当前位置:文档之家› CRK

CRK

CRK
CRK

fibroblasts has represented a main effort during the past three decades. Several reviews have

discussed the physiological and pathological function of Crk,8, 10, 11 signaling complex

formation,7, 12 roles of Crk in human cancer,13 and roles of Crk in cytoskeletal actin

dynamics.14 Few studies on Crk have discussed the function of Crk in lymphocytes.15, 16

The field of immunology now needs to direct attention to the role of Crk in the regulation of

lymphocytes.

The interactions between Crk/CrkL and other signal proteins have been discussed already in

other reviews.7, 8, 16 This review focuses on the roles of Crk and CrkL in immune responses

mediated by T, B, and NK cells, with a focus on human NK cells. This review divides into

seven main parts: (1) the structure of the Crk family proteins, (2) the regulation of Crk

activities, (3) the role of Crk in regulating T cell functions, (4) the role of Crk in regulating

B cell functions, (5) the role of Crk in NK cell functions, (6) the role of Crk in other immune

cell functions, and (7) perspectives. The main points that this review addresses are that:

1.

Crk not only plays numerous roles in cell biology but also Crk has several specific roles in regulating lymphocyte functions.2.Our understanding of Crk has been advanced by the recent published studies on the

roles of Crk in human primary NK cells, of which Crk may function as a 2-way

molecular switch to control NK cell-mediated cytotoxicity.THE STRUCTURE OF THE CRK FAMILY PROTEINS In 1992, Matsuda et al.5 isolated two species of human Crk cDNAs, named CrkI and CrkII,from human embryonic lung cells. CrkII is located on chromosome 17p13.3 in humans.4, 5

In 1993, ten Hoeve et al.6 identified the Crk-like gene, CrkL. CrkL is located on

chromosome 22q11.21 in humans.6 The CrkL gene product is predicted to have a molecular

mass of 36 kDa.6 CrkI (28 kDa), an alternately spliced form of CrkII (40 kDa), contains only

one Src homology 2 (SH2) and one Src homology 3 (SH3) domain illustrated by multiple

sequence alignment 17, as shown in Figure 1. CrkI lacks the regulatory phosphorylation site

and the c-terminal SH3 domain. CrkII and CrkL proteins contain one SH2 domain and two

SH3 domains, named SH3N (N-terminal SH3 domain) and SH3C (C-terminal SH3 domain),

respectively, as shown in Figure 2. A comparison of the structures of CrkII and CrkL reveals

that the SH2 domain of CrkII has an extra stretch of 17 amino acids (N ′-

PPVPPSPAQPPPGVSPS-C ′) that is rich in proline residues (proline-rich region, PRR), as

shown in Figure 3. According to the nuclear magnetic resonance (NMR) structural studies

by Kobashigawa et al.18, the PRR is located on the CrkII’s outer surface. The PRR is a

specific SH3 domain-binding motif, such as Abelson murine leukemia kinase (Abl) and

p85.19 However, this finding cannot explain the observation that CrkL (which possesses an

SH2 domain, but without PRR in SH2), but not CrkII, is a preferred substrate of the

breakpoint cluster region (Bcr)-Abl protein tyrosine kinases (PTKs) in Bcr-Abl-transformed

cells.6, 20, 21 Recent studies by Jankowski et al.22 reveal that CrkL forms a constitutive

complex with Abl because of different domain organizations between CrkL and CrkII,

which may explain the strong preference of Bcr-Abl for CrkL. Table 1 summarizes the

comparison of CrkII and CrkL in different aspects. Based on comparisons of the structures

of CrkII and CrkL and their regulatory mechanisms, the consensus is that CrkII and CrkL

NIH-PA Author Manuscript NIH-PA Author Manuscript

NIH-PA Author Manuscript

each plays its own essential role in the regulation of cell function. CrkII and CrkL may not

have redundant functions and cannot be compensated by each other. Recently, Prosser et

al.,23 using the cloning of receptor targets (CORT) technique, identified a novel member of

the Crk family proteins, CrkIII that contains a truncated SH3C. In summary, Crk family

proteins are relatively small proteins that contain both SH2 and SH3 domains; however, the

functions of the different domains are controversial and complex, as detailed below.THE REGULATION OF CRK ACTIVITIES

Generally, the intracellular signaling by Crk proteins is mediated by the interaction of the SH2 domain with phosphotyrosine residues, as well as the interaction of the SH3 domain with PRRs. Because Crk proteins lack the intrinsic catalytic activity that kinases possess,Crk proteins usually are classified as the adaptor protein family. Functionally, CrkI exhibits more transforming activity than does CrkII, as evidenced by the important observation that the cell lines expressing the CrkI protein grow as massive tumors in nude mice, whereas CrkII-expressing cells do not grow in nude mice.5 Several studies show that the SH3C domain and the linker region in CrkII are responsible for this difference, in which the SH3C domain can downregulate CrkII activity.18, 24–26 As for the regulation of CrkII and CrkL,the control of CrkII and CrkL activity is multilayered, as summarized as follows:The first layer of regulation is mediated by phosphorylation at Tyrosine 207 (Tyr207) in CrkL and Tyrosine 211 (Tyr211) in CrkII.7 In 1994, Feller et al.27 proposed that the phosphorylated Tyr221 of CrkII could bind to its own SH2 domain, which prevents the SH3N of CrkII from binding other proteins or signal molecules. Tyr207 in CrkL is phosphorylated by Abl kinase.28, 29 Upon phosphorylation of CrkL at Tyr207, the SH2

domain interacts with the pTyr207-X-X-P region in the same molecule,22 similar to

CrkII.18, 30 Consistent with this concept, using a fluorescence resonance energy transfer-

based probe by sandwiching a truncated form of CrkL with a variant of yellow fluorescent

protein (YFP), also called Venus, and an enhanced cyan fluorescent protein (ECFP),

Mizutani et al.31 demonstrated that intramolecular binding of the SH2 domain to

phosphorylated Tyr 207 in CrkL increases FRET efficiency. A similar result is observed in

CrkII by fusing YFP and CFP with the N- and C-termini of a truncated Crkll molecule.32

Hofmann et al.33 and Cotton et al.,34 using the site-specific chemical modification of protein

to label the N- and C-termini of a truncated CrkII molecule (lacking the regulatory C-

terminal SH3 domain), observed a decrease in the fluorescence resonance energy transfer

efficiency (indicating an increase in distance between SH2 and SH3N domains) upon

phosphorylation of the truncated CrkII by Abl. Binding pTyr207 to its own SH2 domain

results in preventing the SH2 domain of CrkL from interacting with other phosphorylated

signaling molecules, such as paxillin,22 which indicates that phosphorylated CrkL may

function as a negative regulator of signaling pathway, This concept is in line with studies

from human NK cells, in which phosphorylated Crk dissociates from signal molecules a

125–135 kDa scaffold protein (p130) Crk-associated substrate (p130Cas) and Casitas B-

lineage lymphoma (Cbl) protein during NK cells inhibition induced by engagement of two

structurally distinct inhibitory receptors, CD94-NKG2A and killer-cell immunoglobulin-like

receptor (KIR).35 Therefore, pTyr207/221 and the SH2 domain collaboratively function as

the first layer of regulation. However, when and where phosphorylated Crk dissociates with

