当前位置:文档之家› 基于压缩感知的水下稀疏传感网信息获取技术_刘功亮

基于压缩感知的水下稀疏传感网信息获取技术_刘功亮

基于压缩感知的水下稀疏传感网信息获取技术_刘功亮
基于压缩感知的水下稀疏传感网信息获取技术_刘功亮

压缩感知简介

2011.No31 0 3.2 熟悉结构施工图 结构施工图是关于承重构件的布置,使用的材料、形状、大小及内部构造的工程图样,是承重构件以及其他受力构件施工的依据。 看结构施工图最难的就是钢筋,要把结施图看懂就要知道钢筋的分布情况,现在都是在使用平法来标示钢筋,所以也要把平法弄懂才行。在识读与熟悉结施图的过程中应该充分结合钢筋平法表示的系列图集,搞清楚: a 各结构构件的钢筋的品种,规格,以及受力钢筋在各构件的布置情况。 b 箍筋与纵向受力钢筋的位置关系。 c 各个构件纵向钢筋以及箍筋弯钩的角度及其长度。 d 熟悉各构件节点的钢筋的锚固长度。 e 熟悉各个构件钢筋的连接方式。 f 熟悉在钢筋的搭接区域内,钢筋的搭接长度。 g 核算钢筋的间距是否满足施工要求,尤其是各个构件节点处的钢筋间距。 h 弯起钢筋的弯折角度以及离连接点的距离。 除此以外,对于钢筋混凝土构件,还应该熟悉各个构件的砼保护层厚度,各个构件的尺寸大小、布置位置等。特别注意的是对于结施图的阅读应充分结合建施图进行。 4 结束语 在熟悉施工图纸的过程中,施工技术人员对于施工图纸中的疑问,和比较好的建议应该做好记录,为后续工作(图纸自审和会审)做好准备。 参考文献 [1]《建筑识图》周坚主编 中国电力出版社 2007年;[2]《建筑工程项目管理》银花主编 机械工业出版社 2010年; 摘 要 压缩感知(Compressive Sensing, CS)理论是一个充分利用信号稀疏性或可压缩性的全新信号采集、编解码理论。本文系一文献综述,主要介绍了压缩感知的三部分即信号的稀疏表示、测量矩阵的设计、信号恢复算法的设计。 关键词 压缩感知 稀疏表示 测量矩阵 信号恢复算法 1 引言 1928年由美国电信工程师H.奈奎斯特(Nyquist)首先提出,1948年信息论的创始人C.E.香农(Shannon)又对其加以明确说明并正式作为定理引用的奈奎斯特采样定理,是采样带限信号过程所遵循的规律。它指出:在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息。一般实际应用中保证采样频率为信号最高频率的5~10倍。该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等。随着科技的发展,成为目前信息领域进一步发展的主要瓶颈之一,主要表现在两个方面: (1)数据获取和处理方面。在许多实际应用中(例如超宽带信号处理、核磁共振、空间探测等),Nyquist采样硬件成本昂贵、获取效率低下,信息冗余及有效信息提取的效率低下,在某些情况甚至无法实现。 (2)数据存储和传输方面。通常的做法是先按照Nyquist方式获取数据,然后将获得的数据进行压缩,最后将压缩后的数据进行存储或传输,这样会造成很大程度的资源浪费。另外,为保证信息的安全传输,通常以某种方式对信号进行编码,这给信息的安全传输和接收带来一定程度的麻烦。 近年来,由D .D o n o h o (美国科学院院士)、E . Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者,2008年被评为世界上最聪明的科学家)等人提出了一种新的信息获取指导理论,即压缩感知(Compressive Sensing(CS),或称Compressed Sensing、Compressed Sampling)。该理论指出:对可压缩的信号通过远低于Nyquist标准的方式进行数据采样,仍能够精确地恢复出原压缩感知简介 刘太明1 黄 虎2 (1、成都理工大学,四川成都,610059;2、成都理工大学,四川成都,610059) 始信号。该理论一提出,就在信息论、信号/图像处理、医疗成像、模式识别、地质勘探、光学/雷达成像、无线通信等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。 2 CS基本原理 信号x∈R n×1压缩传感的测量过程可以表示为y=Ax∈R M×1,M<

水下传感器网络的应用和挑战研究

大连理工大学本科外文翻译水下传感器网络的应用和挑战研究 Research Challenges and Applications for Underwater Sensor Networking 学部(院):电子信息与电气工程学部 专业:电子信息工程 学生姓名:张毅男 学号:201081335 指导教师:殷福亮 完成日期:

水下传感器网络的应用和挑战研究 Research Challenges and Applications for Underwater Sensor Networking 信息科学研讨会南加利福尼亚大学 摘要:(原文中如果无摘要,此内容不写) 要求忠于原文,语意流畅。 关键词: (黑体、小四) (此处空一行) 每段落首行缩进2个汉字;或者手动设置成每段落首行缩进2个汉字,字体:宋体,字号:小四,行距:多倍行距 1.25,间距:段前、段后均为0行,取消网格对齐选项。 图、表、公式如果不加入到译文中,则必须在相应位置空一行。标出图名、表名或公式编号。 参考文献:略(翻译到此为止,此行不省略)

