从理论上严格地解决了非点源探头修正的问题。与此同时,Paris和Leach等人用罗仑兹互易定理也推出了含有探头修正的平面波与柱面波展开表达式[1,2]。Joy 等人也给出了含有探头修正下的球面波展开式及其应用[3 ]。至此,频域近场测量模式展开理论已完全成熟,因此研究者的目光投向了应用领域。在随后的十年里,美国标准局(NBS)等研究机构进行大量的实验证明此方法的准确性[4],其中取样间隔、探头型式的选择以及误差分析是研究者们关心的热门问题。 2.取样间隔及取样间距 由于模式展开理论是建立在付里叶变换的基础上,根据付里叶变换中抽样定理[5],对带宽有限的函数。用求和代替积分,用增量代替积分元不引人计算误差,而平面、柱面、球面的模式展开式对辐射场而言都是带宽有限的函数,忽略探头与被测天线间的电抗耦合(取样间距选取的准则),取样间隔与取样间距按表2所示的准则进行选取(参看图1坐标系)。 表2 取样间隔与取样问距的准则 表中:λ—工作波长;d—探头距被测天线口径面的距离;a—完全包围教测天

智能天线综述

文章编号:1006-7043(2000)06-0051-06 智能天线综述 肖炜丹,楼 吉吉,张 曙 (哈尔滨工程大学电子工程系,黑龙江哈尔滨150001) 摘 要:智能天线技术作为ITM -2000(International Mobile Telephone -2000,2000年全球移动电话)的核心技术之一,受到国内外移动通信业的高度重视.本文对智能天线的基本概念、基本原理和国内外研究现状等进行了综合论述,并讨论了其相关技术及应用和发展前景,最后对智能天线技术研究中的难点和应注意的问题发表了看法.① 关 键 词:智能天线;软件无线电;移动通信;ITM -2000;第二代移动通信系统;第三代移动通信系统中图分类号:TN911.25 文献标识码:A Summ arization of Sm art Antennas XIAO Wei-dan ,LOU Zhe ,ZAN G Shu (Dept.of Electronic Eng.,Harbin Engineering University ,Harbin 150001,China ) Abstract :Great attention is paid to the application of smart antennas by mobile communication trade both here and abroad as one of the key techniques for ITM -2000(International Mobile Telephone -2000).The paper presented basic concepts and principles of the smart antennas ,including its research situation at home and abroad ,and then discussed correlated technologies and potential applications.Finally ,the authors ’opinions were presented about the difficulties and the problems that should be considered in the research of smart antennas. K ey w ords :smart antenna ;software radio ;mobile communication ;ITM -2000;2G;3G 近年来全球通信事业飞速发展,通信业务的需求量越来越大,特别是第三代移动通信等新概念的出现,对通信技术提出了更高的要求.第三代移动通信系统的理想目标是有极大的通信容量,有极好的通信质量,有极高的频带利用率.在复杂的移动通信环境和频带资源受限的条件下达到这一目标,主要受3个因素的限制:1)多径衰落;2)时延扩展;3)多址干扰.为克服这些限制,仅仅采用目前的数字通信技术是远远不够的.近几年开始研究的移动通信的智能技术,即智能移动通信技术,包括智能天线、智能传输、智能接收和智能 化通信协议等,为克服和减轻这些限制,达到或接近第三代移动通信系统的理想目的,提供了最有力的技术支持,已成为第三代移动通信系统最重要的技术保证.而其中的智能天线技术以其独特的抗多址干扰和扩容能力,不仅是目前解决个人通信多址干扰、容量限制等问题的最有效的手段,也被公认为是未来移动通信的一种发展趋势,成为第三代移动通信系统的核心技术.为便于广大通信爱好者能够对智能天线技术有所了解,本文将从智能天线的概念、原理、相关技术及其应用做一简要介绍. ①收稿日期:2000-06-01;修订日期:2000-11-15 作者简介:肖炜丹(1975-),男,黑龙江哈尔滨人,哈尔滨工程大学电子工程系硕士研究生,主要研究方向:通信与信息系统. 第21卷第6期 哈 尔 滨 工 程 大 学 学 报 Vol.21,№.62000年12月 Journal of Harbin Engineering University Dec.,2000