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

signal molecules at the immunological synapses during inhibition in immune cells remains unclear.The second layer of regulation is mediated by the regulatory SH3C domain. In general,SH3C functions as a negative regulatory unit because the SH3C contains elements that constrain binding to the SH2 and SH3N domains.18, 36 Indeed, CrkI, which lacks the SH3C domain, shows more transforming activity than does CrkII, which may involve phosphorylation of Y221 in CrkII and the SH3C domain.8, 25 However, a recent study demonstrated that the SH3C domain has positive effects via phosphorylation of Tyr251residue in the RT-loop structure (a loop in SH3 structure named after arginine, R, and threonine, T residues), as shown in Figure 3. Phosphorylation of Tyr251 in a conserved PNAY sequence by Abl in vitro enhances activation of Abl by providing binding sites for the SH2/PTB (phosphotyrosine-binding domain) containing proteins.37, 38 In contrast to this observation, Jankowski et al.22 used molecular mass determination to demonstrate that CrkL exists as a monomer in solution and that only one Tyrosine site (Tyr207) is phosphorylated by Abl kinase in vitro. The more detailed discussion of the regulatory role of SH3C has been described.8 In summary, the regulatory SH3C domain provides the second layer of regulation, and the exact role of SH3C in regulating CrkII and CrkL proteins remains controversial.The third layer of regulation is mediated by prolyl cis-trans isomerization.39 A recent finding by Sarkar et al.36, 39 demonstrates that isomerization of chicken CrkII requires the SH3N-SH3C linker region, which CrkI lacks. The authors found that a proline (Pro238 in chicken, similar to conserved residue Pro237 in humans) on the linker tethering the two SH3domains of the Crk adaptor protein interconverts between the cis and the trans

conformations (Figure 3). In the cis conformation, the two SH3 domains interact

intramolecularly, forming an auto-inhibitory conformation. In this auto-inhibition, SH2 may

interact with SH3 domains, and other signal molecules cannot bind to Crk. In the trans

conformation, Crk exists in an extended conformation (also referred to as uninhibited

conformation) that constitutes approximately 10% of total Crk molecules in the absence of

any intermolecular binding partners, but it serves to activate the protein upon ligand binding.

Interconversion between the cis (auto-inhibited) and trans (activated) conformations is

accelerated by the action of peptidyl-prolyl isomerase A, also known as cyclophilin A

(CypA).36 Functionally, phosphorylated Crk is similar to the cis form in vitro , in which Crk

cannot bind to other signal molecules. Whether Crk molecules in the cis form have the same

physiological outcomes as that of increased phosphorylation in the cell system or in vivo is

not clear. The concept needs to be verified to determine if human CrkL or CrkII has similar

proline isomerization in live cells and what receptor controls this process. Given the

conserved Pro238 feature among all Crk proteins, the possibility exists that proline

isomerization is present in other Crk proteins, such as CrkL or CrkII in humans. It will be of

interest to examine the correlation of cis and trans conformations with the phosphorylation

and un-phosphorylation of Crk in vivo and to determine how a cytosolic protein, CypA,

affects the biological outcome in immune cells.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

In summary, the activities of CrkII and CrkL are regulated not only by the tyrosine within

the CrkII/CrkL and SH3C, but also by the key proline mediated isomerization (Pro238 in

chicken), which further complicates the regulation of the Crk family proteins.THE ROLE OF CRK IN REGULATING T-CELL FUNCTIONS The function of Crk in T lymphocytes has been reported to form multi-protein complexes through T cell receptor (TCR) stimulation with a specific focus on the CD4+ T cell line - the Jurkat cell line. For example, Cbl becomes tyrosine-phosphorylated and associated with Crk upon TCR stimulation.40–43 The formation of complex is summarized in Table 2. The detailed interaction of Crk family proteins in lymphocytes has been reviewed by Isakov 15and Gelkop et al.16 In the following sections, several critical signal molecules involved with Crk family proteins will be classified on the basis of TCR signaling, costimulatory receptor signaling, cytokine signaling, and T cell development.Crk in TCR signaling Cbl, an E3-ligase that catalyzes protein ubiquitination,44, 45 is the first protein found to regulate TCR signaling via Crk interaction upon anti-CD3 signaling.41–43, 46 Following T cell activation, Crk binds phosphorylated Cbl and p85 (a regulatory subunit of PI3-K) with the Crk-SH2 domain and SH3N domain, respectively.47 In NIH-3T3 fibroblasts,endogenous Crk migrates similarly to a monomeric, non-complexed protein and is tyrosine-phosphorylated.27 It will be of interest to understand the state of endogenous Crk in resting primary lymphocytes. CrkL, but not Crk, is constitutively associated with C3G (Crk SH3-binding guanine nucleotide-releasing protein) in thymocytes. The association of C3G with CrkL is unaffected by CD3 stimulation of thymocytes and is not induced to associate with

Crk.48 Interestingly, other studies have shown that binding of Cbl-b with CrkL interferes

with its efficacy to interact with the other binding partner-C3G. C3G is also a guanine

exchange factor of Rap-1 (Ras-related GTP-binding protein 1).49 Therefore, Cbl-b functions

as a negative regulator of CrkL-C3G-mediated Rap1 (a member of the Ras family of small

GTPases) activation in TCR-stimulated T cells.50 In both Jurkat and normal human

peripheral blood-derived T cells, TCR stimulation induces the association of Cbl with all

three forms of the human Crk protein, most prominently with CrkL.43 In anti-CD3-

stimulated Jurkat T cells, TCR stimulation does not induce the phosphorylation of Crk or

CrkL.43 In summary, Crk family proteins involve TCR signaling by forming multi-complex

with other signal molecules such as C3G. However, how phosphorylated Crk regulates TCR

signaling and whether TCR stimulation modulates the ratio of Crk and phosphorylated Crk

remain unclear. Additional in vivo studies in primary T lymphocytes will be required to

confirm the physiological function of Crk in TCR signaling and associations between Crk

and other signal molecules.

Crk in T cell co-stimulatory receptor signaling

In Jurkat cells, co-receptor CD2 engagement, not by CD3 engagement, induces the

association of tyrosine-phosphorylated p62, dok1 (downstream of Tyrosine Kinase a

member of the Dok family of adaptor molecules) to CrkL.51 CrkL also plays an important

role in lymphocyte function-associated antigen 1 (LFA-1) integrin (αL β2) adhesion in T

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

lymphocytes.52 In T cells, stimulation of TCR and beta1 integrin induces the association of

p105CasL, a p130Cas homologous protein, with the SH2 domain of Crk or CrkL.53–55 In

primary T lymphocytes, LFA-1 does not bind to its ligand ICAM-1 without TCR

engagement that delivers ‘inside-out’ signals to LFA-1. The CrkL-C3G complex is required

for TCR-stimulated activation of Rap1, leading to integrin adhesion.52 Similar to the roles of

Crk in TCR signaling, the majority of work on the roles of Crk in T cells co-stimulatory

receptors has relied on classical biochemical approaches to identify the binding partners

such as p130Cas. However, the signaling pathways initiated by TCR that result in the role of

Crk in integrin adhesion or other co-stimulatory receptors remain relatively obscure.