摘要:这篇文章研究了水下传感器网络化的因应用和挑战。我们认为它在近海岸油田的地震监测,装备检测和水下机器人方面具有很大的潜在应用。我们把研究方向定位近程声学通讯,测量与控制,时间同步,声学网络的高时延定位协议,网络长时间持续睡眠,数据传输的应用权限。我们把初步研究放在短程声波通讯硬件上,并分析高时延时间同步的结果。 引言:传感器网络是科学,工业,政府等许多方面革新的保证。这种分布在目标周围能被感知的小型物理装置带来了观察和研究世界的新机会。例如对于微生物环境的监测,结构的追踪和工业的应用。今日传感器网络正在被安排应用在地面上,相比之下水下运行仍旧有许多限制。远程控制淹没经常被使用,但是活动和被使用硬件他们的部署是本质上临时的。一些广阔地区的数据收集结果已经有了保证,但是精确程度较低(数以百计的传感器覆盖着地球)甚至当地区性的方法也被考虑过,这些通常都是有线而且昂贵的。 陆上传感器网络科学获从无线的使用,组态设定,每个能源使用效率的最大值获得好处。他们分析了低成本节点(大概100美元)密集分布(大概100米以内)短程,多次反射通讯。相比之下,今日水下声学传感器网络典型的昂贵(10k 美元往上),稀疏的分布(很少节点间隔在千米),典型通讯经过长距离直达基站而不是互相通讯。我们通常探索如何把陆上传感器网络的有点移植到水下声学传感器网络上去。 水下传感器网络有许多潜在应用(在第三部分)在此作为代表性的应用,我们简单的考虑水下油田的地震成像。许多近海岸油田的地震监测任务是在表面上用一艘船拖着一队的地震波检测器。这种技术的花费很高,而地震调查很少能被发现,例如:每二到三年,相比之下,传感器网络节点花费很低而且能够长久的铺设在海底。这样的系统能够使得地震成像频繁的存储(也许几个月),也能够帮助资源勘探和油条开采。 为了实现水下应用我们可以从不间断的地表传感器研究借鉴到许多设计准则和工具。然而有一些挑战是从根本上不同的。第一,无线电波不适合水下通信。因为传输极端受限(微波通常传输50-100cm),而声学遥测对于水下通信来说是很有前途的,现成的声学模型并不适用于具有数以百计节点的水下传感器网络。他们的能量,范围和价格都是为稀疏的,长距离的昂贵的系统而设计的,而不是密集的便宜的传感器节点。第二点,从射频到声学的迁移,改变了物理通讯的速率,从声速(1.5×103m/s)到光速(3×108m/s)——相差五个数量级之多。然而对于短程射频通信传播时延是可以忽略的,在水下通信这是一个重要的事实,这在定位和时间同步上有重要的意义。最后:对于能量的利用水下传感器和陆上传感器是不同的因为传感器会更大而且一些重要的应用会需要大量数据但却很稀少(一周一次或更少)。 因而我们把重点放在这三个方面:硬件,声学传感器网络节点(第四部分),协议,水下传感器网络自我分析,物理层协议设计,时间同步和定位(第五部分)主要运行,能量感知数据储藏和推荐(第五部分)。我们相信低成本能量消耗低的声学模型是可行的,我们将目光聚焦在短程通讯将会避开许多长距离通讯的问题。多路存取的发展和实验容忍协议在完成密集网络是必须的。低成本循环运行和一体化的应用能够成功对抗高时延和带宽受限。 第二部分系统结构 在描述明确的应用前,我们简单的回顾一下我们为水下传感器网络预测的传统结构。 图1是对于我们最近的实验设计我做了一个图。我们预见那种能使传感器具有更大资源的布局。

基于压缩感知的雷达成像

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程报告 课程名称:现代信号处理专题论文题目:基于压缩感知的雷达成像院系:电信学院 班级:电子一班 设计者:刘玉鑫 学号:13S005061 指导教师:张云 时间:2014.06 哈尔滨工业大学

第一章压缩感知理论基本原理 1.1 压缩感知的基本知识 压缩感知理论的核心思想主要包括两点。第一个是信号的稀疏结构。传统的香农信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。 压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。 1.2 压缩感知的主要原理内容 总的说来,压缩感知方法的处理流程可简要描述为:基于待处理信号在某个基上的稀疏性或可压缩性,设计合理的测量矩阵,获得远小于信号维数但包含足够信号特征信息的采样,通过非线性优化算法重构信号。 在传统理论的指导下,信号X的编解码过程如图1-1所示。编码端首先获得X的N店采样值经变换后只保留其中K个最大的投影系数并对它们的幅度和位置编码,最后将编得的码值进行存储或者传输。 解压缩仅仅是编码过程的逆变换。实际上,采样得到的大部分数据都是不重要的,即K值很小,但由于奈奎斯特采样定理的限制,采样点数N可能会非常大,采样后的压缩是造成资源浪费的根本所在。