阿基米德螺旋天线

阿基米德螺旋天线小型化研究 电子与信息技术研究院:田塽指导教师:宋朝晖 摘要:本论文介绍的是利用一种特殊的曲折臂方法对阿基米德螺旋天线进行小型化,并且通过在天线的末端加载一个圆环来改善天线的圆极化特性。首先利用CST Microwave-studio软件对设计的小型化天线及超宽带馈电巴伦(balun)进行计算机仿真;之后,根据仿真结果,加工最佳结构的天线与巴伦,并进行了测量。测量结果表明本课题对天线小型化的整体分析与设计是合理、有效的。 关键词:阿基米德螺旋天线;超宽带巴伦;天线小型化 Abstract:This paper introduces a special zigzag-arm method for the miniaturization of the conventional Archimedean spiral antenna and improves the circular polarization characteristic of the miniaturization Archimedean spiral antenna by adding a loop on the back of printed circuit board which the antenna in etched on. Firstly, a great deal of simulation of the miniaturization antenna and balun is made using CST(Microwave-studio)software. Then, according to the simulated results, we process the embodiment with the optimum parameters and test it. The experimental results verify the effectiveness of this antenna design. Key words:Archimedean spiral antenna ultra wide-band balun antenna miniaturization 1引言 阿基米德螺旋:一动点沿一直线作等速移动的同时,该直线又绕线上一点O作等角速度旋转时,动点所走的轨迹就是阿基米德涡线。直线旋转一周时,动点在直线上移动的距离称为导程用字母S表示。 超宽带(Ultra Wide Band, UWB)天线技术是超宽带雷达和导弹制导系统中的关键技术之一。应用超宽带天线制导的导弹将具有很强的信号接收能力和抗干扰能力,从而可以达到精确制导的军事目的。因此,发展超宽带天线技术具有极其重要的军事意义和现实意义。阿基米德平面螺旋天线,作为超宽带天线的一种形式,可以做得尺寸很小,也较轻,而且可以齐平安装,属于低轮廓天线,因此在最近的二十多年里,阿基米德平面螺旋天线得到了飞速的发展,不仅在雷达、导弹制导等军事领域得到广泛应用,同时也在民用领域发挥巨大作用,如它可以同时为GSM系统和卫星通讯系统提供服务。本课题的研究和设计任务就是寻找一种能够使传统的阿基米德螺旋天线小型化的方法[1]。 2适合课题要求的天线及巴伦的设计 2.1 天线的设计 根据本设计的技术指标和实际要求,本文提出的设计思想是采用曲折臂的方法对阿基米德螺旋天线进行小型化设计。为了使小型化以后的天线的带宽、增益、轴比和半功率角宽度都能达到设计指标,要经过各种天线模型与天线参数的调整,再通过CST软件进行计算机仿真,根据合适的结果进行实际的设计、制作和测试。 首先利用CST仿真软件建模并仿真了传统的阿基米德螺旋天线,天线结构如图2-1所示。由于本课题所要设计的天线的工作频率范围为0.8GHz—4GHz,由此得外径R =75mm,内径r =9.375mm。经过对大量小型化天线模型的仿真,最后选择了如图2-2所示的曲折臂阿基米德螺旋天线的结构(其中黑色为金属良导体,即天线臂;蓝色为聚四氟乙烯敷铜板,厚2.5mm,介电常数2.32)。小型化

电磁波之天线综述报告徐进

Hefei University 论文题目:电磁场与电磁波课程综述之天线学科专业:__ 11级通信 作者姓名:________徐进 ________ 号: 1105021042 授课教师:_________李翠花

二、天线的分类 ①按工作性质可分为发射天线和接收天 线。 ②按用途可分为通信天线、广播天线、电 视天线、雷达天线等。 ③按工作波长可分为超长波天线、长波天 线、中波天线、短波天线、超短波天线、 微波天线等。图2 ④按结构形式和工作原理可分为线天线和面天线等。描述天线的特性参量有方向图、方向性系数、增益、输入阻抗、辐射效率、极化和频 天线按维数来分可以分成两种类型: 一维天线和二维天线:一维天线由许多电线组成,这些电线或者像手机上用到的直线,或者是一些灵巧的形状,就像出现电缆之前在电视机上使用的老兔子耳朵。单极和双级天线是两种最基本的一维天线。 二维天线变化多样,有片状(一块正方形金属)、阵列状(组织好的二维模式的一束片),还有喇叭状,碟状。 天线根据使用场合的不同可以分为: 手持台天线、车载天线、基地天线三大类。 手持台天线就是个人使用手持对讲机的天线,常见的有橡胶天线和拉杆天线两大类。 车载天线是指原设计安装在车辆上通讯天线,最常见应用最普遍的是吸盘天线。车载天线结构上也有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线。 基地台天线在整个通讯系统中具有非常关键的作用,尤其是作为通讯枢纽的通信台站。常用的基地台天线有玻璃钢高增益天线、四环阵天线(八环阵天线)、定向天线。