Crk in T cell cytokine signaling

Crk not only modulates the TCR and co-receptors signaling, but also plays a critical role in

the cytokine secretion. Crk proteins interact with the hematopoietic progenitor kinase

1(HPK1), a serine-threonine kinase, which plays a critical role in IL-2 secretion.56

Interestingly, stimulation by IL-2 alone induces the specific phosphorylation of CrkL, but

not of Crk, in human IL-2-dependent Kit 225 T lymphocytes.57 How IL-2 alone induces the

specific phosphorylation of CrkL remains unclear. It will be of interest to investigate the

roles of Crk family proteins in cytokine signaling.

Crk in T cell development

In 1999, Imaizumi et al.58 used the gene trap insertional mutagenesis approach to generate a

mutant mouse line that is considered a Crk-II-specific disrupted mouse line as these mice

express the truncated Crk proteins (similar to CrkI). Mice with CrkII-specific disruption

(still expressing CrkL and CrkI) do not exhibit any obvious abnormalities, suggesting either

that Crk-II is not essential for embryonic development or that CrkL may play a redundant

and complementary role in embryonic development.58 Park et al.59 generated a complete

null allele of Crk mice (still expressing CrkL) by using the Cre-loxP recombination

approach. Crk-deficient mice die perinatally.59 No Crk-null mice can survive to

adulthood.59 The Crk ?/? embryonic data show that Crk is involved in cardiac and

craniofacial development and plays an essential role in embryonic development,59 which is

reminiscent of the phenotype of CrkL ?/? mice.60 In 2001, Guris et al.60 generated CrkL ?/?

mice. However, the majority of homozygous CrkL ?/? mice die at late stages of embryonic

development.60 Only a small number of CrkL ?/? mice (< 2%) survive, which suggests that

CrkL is also an essential gene for embryonic development.60 The phenotypes of Crk- and

CrkL-deficient mice are summarized in Table 3. No data report T cell development in

Crk ?/? mice due to the lack of Crk ?/? adult mice.

In 2003, Peterson et al.61 investigated the role of CrkL in T-cell development and function.

In CrkL ?/? mice, the peripheral blood counts and functions are normal, whereas

immunization induces comparable levels of IgG2a and IgG1 antibodies.61 Transferring

CrkL ?/? fetal liver cells into irradiated Rag2?/? recipients resulted in the functions of T cells

from these chimeric mice being normal, revealing that CrkL is not essential for T cell

development or function.61 Interestingly, the steady-state level of the Crk protein is not

altered in the CrkL ?/? mice, which indicates that Crk does not compensate for CrkL function NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

in vivo . Taken together, both Crk and CrkL genes are required for embryonic development

in mice.

Intriguingly, CrkL ?/? mice also show a phenotype characteristic of human DiGeorge/velocardiofacial syndrome (DGS/VCFS).60, 62, 63 Three genes (Tbx1, CrkL , and Erk2) in chromosome 22q11.2 are responsible for the phenotypic features of DGS/VCFS.60, 63–66Tbx1 and CrkL are two main genes for DGS/VCFS.64 Heterozygous deletions within human chromosome 22q11 are the genetic basis of DGS/VCFS.67 More than 80% of cases of DGS/VCFS are associated with a deletion within chromosome 22q11.64 Not only multiple candidate genes (30–50 genes) located within the region,68 but also dose-sensitive interaction of these genes, such as Tbx1 and CrkL in mice, play roles in DGS/VCFS,63which adds an additional layer of complexity to the role of CrkL in DGS/VCFS. In general,decreased numbers of T cells with variable functional deficits (such as reduced proliferation capability to phytohemagglutinin) and normal production of immunoglobulin are observed in DGS/VCFS.69, 70 Therefore, DGS/VCFS may provide a tool to study the role of Crk in human immunobiology and immunodeficiency disease.THE ROLE OF CRK IN REGULATING B CELL FUNCTIONS Crk in B-cell antigen receptor (BCR) signaling In the DT40 B cell line, B cell antigen receptor (BCR) ligation induces the formation of the Cbl-CrkII complex.71 The association of Cbl and CrkII is transient, depends on ligand-induced signaling, and does not require tyrosine phosphorylation of CrkII but does require the tyrosine phosphorylation of Cbl. The dissociation of Cbl-CrkII over time is due to the dephosphorylation of Cbl.71 CrkII also plays a role in BCR endocytosis.72 BCR ligation

reduces the phosphorylation of CrkII in the DT40 B cell line. At least, the phosphorylation

of CrkII did not increase after BCR ligation, which may be related to the constitutive

phosphorylation of CrkII in resting the DT40 B cell line. Similarly, CrkL is not

phosphorylated upon engagement of the BCR in the human Burkitt lymphoma lines Ramos

and Daudi.73 Generally, stimulation of activation receptors, such as BCR and TCR, does not

induce the phosphorylation of Crk. In the Ramos B cell line, BCR ligation induces the SH2

domains of CrkL and CrkII to bind to Cas and Cbl. In addition to the formation of Crk-Cas-

Cbl, Crk also interacts with C3G in Ramos cells via its SH3 domains, which can translocate

C3G from the cytosol to the plasma membrane, where Rap is located upon BCR ligation.74

In human tonsillar B cells and Nalm-6/ARH-77 B cell lines, ligation of either beta1 integrin

or BCR induces tyrosine phosphorylation of human enhancer of filamentation-1 (HEF1),

which forms a complex with CrkL.75 BCR stimulation also induces the interaction of Src

homology 2 domain containing (Shc)/growth factor receptor-bound protein 2 (Grb2)

complex and Crk.76 In human primary tonsillar B cells, BCR stimulation induces the

association of Vav with Crk.73 BCR stimulation cannot induce the tyrosine phosphorylation

of either Crk or CrkL.73 Overall, one of the main efforts directed toward Crk in BCR

signaling is finding the binding partners of Crk in B cell lines. In summary, the association

of Vav and Crk in human primary tonsillar B cells upon BCR stimulation is very intriguing,

given the multiple roles of Vav in immune responses. Similar to the signal pathways of Crk

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

in TCR signaling, Cbl and C3G are the major players in BCR signaling among Crk binding

partners.

Crk in B cells co-stimulatory receptors signaling Stimulation of BCR and LFA-1 induces the tyrosine phosphorylation and association of p130Cas with the Crk/CrkL SH2 domain.26 In CD21-expressing Raji cells, a Burkitt B lymphoma cell line, activation of CD21 induces interaction of Cbl with the SH2 domain of CrkL.77 Whether Crk also plays a role in the development of B cells remains unclear. In the 22q11.2 deletion syndrome (DiGeorge syndrome), in which the total B cell numbers are unaffected, some patients shows a significantly decreased proportion of memory B cells,78which indicates a possible role of CrkL in B cell development and memory. In summary,Crk adaptor proteins play a role in BCR signaling, BCR endocytosis, and co-stimulatory receptor signaling by interacting with other signal molecules such as Cbl. The spatial-temporal details of Crk signal and physiological signaling events in primary B cells need to be elucidated.THE ROLE OF CRK IN NK CELL FUNCTIONS Crk in NK cells inhibitory receptors signaling NK cell inhibitory receptors block activating signaling by recruiting phosphatases that dephosphorylate critical molecules such as Vav1 involved in activation.79 The detail of inhibitory receptor signaling has been described previously.79, 80 In 2008, Peterson and Long 35 demonstrated that engagement of inhibitory receptors, including CD94-NKG2A and KIR, induces phosphorylation of Crk in both NK cell lines and primary NK cells. Crk

phosphorylation leads to disassociation of the c-Cbl-Crk-p130CAS-C3G complex in NK

cells in conjugates with their target cells expressing human leukocyte antigen class I. This c-