水下无线传感网

水下无线传感器网络 摘要:水下无线传感器网络是一种包括声、磁场、静电场等的物理网络,它在海洋数据采集、污染预测、远洋开采、海洋监测等方面取得了广泛的应用,将在未来的海军作战中发挥重要的优势。描述了水下无线传感器网络的研究现状,给出了几种典型的水下无线传感器网络的体系结构,并针对水下应用的特点,分析了水下无线传感器网络设计中面临的节点定位、传感器网络能量、目标定位等诸多难题,最后根据应用需求提出了水下无线传感器网络研究的重点。 关键词:水下无线传感器网络;能量;定位 1.引言 水下无线传感器网络是使用飞行器、潜艇或水面舰将大量的(数量从几百到几千个)廉价微型传感器节点随机布放到感兴趣水域,节点通过水声无线通信方式形成的一个多跳的自组织的网络系统,协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给接收者。近年来,水下无线传感器网络技术在国内外受到普遍关注,正在被广泛用于海洋数据采集,污染预测,远洋开采,海难避免,海洋监测等。 水下无线传感器网络具有传统传感器技术无法比拟的优点[1]:传感器网络是由密集型、成本低、随机分布的节点组成的,自组织性和容错能力使其不会因为某些节点在恶意攻击中的损坏而导致整个系统的崩溃;分布节点的多角度和多方位的信息融合可以提高数据收集效率并获得更准确的信息;传感网络使用与目标近距离的传感器节

点,从而提高了接收信号的信噪比,因此能提高系统的检测性能;节点中多种传感器的混合应用使搜集到的信息更加全面地反映目标的特征,有利于提高系统定位跟踪的性能;传感器网络扩展了系统的空间和时间的覆盖能力;借助于个别具有移动能力的节点对网络的拓扑结构的调整能力可以有效地消除探测区域内的阴影和盲点。因此,传感器网络能够应用于恶劣的战场环境。在军事领域,通过多传感器系统的密切协调,形成空-舰-陆基传感器构成的多传感器互补监视网络,对目标进行捕获、跟踪和识别。 水下无线传感器网络由于其应用环境的特殊性,要考虑海水盐度、压力、洋流运动、海洋生物、声波衰减等对传感器网络的影响,使水下无线传感器网络的设计比陆地无线传感器网络更难,对硬件的要求更高。 2 水下无线传感器网络的研究现状 由于水下无线传感器网络的巨大应用价值,它已经引起世界许多国家军事部门的极大关注。水下传感器网络技术的发展甚至影响到海军军事战略的变革。由于水下传感器网络技术的发展,未来的海战可充分发挥近海空间优势。 最早开展水下无线传感器网络研究的国家是美国,早在上世纪50 年代,美国就在大西洋和太平洋中耗巨资建设庞大的水声监视系统(SOSUS)。近几年美国水下无线传感器网络的较大的项目有:1999~2004 年美国海军研究办公室的SeaWeb 计划;2004 年哈佛大学启动的CodeBlue 平台研究计划;坛上,披露了“近海水下持续监

基于压缩感知的DOA估计程序

程序可运行,有图有真相,MATLAB得事先装好cvx优化包。 clc; clear; close; lambda=1; d=lambda/2; %阵元间距离,取为入射波长的一半 K=500; %采样快拍数 theta=[-5 10]; %入射角度 SignalNum=length(theta); %入射信号数量 Nnum=5; %%阵列阵元数量 SNR1=-10; %%信噪比 Aratio=sqrt(10^(SNR1/10)); %信号幅度与噪声幅度比值,并假设信号幅度为1 Fs=5*10^3; %信号频率 Fc=[2*10^3,5*10^3,8*10^3]; %入射信号频率 fs=20*10^3; thetatest=(-90*pi/180:1*pi/180:90*pi/180); %theta角度搜索范围 thetanum=length(thetatest); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算信号协方差矩阵%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T_Vector=(1:K)/fs; A=zeros(Nnum,SignalNum); SignalVector=zeros(SignalNum,K); %NoiseVector=zeros(Nnum,K); Xt=zeros(Nnum,K); %%构造A矩阵 for k2=1:SignalNum for k1=1:Nnum %1:12 At(k1)=exp(j*(k1-1)*2*pi*d*sin(theta(k2)*pi/180)/lambda); A(k1,k2)=At(k1); end end %%%构造信号矩阵和噪声矩阵 for k1=1:SignalNum SignalVector(k1,:)=exp(j*2*pi*Fc(k1).*T_Vector); %信号 end Xtt=A*SignalVector;