三、天线参数 影响天线性能的临界参数有很多,通常在天线设计过程中可以进行调整,如谐振频率、阻抗、增益、孔径或辐射方向图、极化、效率和带宽等。另外,发射天线还有最大额定功率,而接收天线则有噪声抑制参数。 3.1谐振频率 “谐振频率”和“电谐振”与天线的电长度相关。电长度通常是电线物理长度除以自由空间中波传输速度与电线中速度之比。天线的电长度通常由波长来表示。天线一般在某一频率调谐,并在此谐振频率为中心的一段频带上有效。但其它天线参数(尤其是辐射方向图和阻抗)随频率而变,所以天线的谐振频率可能仅与这些更重要参数的中心频率相近。 天线可以在与目标波长成分数关系的长度所对应的频率下谐振。一些天线设计有多个谐振频率,另一些则在很宽的频带上相对有效。最常见的宽带天线是对数周期天线,但它的增益相对于窄带天线则要小很多。 3.2增益 “增益”指天线最强辐射方向的天线辐射方向图强度与参考天线的强度之比取对数。如果参考天线是全向天线,增益的单位为dBi。比如,偶极子天线的增益为2.14dBi 。偶极子天线也常用作参考天线(这是由于完美全向参考天线无法制造),这种情况下天线的增益以dBd为单位。 天线增益是无源现象,天线并不增加激励,而是仅仅重新分配而使在某方向上比全向天线辐射更多的能量。如果天线在一些方向上增益为正,由于天线的能量守恒,它在其他方向上的增益则为负。因此,天线所能达到的增益要在天线的覆盖范围和它的增益之间达到平衡。比如,航天器上碟形天线的增益很大,但覆盖范围却很窄,所以它必须精确地指向地球;而广播发射天线由于需要向各个方向辐射,它的增益就很小。 碟形天线的增益与孔径(反射区)、天线反射面表面精度,以及发射/接收的频率成正比。通常来讲,孔径越大增益越大,频率越高增益也越大,但在较高频率下表面精度的误差会导致增益的极大降低。 “孔径”和“辐射方向图”与增益紧密相关。孔径是指在最高增益方向上的“波束”截面形

螺旋天线的分析

黄冈师范学院本科生毕业论文 题目:螺旋天线的分析 专业年级:电子信息工程(2008级)学号: 学生姓名: 指导教师: 论文完成日期2012 年 5 月

郑重声明 本人的毕业论文是在指导老师的指导下独立撰写并完成的。毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,如果有此现象发生,本人愿意承担由此产生的各种后果,直至法律责任;并可通过网络接受公众的查询。特此郑重声明。 毕业论文作者(签名): ______年月日

目录 摘要..................................................................................................................................I ABSTRACT . (Ⅱ) 1、绪论 (1) 1.1螺旋天线的发展历史 (1) 1.2螺旋天线发展前景 (2) 2、螺旋天线的原理 (3) 2.1相关背景与技术 (3) 2.1.1 相似原理 (3) 2.1.2 非频变原理 (4) 2.1.3 螺旋天线工作原理 (4) 2.2螺旋天线的技术指标 (5) 2.3螺旋天线原理和相关计算 (8) 2.3.1 平面阿基米德螺旋天线的基本形式 (8) 2.3.2 螺旋天线辐射原理 (9) 2.3.3 螺旋天线的藕合原理 (10) 3.1HFSS简要介绍 (13) 3.2天线建模、仿真及结果分析 (13) 3.2.1 螺旋天线HFSS仿真流程图 (13) 3.2.2 天线仿真的参数结果和分析 (14) 结束语 (20) 参考文献 (21) 致谢 (23)