Cbl-Crk-p130CAS-C3G complex occurs during NK cells activation induced by NK cells

susceptible target cells such as 721.221 cells (an EBV transfected B cell line), which is

similar to the complex formation between Crk and Cbl upon TCR and BCR ligation in T and

B cells.15 Interestingly, during inhibition of NK cells by engagement of inhibitory receptors

killer-cell immunoglobulin-like receptor (e.g. KIR2DL1) and CD94-NKG2A,

phosphorylated Crk dissociates from other signaling molecules such as C3G and p130cas,

which is reminiscent of the status of auto-inhibition of chicken CrkII.39 However, the status

of Crk and ratio of Crk/pCrk in resting NK cells and the similarity in structure and function

between cis conformation of Crk and phosphorylated Crk remain unclear.

In 2012, Liu et al. demonstrated that inhibitory receptor CD94-NKG2A alone induces

phosphorylation of Crk.81 In this study, the authors used a reductionist model of lipid

bilayers containing ligand for activating receptor CD16 (Fc) and ligand for inhibitory

receptor CD94-NKG2A (HLA-E) to selectively induce activation and inhibitory signaling,

respectively.81 Combining live cell imaging with lipid bilayers, the authors demonstrated the

distinct roles of un-phosphorylation and phosphorylation of Crk in the control of actin

polymerization in the inhibitory synapse induced by HLA-E and Fc containing lipid bilayer.

The discovery of the ability of NK inhibitory receptor alone to induce phosphorylation of

the adaptor proteins-Crk/CrkL marks a true paradigm shift in which inhibitory receptor

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

alone is sufficient to induce tyrosine phosphorylation, an event usually indicating cellular

activation.81 Therefore, a new model for inhibitory receptor function is proposed (Figure 4):

Crk phosphorylation prevents Crk-dependent activation signals from their intended

remodeling of the filamentous-actin (F-actin) network.81 However, whether Crk can interact

directly with the cytoplasmic domain of the inhibitory receptor, CD94-NKG2A/KIR, and

how un-phosphorylated Crk and phosphorylated Crk affect actin dynamics at immunological

synapses remain unclear. Overall, studies on the role of Crk in NK cell function have just

begun. The role of the Crk family proteins in inhibitory receptors signaling and their roles in

the cell biology of NK cells such as education/memory remain unclear.

Crk in NK cell activating receptor signaling

NK cell activation is controlled by integration of signals from activation and inhibition.82

Crk not only plays a role in NK cells inhibitory receptor signaling as described above, but

also modulates the signaling of activating receptors. During NK cell activation induced by

susceptible target cells, Crk forms a complex with C3G (presumably via the SH3N domain)

and p130cas (presumably via the SH2 domain). During activation, the majority of Crk or

CrkL is in the un-phosphorylated state. The un-phosphorylated CrkL may constitutively

associate with endogenous Abl via the fully accessible SH3N domain, which indicates that

the SH3N domain in un-phosphorylated CrkL may not be available during NK cell

activation.35 The un-phosphorylated CrkII forms a very different structure, compared to

CrkL.22 It is not clear which isoform of Crk is dominant in activated NK cells. In 2009,

Segovis et al.83 found that CrkL is important in NK cell-target cell conjugate formation,

microtubule organization center (MTOC) polarization, NKG2D (activating receptor) -

dependent cellular cytotoxicity, and antibody-stimulated granule release. In the conjugation

between human NK clones with target cells expressing MICA (a ligand for NKG2D), CrkL

was recruited to cytotoxic immunological synapses in an NKG2D-dependent manner.

However, how CrkL is engaged with activating receptors signaling is not clear, and whether

CrkL serves a functionally redundant role with CrkII in NK cellular cytotoxicity remains to

be determined. In the recent study by Liu et al.81, Crk also is involved in CD16 (activating

receptor)-induced degranulation. Silencing of Crk family of proteins expression with

siRNAs targeted to both Crk and CrkL in human primary NK cells has profound effects on

NK cells activation by CD16 signaling. Imaging of NK cells on lipid bilayers carrying Fc

alone reveals that movement of Fc microclusters, phosphorylation of Vav1, and

accumulation of F-actin are greatly reduced.81 In a human NK cell line, NK3.3, stimulation

of NK3.3 with IL-2 or crosslinking of CD2 or CD16 induces the interactions between Crk

and Cbl upon silencing of Crk family of proteins.84 The combination of IL-2 with CD2

crosslinking further increases tyrosine phosphorylation and association of Cbl with Crk.84, 85

Taken together, Crk family proteins not only contribute to NKG2D mediated natural

cytotoxicity signaling for adhesion, granulation polarization, and degranulation, but also

play a critical role in the CD16 mediated cytotoxicity, also known as antibody-dependent

cellular cytotoxicity.NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

THE ROLE OF CRK IN OTHER IMMUNE CELL FUNCTIONS

CrkL is a major specific substrate for Abl in neutrophils. CrkL is heavily tyrosine

phosphorylated in neutrophils of patients with Philadelphia chromosome positive chronic

myelogenous leukemia (CML).21 This finding is similar to the observation from v-Crk-

transformed 3Y1 cells.27 In Philadelphia chromosome negative peripheral blood cells, CrkL

is present only in the non-phosphorylated form.86 In contrast, all Bcr/Abl + CML and acute

lymphoblastic leukemia patient samples examined show clear tyrosine-phosphorylation of

CrkL.20, 86 What role Crk plays in CML remains unclear. In summary, the role of Crk in

other immune cellssuch as dentritic cells and macrophages remains to be determined.PERSPECTIVES In this review, the roles of the Crk family of proteins in T, B, and NK cells receptor function have been briefly summarized. Since the identification of Crk in 1980s, great progress has been made in addressing the physiological and pathological roles of Crk in normal and transformed fibroblasts. Most research on Crk has focused on the cell apoptosis,proliferation, transformation processes, and identification of Crk binding partners.7, 8Although some of the signaling properties of Crk have been identified in the Jurkat cell line or other transformed lymphocyte cell lines by traditional biochemical and cell biological approaches, the role of Crk in immune response, including immune cytokine secretion,cytotoxicity, immunological synapse formation, and inhibitory receptor signaling on primary immune cells, as well as in infectious and primary immunodeficiency diseases, is poorly understood. Four important and significant questions about Crk in immune cells are listed as follows:

Do different isoforms of Crk family of proteins play different roles in immune cells?

Given the different isoforms of Crk that exist in immune cells, an obvious question that

remains to be answered is which isoform in particular types of immune cells, such as T, B,

and NK cells, plays a role in different immune responses. Whether these isoforms play a

complementary or redundant role in immunoreceptor signaling remains unclear. Addressing

these questions will be helpful to design a specific target to harness the immune cells during

infection and to induce the effective immune responses against cancer.

What is the role of phosphorylated Crk in NK cell licensing?