【2015-12】水下传感器网络综述

1水声通信 由于声音(Acoustic)在水中的衰减低,声波通信成为在水下环境中最通用和应用最广泛的技术,尤其是在热稳定的深水区域。声波通信的主要限制因素是浅水区域中的温度梯度差异、海面噪声和反射折射引起的多径传播;次要的限制因素是水中声速(约为1500米/秒)慢,也限制了其通信效率。所以,水声通信受到严重的带宽限制和干扰限制,难以实现短距离、高带宽通信。综观整个水声通信的发展历程,就是不断地与这些干扰相抗争的过程。例如:根据不同的干扰特点,选择抗干扰能力强的编(解)码方法和调制方式;采用各种抑制干扰的技术;采用分集的办法来抵抗衰落;采用均衡技术抵消信道缺陷引起的畸变;采用自适应技术来适应信道特性的变化以及增加功率等。水声通信在几KHz到几十KHz的带宽下,可以实现1-2000公里距离的通信,在小于1公里范围的短距离通信中,水声通信在几十KHz带宽下,数据传输速率可达100kbps,带宽效率可达几个bits/sec/Hz。 2水下无线通信网络安全关键技术研究 研制低成本、高能效、高可靠性、高安全性的水下无线通信网络对于海洋环境监控、海洋资源开发等研究领域具有重要的理论意义和经济价值。由于受自身特性限制和水声通信环境制约,水下无线通信网络面临各种威胁和攻击,然而现有的水下通信研究多以节省能耗、延长网络寿命为出发点,忽视了潜在的安全问题。因此,研究现有水下无线通信技术存在的安全隐患,针对其面临的安全威胁和安全需求,设计适用于水下无线通信网络的安全技术和安全体系,具有重要的意义。本文对水下无线通信网络的若干安全关键技术进行了研究,并提出了一种适用于水下无线通信网络的安全体系。 无线传感器网络(Wireless Sensor Networks, WSN)最早可以追溯到20 世纪末,它以其低成本、低能耗、自组织和分布式的特点为网络带来了一场信息感知的变革。无线传感器网络在城市管理、环境监测、军事国防、生物医疗等领域都表现出了很好的应用前景。在国际上它被认为是继互联网之后的第二大网络,被评为对人类未来生活产生深远影响的十大新兴技术之首。无线传感器网络具有规模大、自组织、动态性、鲁棒性、应用相关、以数据为中心等特性,能更真实有效的获取客观的物理信息,并将其与现代传输网络紧密结合在一起,因此不断受到越来越多国家学术界和工业界的高度重视和密切关注。 海洋以其70%的地球覆盖率逐渐受到世界各国的重视,海洋的开发与发展被认为是人类生存和不断发展的必经之路。随着无线传感器网络的发展成熟以及各国对海洋权益的日益重视,水下传感器网络以其低成本、高可靠特征逐渐受到世界各国学术界的关注,成为21 世纪一个新的研究热点。水下传感器网络通过部署在指定海域的具有自组织能力的传感器节点获取所需的各种海洋监测信息,然后对其进行一定的处理之后传输给基站,最后经由卫星送达用户。水下传感器网络的应用涵盖多个领域,包括水下开发、灾难预警、水下环境监测、数据收集、辅助导航、海底军事等。 水下传感器网络部署在极为复杂的水下环境中,而无线电波在海水中的衰减十分严重,因此以声波作为信息载体的水声通信成为水下传感器网络的主要通信方式。这也使得水下传感器网络具备许多不同于陆上传感器网络的特性。首先,大多数陆上传感器节点都是静止不动的,而水下传感器节点则随着海水的运动不断移动,通常一个传感器节点每秒随水流移动2-3米;其次,水下传感器节点与陆上传感器节点的能耗不同,一些重要的水下应用需要大量数据,这使得水下传感器节点的体积偏大,对于水下传感器来说电池的更换工作是很困难的,从海底取回节点耗时耗力;第三,水下信道带宽低、数据传输率低,尽管水声通信根据带宽和通信范围分为多个类别,但在短期内,其数据传输率在1km距离内很难超过40kb/s。这些都为水下传感器网络的研究和发展带来了新的挑战。

压缩感知理论综述(原创)