天线近场测量技术综述

天线近场测量技术综述 天线测量技术天线工程一问世,天线侧量就是人们一直关注的重要课题之 一,方法的精确与否直接关系到与之配套系统的实用与否.随着通讯设备不断更 新,对天线的要求愈来愈高,常规远场测量天线的方法由于实施中存在着许多 困难,有时甚至无能为力,于是人们就渴望通过测量天线的源场而计算出其辐 射场的方法.然而由于探头不够理想和计算公式的过多近似,致使这种方法未能 赋于实用.为了减小探头与被测天线间的相互影响,Barrett等人在50年代采用 于离开天线口面几个波长来测量其波前的幅相特性,实验结果令人大为振奋, 由此掀开了近场侧量研究的序幕,这一技术的出现,解决了天线工程急待解决 而未能解决的许多问题,从而使天线测量手段以新的面目出现在世人的面前.四 十多年过去了,近场测量技术已由理论研究进人了应用研究阶段,并由频域延 拓到了时域,它不仅能够测量天线的辐射特性,而且能够诊断天线口径分布, 为设计提供可靠、准确设计依据;与此同时,人们利用它进行了目标散射特性的 研究,即隐身技术和反隐身技术的研究,从而使该技术的研究有了新的研究手 段,进而使此项研究进人了用近场测量的方法对目标成像技术的探索阶段. 近场测量技术在离开被测体3一5人(入为工作波长)距离上,用一个电特性 已知的探头在被测体近区某一平面或曲面上扫描抽样(按照取样定理进行抽样) 电磁场的幅度和相位数据,再经过严格的数学变换(快速傅立叶变换,FastFourierTransform,简写为FFT)计算出被测体远区场的电特性,这一技术称 之为近场测量技术。若被测体是辐射体(通常是天线),则称之为辐射近场测量(RadiationNearFieldMeasurement):当被测体是散射体时,则称之为散射近场测量(NearFieldSeatteringMeasurement)。对辐射近场测量而言,根据取样表面的不同,

螺旋天线的分析

螺旋天线的分析

黄冈师范学院本科生毕业论文 题目:螺旋天线的分析 专业年级:电子信息工程(2008级)学号: 学生姓名: 指导教师: 论文完成日期2012 年 5 月

郑重声明 本人的毕业论文是在指导老师的指导下独立撰写并完成的。毕业论文没有剽窃、抄袭、造假等违反学术道德、学术规范和侵权行为,如果有此现象发生,本人愿意承担由此产生的各种后果,直至法律责任;并可通过网络接受公众的查询。特此郑重声明。 毕业论文作者(签名): ______年月日

目录 摘要........................................................................ I ABSTRACT .. (Ⅱ) 1、绪论 (1) 1.1螺旋天线的发展历史 (1) 1.2螺旋天线发展前景 (2) 2、螺旋天线的原理 (3) 2.1相关背景与技术 (3) 2.1.1 相似原理 (3) 2.1.2 非频变原理 (3) 2.1.3 螺旋天线工作原理 (4) 2.2螺旋天线的技术指标 (5) 2.3螺旋天线原理和相关计算 (7) 2.3.1 平面阿基米德螺旋天线的基本形式.. 8 2.3.2 螺旋天线辐射原理 (9) 2.3.3 螺旋天线的藕合原理 (10) 3.1HFSS简要介绍 (13) 3.2天线建模、仿真及结果分析 (13) 3.2.1 螺旋天线HFSS仿真流程图 (13) 3.2.2 天线仿真的参数结果和分析 (14) 结束语 (20) 参考文献 (21) 致谢 (25)

螺旋天线的分析 专业:电信班级:作者:指导老师: 摘要 本文对螺旋天线的发展历史和前景作了简要介绍,并对螺旋天线的工作原理和分析方法作了概述,包括对天线进行分析的主要指标、计算公式,螺旋天线的各项参数。针对平面阿基米德螺旋天线进行了详细分析和论述;同时针对该工作在2.4GHZ的阿基米德螺旋天线实体用ansoft hfss13.0软件进行仿真,探究了阿基米德螺旋天线参数对方向图、增益宽度、阻抗宽度、轴比宽度的影响,并且对仿真后的输入功率、净输入功率、辐射功率、辐射效率、方向性系数、最大增益、前后向比等进行分析。 关键词:螺旋天线阿基米德螺旋天线 hfss仿真功率辐射增益

微波技术与天线八木天线设计综述

课设报告 课程名称:微波技术与天线 课设题目:八木天线的仿真设计课设地点: 专业班级: 学号: 学生姓名: 指导教师:

目录 1、设计摘要 2、设计原理 3、八木天线参数选择及设计要求 4、八木天线的HFSS10仿真 (1)建立模型 (2)确认设计 (3) S参数(反射参数) (4)2D辐射远区场方向图 (5)3D Polar 5、仿真结果分析 6、实验中的问题 7、心得体会

一、设计摘要 八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。 六元八木天线示意图 八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。主要作用是提高辐射能量。无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。 二、设计原理: 八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。 本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。 三、八木天线参数选择及设计要求 根据上述八木天线基本理论的介绍,我们可以知道引向器越多,方向越尖锐、增益越高,但实际上超过四、五个引向器之后,这种“好处”增加就不太明显了,而体积大、自重增加、对材料强度要求提高、成本加大等问题却渐突出。通常情况下有一副五单元八木(即有三个引向器,一个反射器和一个有源振子)就够用了。因此,我们选用了一个比较合适的参数范围,其参数如下: 其工作频率为

相关主题
文本预览
相关文档 最新文档