In human primary NK cells, the phosphorylation of Crk induced by inhibitory receptor

CD94-NKG2A alone is unexpected, considering that phosphorylation events usually

indicate cell activation.81 Given that the MHC class I-specific inhibitory receptors not only

control NK cell cytotoxicity but also have a role in tuning intrinsic responsiveness of NK

cells to subsequent activation signaling (a process referred to as ‘licensing’, ‘arming’, or

‘education’ 87–90), this finding indicates that the phosphorylated Crk may play a role in NK

cell licensing. However, how phosphorylated Crk family proteins function in NK cell

education or NK licensing remains unclear, as does the status/amount of Crk

(phosphorylated Crk, un-phosphorylated Crk, or de-phosphorylated Crk) in resting immune

cells, IL-2 activated NK cells, and activating or inhibitory receptors-stimulated NK cells.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

What is the role of Crk in NK memory?

NK memory is an emerging topic in the field of immunology.91, 92 One of the

immunological features of the 22q11.2 deletion syndrome (DiGeorge syndrome) is the

significantly reduced number of CD27+ IgM + IgD + memory B-lymphocytes, which suggests

that Crk family of proteins may play a role in B cell memory.67, 93, 94 Therefore, it will be of

interest to determine if Crk also plays a role in NK cell memory.

How do Crk family proteins impact cytoskeletal organization?

Cytoskeletal remodeling plays a critical role in controlling cytotoxicity of cytotoxic T

lymphocytes and NK cells.95, 96 During activation of human primary NK cells induced by

activating receptor CD16, Crk silencing has profound effects on actin organization, of which

F-actin appears as disorganized patches at cytotoxic immunological synapses.81 During

inhibition of NK cells induced by inhibitory receptor CD94/NKG2A, F-actin is disrupted

through Crk phosphorylation.81 The molecular mechanism of cytoskeletal actin remodeling

by Crk or phosphorylated Crk is not clear. Crk may regulate the F-actin dynamics via two

distinct pathways. One is that Crk interacts with several downstream signal molecules such

as Paxillin, C3G/Rap-1, and p130Cas/DOCK180/Rac-1 to regulate F-actin.14 The second

pathway could be the interaction between Crk and pVav-1, as shown in Figure 4. Vav-1 is a

well-known molecule that can regulate actin cytoskeletal reorganization in both T and B

cells.97–99 Therefore, it will be of interest to investigate the possible mechanisms of Crk

regulating actin dynamics in human NK cells, which will greatly enhance our understanding

of how Crk functions as a master regulatory switch operating upstream of Vav-1 which in

turn directly influences actin dynamics.

In summary, finding and identifying the proteins associated with Crk by classical

biochemical approaches has been a major effort in the field during the past several decades.

The time has come for immunologists to implement new cutting-edge technologies to

explore the roles of Crk in immune response. The emerging super resolution imaging of live

cells such as stimulated emission depletion microscopy and photoactivated localization

microscopy approaches should elucidate the spatiotemporal details of Crk in the immune

responses.Acknowledgments

I thank Dr. Jordan Orange for comments and critical reading of the manuscript and Dr. Lee Ligon for editorial

assistance. Work in the author’s laboratory was supported in part by the Baylor-UTHouston Center for AIDS

Research Core Support Grant number AI36211 from the National Institute of Allergy and Infectious Diseases and

the Caroline Wiess Law Fund for Research in Molecular Medicine.

Abbreviations

Abl

Abelson murine leukemia kinase Bcr

Breakpoint cluster region BCR

B-cell antigen receptor Cas Crk-associated substrate

NIH-PA Author Manuscript NIH-PA Author Manuscript

NIH-PA Author Manuscript

Cbl Casitas B-lineage lymphoma

Crk CT10 (chicken. tumor virus no. 10) regulator of kinase

CrkL CT10 (chicken. tumor virus no. 10) regulator of kinase like

C3G Crk SH3-binding GNRP (guanine nucleotide-releasing protein)

CypA cyclophilin A

DOCK180180-kDa protein downstream of Crk

Dok1downstream of tyrosine kinases protein 1

Erk Extracellular signal-regulated kinase

F-actin filamentous –actin

Gab1growth factor receptor-bound protein 2 (GRB2)-associated binding

protein 1

HEF1human enhancer of filamentation 1

HPK1hematopoietic progenitor kinase 1

KIR killer-cell immunoglobulin-like receptor

PTB phosphotyrosine-binding domain

PTKs protein tyrosine kinases

PI3-K phosphoinositide 3-kinase

Rac-1

Ras-related C3 botulinum toxin substrate 1

Rap-1

Ras-related GTP-binding protein 1

RT-loop

loop in SH3 structure named after arginine, R, and threonine, T residues

commonly found in it

SH2 and SH3

Src homology 2 and 3

SHP-1

SH2 domain-containing phosphatase 1

TCR

T cell receptor References

1. Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to

phospholipase C. Nature. 1988; 332(6161):272–5. [PubMed: 2450282]

2. Tsuchie H, Chang CH, Yoshida M, Vogt PK. A newly isolated avian sarcoma virus, ASV-1, carries

the crk oncogene. Oncogene. 1989; 4(11):1281–4. [PubMed: 2554234]

3. Mayer BJ, Hamaguchi M, Hanafusa H. Characterization of p47gag-crk, a novel oncogene product

with sequence similarity to a putative modulatory domain of protein-tyrosine kinases and

phospholipase C. Cold Spring Harb Symp Quant Biol. 1988; 53(Pt 2):907–14. [PubMed: 2855503]

4. Reichman CT, Mayer BJ, Keshav S, Hanafusa H. The product of the cellular crk gene consists

primarily of SH2 and SH3 regions. Cell Growth Differ. 1992; 3(7):451–60. [PubMed: 1329926]

5. Matsuda M, Tanaka S, Nagata S, Kojima A, Kurata T, Shibuya M. Two species of human CRK

cDNA encode proteins with distinct biological activities. Mol Cell Biol. 1992; 12(8):3482–9.

[PubMed: 1630456]

NIH-PA Author Manuscript NIH-PA Author Manuscript

NIH-PA Author Manuscript

6. ten Hoeve J, Morris C, Heisterkamp N, Groffen J. Isolation and chromosomal localization of CRKL,a human crk-like gene. Oncogene. 1993; 8(9):2469–74. [PubMed: 8361759]

7. Feller SM. Crk family adaptors-signalling complex formation and biological roles. Oncogene. 2001;20(44):6348–71. [PubMed: 11607838]

8. Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal. 2009; 7:13. [PubMed: 19426560]