压缩感知理论综述 摘要:信号采样是模拟的物理世界通向数字的信息世界之必备手段。多年来,指导信号采样的理论基础一直是著名的Nyquist采样定理,但其产生的大量数据造成了存储空间的浪费。压缩感知(Compressed Sensing)提出一种新的采样理论,它能够以远低于Nyquist采样速率采样信号。本文详述了压缩感知的基本理论,着重介绍了信号稀疏变换、观测矩阵设计和重构算法三个方面的最新进展,并介绍了压缩感知的应用及仿真,举例说明基于压缩感知理论的编解码理论在一维信号、二维图像处理上的应用。 一、引言 Nyquist采样定理指出,采样速率达到信号带宽的两倍以上时,才能由采样信号精确重建原始信号。可见,带宽是Nyquist采样定理对采样的本质要求。然而随着人们对信息需求量的增加,携带信息的信号带宽越来越宽,以此为基础的信号处理框架要求的采样速率和处理速度也越来越高。解决这些压力常见的方案是信号压缩。但是,信号压缩实际上是一种资源浪费,因为大量的不重要的或者只是冗余信息在压缩过程中被丢弃。从这个意义而言,我们得到以下结论:带宽不能本质地表达信号的信息,基于信号带宽的Nyquist 采样机制是冗余的或者说是非信息的。 于是很自然地引出一个问题:能否利用其它变换空间描述信号,建立新的信号描述和处理的理论框架,使得在保证信息不损失的情况下,用远低于Nyquist采样定理要求的速率采样信号,同时又可以完全恢复信号。与信号带宽相比,稀疏性能够直观地而且相对本质地表达信号的信息。事实上,稀疏性在现代信号处理领域起着至关重要的作用。近年来基于信号稀疏性提出一种称为压缩感知或压缩采样的新兴采样理论,成功实现了信号的同时采样与压缩。 简单地说,压缩感知理论指出:只要信号是可压缩的或在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号,可以证明这样的投影包含了重构信号的足够信息。在该理论框架下,采样速率不再取决于信号的带宽,而在很大程度上取决于两个基本准则:稀疏性和非相干性,或者稀疏性和等距约束性。事实上,压缩感知理论的某些抽象结论源于Kashin创立的范函分析和逼近论,最近由Candes,Romberg,Tao和Donoho等人构造了具体的算法并且通过研究表明了这一理论的巨大应用前景。目前国内已经有科研单位的学者对其展开研究。如西安电子科技大学课题组基于该理论提出采用超低速率采样检测超宽带回波信号。 显然,在压缩感知理论中,图像/信号的采样和压缩同时以低速率进行,使传感器的采样和计算成本大大降低,而信号的恢复过程是一个优化计算的过程.因此,该理论指出了将模拟信号直接采样压缩为数字形式的有效途径。从理论上讲任何信号都具有可压缩性,只要能找到其相应的稀疏表示空间,就可以有效地进行压缩采样。 当前,压缩感知理论主要涉及三个核心问题: (1) 具有稀疏表示能力的过完备字典设计; (2) 满足非相干性或等距约束性准则的测量矩阵设计; (3) 快速鲁棒的信号重建算法设计。 压缩感知理论必将给信号采样方法带来一次新的革命。这一理论的引人之处还在于它对应用科学的许多领域具有重要的影响,如统计学、信息论、编码等。目前,学者们已经在模拟-信息采样、合成孔径雷达成像、遥感成像、核磁共振成像、深空探测成像、无线传感器网络、信源编码、人脸识别、语音识别、探地雷达成像等诸多领域对压缩感知展开了广泛的应用研究。Rice大学已经成功设计出了一种基于压缩感知的新型单像素相机,在实践中为取代传统相机迈出了实质性的一步。 本文围绕稀疏字典设计、测量矩阵设计、重建算法设计三个核心问题,综述了压缩感知理论以及与之相关的信号稀疏变换、观测矩阵设计、重构算法等一系列最新理论成果和应用研究,描述了国内外的研究进展。本文结构安排如下:第2 部分阐述了压缩感知的理论框架;第3 部分系统介绍了压缩感知的三个核心问题,即信号的稀疏表示、信号的观测矩阵、信号重构算法;第4 部分指出压缩感知有待解决的若干关键问题;第5 部分介绍了压缩感知的应用及仿真;第6部分对全文作了总结。

基于压缩感知的图像重构模型的设计

基于压缩感知的图像重构模型的设计 压缩感知打破了传统的奈奎斯特采样定律,可以用远小于奈奎斯特采样定律所要求的采样率从较少的测量值中高精度的重构出原始信号。文章利用MATLAB GUI对基于压缩感知理论的图像压缩重构模型进行设计,该模型界面友好,操作简单方便。 标签:压缩感知;小波变换;图像重构;模型设计 引言 压缩感知理论为信号采集带来了革命性的突破,在信号具有可压缩性或稀疏性的前提下,压缩感知理论能以远低于奈奎斯特频率的采样率对信号进行采样,通过数值最优化准确重构原始信号[1-4]。压缩感知理论是编解码思想的一个突破,减轻了信号采样、传输和存储遇到的巨大压力,是一种信息获取及处理的全新的理论框架。 本文将利用MATLAB GUI进行基于压缩感知理论的图像重构模型的设计,使模型使用者方便操作界面。MATLAB是Math Works公司用C语言开发的集编程、数据结构和图形用户界面于一身的广泛被大家使用并具备矩阵及科学计算功能的一款较完备的软件,在该软件平台下进行的仿真以及系统模型的设计,在界面和性能上面远远超过很多软件,其专业性更是使其在很多领域有广泛的应用,其中能快速的利用图形用户界面(GUI)方式进行程序设计,这给设计者带来了极大的便利[5]。 1 基于小波变换的压缩感知 本节通过对原始图像采用小波变换,从而获得稀疏的小波系数矩阵,并利用高斯随机测量矩阵对稀疏变换后的小波系数进行测量,得到M个测量值,再通过OMP算法重构小波变换域下的稀疏矩阵,最后通过稀疏逆变换就可以得到重构后的图像。 本节选取大小为256×256的图像X,采样率为0.5对图像进行变化重构。本文实验仿真所得的PSNR值均经过10次仿真测量求平均值所得。 2 模型设计的主要步骤 根据上述基于小波变换的压缩感知进行模型设计[6],主要步骤包括: (1)根据需求制定模型的重点功能,继而根据功能设计各个功能子模块。 (2)根据初始需求以及大致目标设计出最原始的软件界

基于压缩感知的电力监控系统研究

基于压缩感知的电力监控系统研究 摘要:随着经济和科技水平的快速发展,电力行业发展也十分快速。智能电网 的关键部分之一是构建低功耗、高效率的监控网络,该网络需要支持数以百万计 的智能电表或其它监控终端,其中,“最后一公里”成为制约当前智能电网发展的 首要问题。使用无线通讯技术以及由此衍生的无线传感器网络能够满足较少节点 的非实时数据采集和传输,然而当接入网络的智能电表或终端数量急剧增加、提 高系统实时性要求,则产生的大量数据及其通讯将导致较大的网络时延并降低网 络可靠性。在汇聚节点或区域基站采用压缩感知是解决该问题的有效方法之一, 与传统的数据压缩算法相比,压缩感知方法的稀疏矩阵的维数明显小于原始数据 矩阵维数,通过非线性重建算法能够获得比典型的线性回归方法更低的误差率。 压缩感知已被应用一些电力系统中,如文献[6]对智能电网中路由协议和质量问题 进行研究;在对智能电网文献综述中阐述了压缩感知在其中的应用发展情况;提 出基于压缩感知的小区电网数据监控方案。 关键词:智能电网;无线传感器网络;压缩感知 引言 随着社会经济的发展和科学技术的进步,电力企业得到了快速的发展,在电 力系统运行的过程中,由于电力系统的运行稳定性极易受到外界因素的影响,所 以为了避免电力系统运行故障的发生,我们需要给予电力监控系统网络安全监测 装置足够的重视,一定要能够确保电力系统安全、稳定的运行。电力行业的稳定 发展会直接影响到社会经济的发展速度,电力是现阶段社会工业生产建设中最主 要的能源,也是人们日常生活中最基础的能源,一旦电力系统的运行出现故障, 可能会给国家经济的增长以及人们的正常电力生活带来巨大的影响。 1电力监控系统特点分析 随着智能电网的建设和发展,电力监控系统在电网中得到了广泛的应用。电 力监控系统通过计算机技术对整个电网的运行状态进行实时监控和管理,为整个 电网的安全运行起到了保障作用。计算机技术和网络技术在电力监控系统中的应用,提高了电力监控系统的监控管理质量。在电力监控系统中,以太网技术实现 了电力监控系统的自动化和网络化。自动化装置和数字化电能表等智能电子设备 在电力监控系统中的应用,不仅建立了安全可靠的智能化电力监控系统,而且提 高了整个电力监控系统的自动化水平。中的很多设备都是由不同厂商制造,易出 现信息孤岛问题。MAS理论作为分布式人工智能技术,在电力监控系统中的应用,不仅解决了信息孤岛问题,而且实现了电力监控系统的自动化和智能化,并且在 电力监控系统的设计中得到了广泛应用。 2压缩感知系统测试 为了验证进一步验证系统及压缩感知模型的有效性,选取研究者所在大楼及 周边区域部署WSN测试系统,系统中包含了服务器(Host)、中继器(Router) 和传感器(Sensor)三类共7个设备节点构成典型的传感器网络测试环境。在该 测试模型中设定了两个具有路由功能的节点router1(R1)和router2(R2)它们 与测试终端构成两条基本待测通讯链路L1和L2,以及由R2R1H1所形成的路由中继链路L3L1;每个中继节点分别下辖2个传感器Sensor(S1~S4)。它们 分别使用传感器数据链路B1~B4向中继节点提交数据。各节点的温度传感器有高 低两种采样率,其中低速采样率为1h/次,高速采样率为6min/次;选取10月9 日这一天的天气温度作为对比测试样本,在小气候的作用下整体而言S1、S2获

基于压缩感知的人脸识别算法

龙源期刊网 https://www.doczj.com/doc/5c12148803.html, 基于压缩感知的人脸识别算法 作者:胡槟 来源:《科技探索》2013年第09期 中图分类号:TP391.41 文献标识码:A 文章编号:1007-0745(2013)09-0141-01 1 压缩感知介绍 过去的几十年间,各种传感系统获取数据的能力不断地增强,这就对系统的采集和处理能力提出了更高的要求。如果仍然采用传统的Nyquis T采样定理,就需要二倍于信号带宽的采 样率,这给采样硬件设备带来了极大的挑战。 压缩感知理论是由Donoho与Candes等人提出的一个新的理论框架,其在线性模型的基础上,核心是只要信号是稀疏的,低维信号就能很好的恢复到高维信号。 2 理论简介 传统的信息处理主要由采样、压缩、传输和解压缩四个部分组成。在这个传统过程中,采样率必须高于信号模拟信号中最高频率的二倍,随着图像数据的越来越大,这给采样设备提出了更高的要求。传统的信号压缩是通过对信号进行一些变换(如:小波变换、离散余弦变换),然后剔除掉变换后为零或近似为零的数据,通过对少数绝对这大的新书进行压缩编码,从而实现大数据的压缩。在传统信号获取过程中,将采样和压缩分开,是否可以将压缩和采样过程合并呢?于是有人就尝试着将采样和压缩过程合并,这不仅能够大大缓解香农定理对于采样率和传输处理的要求,也能够大大提高数据采集的效率和性能。 2.1 信号稀疏表示 通常,大部分自然信号并不是稀疏的,但是通过实验发现大部分自然信号都可以通过某些映射变将其变换为稀疏的根据调和分析理论,一个一维离散信号f,可以通过一组标准正交基线性表出: 或(3.1) 其中,N为信号长度,为标准正交基,为正交基的第 i列的向量,系数矩阵。如果系数 矩阵x是稀疏的,那么原始信号f就是可稀疏表示的。如果说系数矩阵x为信号f的K稀疏表示,则向量x中只有K个非零分量。 2.2信号重构