9. Austgen K, Johnson ET, Park TJ, Curran T, Oakes SA. The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress. Nature cell biology. 2012; 14(1):87–92.10. Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, et al. The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins. Oncogene. 1998; 17(15):1893–901. [PubMed:9788432]11. Sattler M, Salgia R. Role of the adapter protein CRKL in signal transduction of normal hematopoietic and BCR/ABL-transformed cells. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK. 1998; 12(5):637–44.12. Matsuda M, Kurata T. Emerging components of the Crk oncogene product: the first identified adaptor protein. Cellular signalling. 1996; 8(5):335–40. [PubMed: 8911681]13. Sriram G, Birge RB. Emerging roles for crk in human cancer. Genes & cancer. 2010; 1(11):1132–9. [PubMed: 21779437]14. Sato M, Maruoka M, Takeya T. Functional mechanisms and roles of adaptor proteins in abl-regulated cytoskeletal actin dynamics. Journal of signal transduction. 2012; 2012:414913.[PubMed: 22675626]15. Isakov N. A new twist to adaptor proteins contributes to regulation of lymphocyte cell signaling.Trends in immunology. 2008; 29(8):388–96. [PubMed: 18599349]16. Gelkop S, Babichev Y, Kalifa R, Tamir A, Isakov N. Involvement of crk adapter proteins in regulation of lymphoid cell functions. Immunologic research. 2003; 28 (2):79–91. [PubMed:14610286]17. Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic acids research. 1988;

16(22):10881–90. [PubMed: 2849754]

18. Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, et al. Structural basis for

the transforming activity of human cancer-related signaling adaptor protein CRK. Nat Struct Mol

Biol. 2007; 14(6):503–10. [PubMed: 17515907]

19. Anafi M, Rosen MK, Gish GD, Kay LE, Pawson T. A potential SH3 domain-binding site in the

Crk SH2 domain. J Biol Chem. 1996; 271(35):21365–74. [PubMed: 8702917]

20. Nichols GL, Raines MA, Vera JC, Lacomis L, Tempst P, Golde DW. Identification of CRKL as

the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous

leukemia cells. Blood. 1994; 84(9):2912–8. [PubMed: 7524758]

21. Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-

phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol

Chem. 1994; 269(37):22925–8. [PubMed: 8083188]

22. Jankowski W, Saleh T, Pai MT, Sriram G, Birge RB, Kalodimos CG. Domain organization

differences explain Bcr-Abl’s preference for CrkL over CrkII. Nature chemical biology. 2012;

8(6):590–6.

23. Prosser S, Sorokina E, Pratt P, Sorokin A. CrkIII: a novel and biologically distinct member of the

Crk family of adaptor proteins. Oncogene. 2003; 22 (31):4799–806. [PubMed: 12894221]

24. Muralidharan V, Dutta K, Cho J, Vila-Perello M, Raleigh DP, Cowburn D, et al. Solution structure

and folding characteristics of the C-terminal SH3 domain of c-Crk-II. Biochemistry. 2006; 45(29):

8874–84. [PubMed: 16846230]

25. Ogawa S, Toyoshima H, Kozutsumi H, Hagiwara K, Sakai R, Tanaka T, et al. The C-terminal SH3

domain of the mouse c-Crk protein negatively regulates tyrosine-phosphorylation of Crk

associated p130 in rat 3Y1 cells. Oncogene. 1994; 9(6):1669–78. [PubMed: 8183562]

26. Harkiolaki M, Gilbert RJ, Jones EY, Feller SM. The C-terminal SH3 domain of CRKL as a

dynamic dimerization module transiently exposing a nuclear export signal. Structure. 2006;

14(12):1741–53. [PubMed: 17161365]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

27. Feller SM, Knudsen B, Hanafusa H. c-Abl kinase regulates the protein binding activity of c-Crk.Embo J. 1994; 13(10):2341–51. [PubMed: 8194526]28. de Jong R, ten Hoeve J, Heisterkamp N, Groffen J. Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene. 1997; 14(5):507–13. [PubMed: 9053848]29. Senechal K, Heaney C, Druker B, Sawyers CL. Structural requirements for function of the Crkl adapter protein in fibroblasts and hematopoietic cells. Mol Cell Biol. 1998; 18(9):5082–90.[PubMed: 9710592]30. Rosen MK, Yamazaki T, Gish GD, Kay CM, Pawson T, Kay LE. Direct demonstration of an intramolecular SH2-phosphotyrosine interaction in the Crk protein. Nature. 1995; 374(6521):477–9. [PubMed: 7700361]31. Mizutani T, Kondo T, Darmanin S, Tsuda M, Tanaka S, Tobiume M, et al. A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells.Clinical cancer research: an official journal of the American Association for Cancer Research.2010; 16(15):3964–75. [PubMed: 20670950]32. Kurokawa K, Mochizuki N, Ohba Y, Mizuno H, Miyawaki A, Matsuda M. A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem. 2001; 276(33):31305–10. [PubMed: 11406630]33. Hofmann RM, Cotton GJ, Chang EJ, Vidal E, Veach D, Bornmann W, et al. Fluorescent monitoring of kinase activity in real time: development of a robust fluorescence-based assay for Abl tyrosine kinase activity. Bioorganic & medicinal chemistry letters. 2001; 11(24):3091–4.[PubMed: 11720849]34. Cotton GJ, Muir TW. Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. Chemistry & biology. 2000; 7(4):253–61. [PubMed: 10780925]35. Peterson ME, Long EO. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity. 2008; 29(4):578–88. [PubMed: 18835194]36. Sarkar P, Reichman C, Saleh T, Birge RB, Kalodimos CG. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol Cell. 2007; 25 (3):413–26. [PubMed: 17289588]37. Sriram G, Reichman C, Tunceroglu A, Kaushal N, Saleh T, Machida K, et al. Phosphorylation of

Crk on tyrosine 251 in the RT loop of the SH3C domain promotes Abl kinase transactivation.

Oncogene. 2011; 30(46):4645–55. [PubMed: 21602891]

38. Sriram G, Birge RB. Commentary: The carboxyl-terminal Crk SH3 domain: Regulatory strategies

and new perspectives. FEBS letters. 2012

39. Sarkar P, Saleh T, Tzeng SR, Birge RB, Kalodimos CG. Structural basis for regulation of the Crk

signaling protein by a proline switch. Nat Chem Biol. 2011; 7(1):51–7. [PubMed: 21131971]

40. Meisner H, Czech MP. Coupling of the proto-oncogene product c-Cbl to the epidermal growth

factor receptor. J Biol Chem. 1995; 270(43):25332–5. [PubMed: 7592693]

41. Sawasdikosol S, Ravichandran KS, Lee KK, Chang JH, Burakoff SJ. Crk interacts with tyrosine-

phosphorylated p116 upon T cell activation. J Biol Chem. 1995; 270(7):2893–6. [PubMed:

7531694]

42. Buday L, Khwaja A, Sipeki S, Farago A, Downward J. Interactions of Cbl with two adapter

proteins, Grb2 and Crk, upon T cell activation. J Biol Chem. 1996; 271(11):6159–63. [PubMed:

8626404]

43. Reedquist KA, Fukazawa T, Panchamoorthy G, Langdon WY, Shoelson SE, Druker BJ, et al.

Stimulation through the T cell receptor induces Cbl association with Crk proteins and the guanine

nucleotide exchange protein C3G. J Biol Chem. 1996; 271(14):8435–42. [PubMed: 8626543]

44. Swaminathan G, Tsygankov AY. The Cbl family proteins: ring leaders in regulation of cell

signaling. J Cell Physiol. 2006; 209(1):21–43. [PubMed: 16741904]

45. Ryan PE, Davies GC, Nau MM, Lipkowitz S. Regulating the regulator: negative regulation of Cbl

ubiquitin ligases. Trends in biochemical sciences. 2006; 31 (2):79–88. [PubMed: 16406635]