压缩感知磁共振成像技术综述

https://www.doczj.com/doc/5c12148803.html, 压缩感知磁共振成像技术综述 王水花,张煜东 南京师范大学计算机科学与技术学院,江苏南京210023 【摘 要】目的:综述近年来压缩感知磁共振成像技术的研究进展。方法:磁共振成像是目前临床医学影像中最重 要的非侵入式检查方法之一,然而其成像速度较低,限制其发展。压缩感知是一种新的信号采集与获取理论,它利用信号在特定域上的稀疏性或可压缩性,可通过少量测量重建整个原始信号。压缩感知磁共振成像技术将压缩感知应用到磁共振成像中,可在相同的扫描时间内获得更精细的空间组织结构,也可在相同的空间分辨率下加速成像。结果:本文概述了压缩感知磁共振成像的理论基础,分别从稀疏变换、不相干欠采样、非线性重建三个方面具体阐述,最后讨论了其研究展望与应用现状。结论:压缩感知磁共振成像具有较好的发展潜力,有逐渐增长的医用与商用价值。 【关键词】磁共振成像;压缩感知;稀疏变换;不相干欠采样;非线性重建【DOI 编码】doi:10.3969/j.issn.1005-202X.2015.02.002【中图分类号】R312;R445.2 【文献标识码】A 【文章编号】1005-202X (2015)02-0158-05 Survey on Compressed Sensing Magnetic Resonance Imaging Technique WANG Shui-hua,ZHANG Yu-dong School of Computer Science and Technology,Nanjing Normal University,Nanjing 210023,China Abstract:Objective This paper focuses on the survey of compressed sensing in magnetic resonance imaging (CSMRI ).Meth -ods Magnetic resonance imaging is one of the most crucial non-invasive diagnostic implements in routine clinical examination.However,it is often limited by long scan https://www.doczj.com/doc/5c12148803.html,pressed sensing is a novel theory of signal acquisition and processing.It capitalizes on the signal's sparseness or compressibility in specific domain,allowing the entire original signal to be reconstruct-ed from relatively few measurements.CSMRI is proposed by integrating compressed sensing into MRI,providing more precise spatial tissue structure than normal technique in the same scan time,and accelerating imaging in the same spatial resolution.Results In this study we discussed in depth three components as sparse transform,incoherent subsampling,and nonlinear re-construction.We conclude the paper by discussing the research prospects and applications of CSMRI.Conclusion CSMRI has good development potential,and has increasing values for medical and commercial applications. Key words:magnetic resonance imaging;compressed sensing;sparse transform;incoherent subsampling;nonlinear recon-struction 前言 1971年,纽约州立大学的Paul https://www.doczj.com/doc/5c12148803.html,uterbur 教授提出磁共振成像(MRI),并于2003年获得诺贝尔生理医学奖。MRI 利用核磁共振原理,由于能量在不同物 质结构中有不同的衰减[1],通过外加梯度磁场检测电 磁波,可知构成物体原子核的位置和种类,从而绘制物体内部影像[2-3]。 MRI 是目前少有的对人体无伤害的安全、快速、准确的临床诊断方法,具有多方位、多参数、多模态等优点,不仅可显示人体组织的解剖信息,而且可显示功能信息。MRI 在临床上有广泛的应用,如今每年至少有6000万病例利用MRI 技术进行检查。但MRI 扫描时间过长、成像较慢[4],造成以下几个问题[5]:(1)给病人造成额外的痛苦;(2)由于器官运动(例如呼吸、眨眼、吞咽等非自主运动)造成图像模糊,增加伪影;(3)无法满足动态实时成像与导航的需要;(4)限制功能成像的推广,如波谱成像、磁敏感加权成像等。 2006年Candes 等[6]在前人的基础上,系统性地 【收稿日期】2014-12-21 【基金项目】国家自然科学基金(610011024);南京师范大学高层次人才 科研启动基金(2013119XGQ0061,2014119XGQ0080) 【作者简介】王水花,女,助教,研究方向:生物图像处理。【通信作者】张煜东,男,博士,教授,研究方向:医学图像处理。 158--