46. Sawasdikosol S, Chang JH, Pratt JC, Wolf G, Shoelson SE, Burakoff SJ. Tyrosine-phosphorylated

Cbl binds to Crk after T cell activation. J Immunol. 1996; 157(1):110–6. [PubMed: 8683103]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

47. Gelkop S, Babichev Y, Isakov N. T cell activation induces direct binding of the Crk adapter protein to the regulatory subunit of phosphatidylinositol 3-kinase (p85) via a complex mechanism involving the Cbl protein. J Biol Chem. 2001; 276(39):36174–82. [PubMed: 11418612]48. Amsen D, Kruisbeek A, Bos JL, Reedquist K. Activation of the Ras-related GTPase Rap1 by thymocyte TCR engagement and during selection. European journal of immunology. 2000;30(10):2832–41. [PubMed: 11069064]49. Ichiba T, Hashimoto Y, Nakaya M, Kuraishi Y, Tanaka S, Kurata T, et al. Activation of C3G guanine nucleotide exchange factor for Rap1 by phosphorylation of tyrosine 504. J Biol Chem.1999; 274(20):14376–81. [PubMed: 10318861]50. Zhang W, Shao Y, Fang D, Huang J, Jeon MS, Liu YC. Negative regulation of T cell antigen receptor-mediated Crk-L-C3G signaling and cell adhesion by Cbl-b. J Biol Chem. 2003; 278(26):23978–83. [PubMed: 12697763]51. Martelli MP, Boomer J, Bu M, Bierer BE. T cell regulation of p62(dok) (Dok1) association with Crk-L. J Biol Chem. 2001; 276(49):45654–61. [PubMed: 11553620]52. Nolz JC, Nacusi LP, Segovis CM, Medeiros RB, Mitchell JS, Shimizu Y, et al. The WAVE2complex regulates T cell receptor signaling to integrins via Abl- and CrkL-C3G-mediated activation of Rap1. The Journal of cell biology. 2008; 182(6):1231–44. [PubMed: 18809728]53. Kanda H, Mimura T, Morino N, Hamasaki K, Nakamoto T, Hirai H, et al. Ligation of the T cell antigen receptor induces tyrosine phosphorylation of p105CasL, a member of the p130Cas-related docking protein family, and its subsequent binding to the Src homology 2 domain of c-Crk.European journal of immunology. 1997; 27(8):2113–7. [PubMed: 9295052]54. Ohashi Y, Iwata S, Kamiguchi K, Morimoto C. Tyrosine phosphorylation of Crk-associated substrate lymphocyte-type is a critical element in TCR- and beta 1 integrin-induced T lymphocyte migration. J Immunol. 1999; 163(7):3727–34. [PubMed: 10490968]55. Ohashi Y, Tachibana K, Kamiguchi K, Fujita H, Morimoto C. T cell receptor-mediated tyrosine phosphorylation of Cas-L, a 105-kDa Crk-associated substrate-related protein, and its association of Crk and C3G. The Journal of biological chemistry. 1998; 273(11):6446–51. [PubMed:9497377]56. Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, Feller SM, et al. Interaction of hematopoietic

progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-

terminal kinase. Mol Cell Biol. 1999; 19(2):1359–68. [PubMed: 9891069]

57. Gesbert F, Garbay C, Bertoglio J. Interleukin-2 stimulation induces tyrosine phosphorylation of

p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and

natural killer cells. J Biol Chem. 1998; 273(7):3986–93. [PubMed: 9461587]

58. Imaizumi T, Araki K, Miura K, Araki M, Suzuki M, Terasaki H, et al. Mutant mice lacking Crk-II

caused by the gene trap insertional mutagenesis: Crk-II is not essential for embryonic

development. Biochemical and biophysical research communications. 1999; 266(2):569–74.

[PubMed: 10600543]

59. Park TJ, Boyd K, Curran T. Cardiovascular and craniofacial defects in Crk-null mice. Mol Cell

Biol. 2006; 26(16):6272–82. [PubMed: 16880535]

60. Guris DL, Fantes J, Tara D, Druker BJ, Imamoto A. Mice lacking the homologue of the human

22q11. 2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nature genetics.

2001; 27(3):293–8. [PubMed: 11242111]

61. Peterson AC, Marks RE, Fields PE, Imamoto A, Gajewski TF. T cell development and function in

CrkL-deficient mice. European journal of immunology. 2003; 33(10):2687–95. [PubMed:

14515252]

62. Moon AM, Guris DL, Seo JH, Li L, Hammond J, Talbot A, et al. Crkl deficiency disrupts Fgf8

signaling in a mouse model of 22q11 deletion syndromes. Developmental cell. 2006; 10(1):71–80.

[PubMed: 16399079]

63. Guris DL, Duester G, Papaioannou VE, Imamoto A. Dose-dependent interaction of Tbx1 and Crkl

and locally aberrant RA signaling in a model of del22q11 syndrome. Developmental cell. 2006;

10(1):81–92. [PubMed: 16399080]

64. Momma K. Cardiovascular anomalies associated with chromosome 22q11. 2 deletion syndrome.

The American journal of cardiology. 2010; 105(11):1617–24. [PubMed: 20494672]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

65. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene,Tbx1. Nature genetics. 2001; 27(3):286–91. [PubMed: 11242110]66. Newbern J, Zhong J, Wickramasinghe RS, Li X, Wu Y, Samuels I, et al. Mouse and human phenotypes indicate a critical conserved role for ERK2 signaling in neural crest development.Proceedings of the National Academy of Sciences of the United States of America. 2008; 105(44):17115–20. [PubMed: 18952847]67. Gennery AR. Immunological aspects of 22q11. 2 deletion syndrome. Cellular and molecular life sciences: CMLS. 2012; 69(1):17–27. [PubMed: 21984609]68. Meechan DW, Maynard TM, Gopalakrishna D, Wu Y, LaMantia AS. When half is not enough:gene expression and dosage in the 22q11 deletion syndrome. Gene expression. 2007; 13(6):299–310. [PubMed: 17708416]69. Jawad AF, McDonald-Mcginn DM, Zackai E, Sullivan KE. Immunologic features of chromosome 22q11. 2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). The Journal of pediatrics. 2001; 139(5):715–23. [PubMed: 11713452]70. Junker AK, Driscoll DA. Humoral immunity in DiGeorge syndrome. The Journal of pediatrics.1995; 127(2):231–7. [PubMed: 7636647]71. Jacob M, Todd L, Sampson MF, Pure E. Dual role of Cbl links critical events in BCR endocytosis.International immunology. 2008; 20(4):485–97. [PubMed: 18283045]72. Jacob M, Todd LA, Majumdar RS, Li Y, Yamamoto K, Pure E. Endogenous cAbl regulates receptor endocytosis. Cellular signalling. 2009; 21(8):1308–16. [PubMed: 19344757]73. Smit L, van der Horst G, Borst J. Sos, Vav, and C3G participate in B cell receptor-induced signaling pathways and differentially associate with Shc-Grb2, Crk, and Crk-L adaptors. J Biol Chem. 1996; 271(15):8564–9. [PubMed: 8621483]74. Ingham RJ, Krebs DL, Barbazuk SM, Turck CW, Hirai H, Matsuda M, et al. B cell antigen receptor signaling induces the formation of complexes containing the Crk adapter proteins. J Biol Chem. 1996; 271(50):32306–14. [PubMed: 8943292]75. Manie SN, Beck AR, Astier A, Law SF, Canty T, Hirai H, et al. Involvement of p130(Cas) and p105(HEF1), a novel Cas-like docking protein, in a cytoskeleton-dependent signaling pathway initiated by ligation of integrin or antigen receptor on human B cells. J Biol Chem. 1997; 272(7):