压缩感知 很好的综述 2012

压缩感知? 许志强? 中国科学院数学与系统科学研究院, 计算数学与科学工程计算研究所, 科学与工程计算国家重点实验室,100190,北京 2012年1月12日 摘要 压缩感知是近来国际上热门的研究方向.其在信号处理中具有很好的应用前景. 此外,它与逼近论、最优化、随机矩阵及离散几何等领域密切相关,由此产生了一些漂 亮的数学结果.本文综述压缩感知一些基本结果并介绍最新进展.主要包括RIP矩阵 编码与?1解码的性能,RIP矩阵的构造,Gelfand宽度,个例最优性及OMP解码等. 1引言 现实世界中,人们经常需要对信号进行观测,例如医学图像成像、CT断层扫描等,以期通过观测信息对原始的信号进行重建.由于计算机的离散化存储,我们可将需重建的信号x抽象为一N维向量,可将对信号x的观测抽象为用一n×N的矩阵Φ与信号x进行乘积.例如在CT扫描中,矩阵Φ通常选择为离散Fourier矩阵.那么,我们所观测的信息为 y=Φx.(1)人们自然而问:为重建信号x,至少需要多少次观测?由线性代数知识可知,为使方程组(1)的解存在且唯一,我们须选择n≥N.也就是说,我们需要至少进行n=N次观测.然而,现实世界中的自然信号通常具有一定规律性.对这种规律性,一种常用的刻画方式是自然信号在一组基底表示下是稀疏的.这里的“稀疏”是指它们用一组基底展开后,大多数系数为0,或者绝对值较小.例如,自然图像用小波基底展开后,一般而言,其展开系数大多 ?国家自然科学基金(11171336)及创新群体(11021101)资助. ?Email:xuzq@https://www.doczj.com/doc/5c12148803.html, 1

数绝对值较小.这也就是图像能够进行压缩的原理.然而,这同时为人们减少观测次数n 从理论上提供了可能性.因而,压缩感知的主要任务为:对尽量小的n,设计n×N观测矩阵Φ,以及通过Φx快速恢复x的算法.所以,压缩感知的研究主要分为两方面:矩阵Φ的设计;与反求信号x的算法. 本文主要介绍压缩感知的一些基本结果.在每节里,我们采用注记的方式介绍当前的一些研究进展及研究问题,同时提供与之相关的参考文献,以使感兴趣的读者可进一步探索.本文组织结构如下:第2节中我们介绍了稀疏信号精确恢复的编码、解码方法.特别是,我们将介绍矩阵的零空间性质,及RIP矩阵编码与?1解码的性能.我们在第3节中介绍RIP矩阵的构造方法,包括随机矩阵、结构随机矩阵及确定性矩阵.在第4节中,为理解最优编码、解码对的性能,我们介绍了Gelfand宽度与编码、解码对性能的关联.我们在第5节中介绍了编码、解码对在不同范数意义下的个例最优性.最后一节简要介绍实现解码的算法. 2稀疏信号的恢复 为方便介绍压缩感知理论,我们将信号的稀疏性简单理解为信号中非0元素数目较少.我们所指的信号即为一向量x∈R N.我们用Σs表示s-稀疏向量集合,即 Σs:={x∈R N:∥x∥0≤s}, 这里∥x∥0表示x中的非0元素数目.所谓对信号x0∈R N编码,即指用一n×N的矩阵Φ与x0∈R N进行乘积,那么我们得到 y=Φx0. 此处,y∈R n即为我们所观测到的关于x0的信息.所谓解码,就是试图通过y反求x0,也就是寻找一从R n到R N的映射,我们将该映射记为?.我们用?(y)表示反求结果.一般而言,若n

压缩感知原理

压缩感知原理(附程序) 1压缩感知引论 传统方式下的信号处理,是按照奈奎斯特采样定理对信号进行采样,得到大量的采样数据,需要先获取整个信号再进行压缩,其压缩过程如图2.1。 图2.1 传统的信号压缩过程 在此过程中,大部分采样数据将会被抛弃,即高速采样后再压缩的过程浪费了大量的采样资源,这就极大地增加了存储和传输的代价。 由于带宽的限制,许多信号只包含少量的重要频率的信息。所以大部分信号是稀疏的或是可压缩的,对于这种类型的信号,既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢?Candes和Donoho等人于2004年提出了压缩感知理论。该理论可以理解为将模拟数据节约地转换成压缩数字形式,避免了资源的浪费。即,在采样信号的同时就对数据进行适当的压缩,相当于在采样过程中寻找最少的系数来表示信号,并能用适当的重构算法从压缩数据中恢复出原始信号。压缩感知的主要目标是从少量的非适应线性测量中精确有效地重构信号。核心概念在于试图从原理上降低对一个信号进行测量的成本。压缩感知包含了许多重要的数学理论,具有广泛的应用前景,最近几年引起广泛的关注,得到了蓬勃的发展。 2压缩感知原理 压缩感知,也被称为压缩传感或压缩采样,是一种利用稀疏的或可压缩的信号进行信号重构的技术。或者可以说是信号在采样的同时被压缩,从而在很大程度上降低了采样率。压缩感知跳过了采集N个样本这一步骤,直接获得压缩的信号的表示。CS理论利用到了许多自然信号在特定的基 上具有紧凑的表示。即这些信号是“稀疏”的或“可压缩”的。由于这一特性,压缩感知理论的信号编解码框架和传统的压缩过程大不一样,主要包括信号的稀疏表示、编码测量和重构算法等三个方面。

相关主题
文本预览
相关文档 最新文档