4230–6. [PubMed: 9020138]

76. Smit L, van der Horst G, Borst J. Formation of Shc/Grb2- and Crk adaptor complexes containing

tyrosine phosphorylated Cbl upon stimulation of the B-cell antigen receptor. Oncogene. 1996;

13(2):381–9. [PubMed: 8710377]

77. Lottin-Divoux S, Jean D, Le Romancer M, Frade R. Activation of Epstein-Barr virus/C3d receptor

(gp140, CR2, CD21) on human B lymphoma cell surface triggers Cbl tyrosine phosphorylation, its

association with p85 subunit, Crk-L and Syk and its dissociation with Vav. Cellular signalling.

2006; 18(8):1219–25. [PubMed: 16289966]

78. McLean-Tooke A, Spickett GP, Gennery AR. Immunodeficiency and autoimmunity in 22q11. 2

deletion syndrome. Scandinavian journal of immunology. 2007; 66(1):1–7. [PubMed: 17587340]

79. Long EO. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunological

reviews. 2008; 224:70–84. [PubMed: 18759921]

80. Long EO. Regulation of immune responses through inhibitory receptors. Annual review of

immunology. 1999; 17:875–904.

81. Liu D, Peterson ME, Long EO. The adaptor protein crk controls activation and inhibition of natural

killer cells. Immunity. 2012; 36(4):600–11. [PubMed: 22464172]

82. Long EO, Sik Kim H, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell

responses: integration of signals for activation and inhibition. Annual review of immunology.

2013; 31:227–58.

83. Segovis CM, Schoon RA, Dick CJ, Nacusi LP, Leibson PJ, Billadeau DD. PI3K links NKG2D

signaling to a CrkL pathway involved in natural killer cell adhesion, polarity, and granule

secretion. J Immunol. 2009; 182(11):6933–42. [PubMed: 19454690]

84. Huang JY, Umehara H, Inoue H, Tabassam FH, Okazaki T, Kono T, et al. Differential interaction

of Cbl with Grb2 and CrkL in CD2-mediated NK cell activation. Molecular immunology. 2000;

37(17):1057–65. [PubMed: 11399323]

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

85. Umehara H, Inoue H, Huang J, Kono T, Minami Y, Tanaka Y, et al. Role for adapter proteins in costimulatory signals of CD2 and IL-2 on NK cell activation. Molecular immunology. 2002;38(8):587–96. [PubMed: 11792427]86. ten Hoeve J, Arlinghaus RB, Guo JQ, Heisterkamp N, Groffen J. Tyrosine phosphorylation of CRKL in Philadelphia+ leukemia. Blood. 1994; 84(6):1731–6. [PubMed: 7521685]87. Anfossi N, Andre P, Guia S, Falk CS, Roetynck S, Stewart CA, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006; 25(2):331–42. [PubMed: 16901727]88. Hoglund P, Brodin P. Current perspectives of natural killer cell education by MHC class I molecules. Nature reviews Immunology. 2010; 10(10):724–34.89. Joncker NT, Raulet DH. Regulation of NK cell responsiveness to achieve self-tolerance and maximal responses to diseased target cells. Immunological reviews. 2008; 224:85–97. [PubMed:18759922]90. Yokoyama WM, Kim S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunological reviews. 2006; 214:143–54. [PubMed: 17100882]91. Sun JC, Lopez-Verges S, Kim CC, DeRisi JL, Lanier LL. NK cells and immune “memory”. J Immunol. 2011; 186(4):1891–7. [PubMed: 21289313]92. Paust S, von Andrian UH. Natural killer cell memory. Nature immunology. 2011; 12(6):500–8.[PubMed: 21739673]93. McLean-Tooke A, Barge D, Spickett GP, Gennery AR. Immunologic defects in 22q11. 2 deletion syndrome. The Journal of allergy and clinical immunology. 2008; 122(2):362–7. 367e1–4.[PubMed: 18485468]94. Finocchi A, Di Cesare S, Romiti ML, Capponi C, Rossi P, Carsetti R, et al. Humoral immune responses and CD27+ B cells in children with DiGeorge syndrome (22q11. 2 deletion syndrome).Pediatric allergy and immunology: official publication of the European Society of Pediatric Allergy and Immunology. 2006; 17(5):382–8. [PubMed: 16846458]95. Orange JS. Formation and function of the lytic NK-cell immunological synapse. Nature reviews Immunology. 2008; 8(9):713–25.96. Stinchcombe JC, Griffiths GM. Secretory mechanisms in cell-mediated cytotoxicity. Annual

review of cell and developmental biology. 2007; 23:495–517.

97. Tybulewicz VL. Vav-family proteins in T-cell signalling. Current opinion in immunology. 2005;

17(3):267–74. [PubMed: 15886116]

98. Oberley MJ, Wang DS, Yang DT. Vav1 in hematologic neoplasms, a mini review. American

journal of blood research. 2012; 2(1):1–8. [PubMed: 22432082]

99. Harwood NE, Batista FD. The cytoskeleton coordinates the early events of B-cell activation. Cold

Spring Harbor perspectives in biology. 2011; 3(2)

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 1. Comparison of CrkI and CrkII in sequence

CrkI and CrkII sequences are aligned by Multalin version 5.4.1 software (http://

multalin.toulouse.inra.fr/multalin/). The consensus sequences are marked in Red. NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 2. Domains of Crk and its binding partners

Schematic diagram of the domains of CrkL (303 aa) and CrkII (304 aa). The binding

partners of SH2 and SH3 domains are listed on the top. NIH-PA Author Manuscript

NIH-PA Author Manuscript

Figure 3. Domain Comparison of CrkL and CrkII Sequence alignment of CrkL and CrkII by Multalin version 5.4.1 (http://multalin.toulouse.inra.fr/multalin/). The consensus symbols are as follows: ! is anyone of IV. % is anyone of FY. # is anyone of NDQEBZ.NES = nuclear export signal. PRR = proline-rich region.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

研发流程问题整理

林小池 测试: 1、开发项目计划变更通知不到位,导致测试人员从其他项目剥离后无任务安排;——项目变更通知不到位 2、测试组处于被动告知,个别项目需求测试内容是与开发多次交流后得知,需求与开发内容脱节;——项目需求开发过程设计发生变更甚至推翻原有方案 研发: 1、能够直观获取了解前后版本修改内容的对比,便于更快确认修改的内容; 产品: 1、需求既定的情况下,并且经过内部开发技术评审,在时间允许的情况下的开发内部变更都必须互相知晓,保证开发过程中产品需求与用户真实需求的落实的一致性。 2、评审会议是内部明确需求的会议,不是产品的独角戏,所有与会者必须高度的熟悉需求及方案,评审通过后,原则上不允许变更; 3、希望研发内部也能尽量有详细开发文档的留存; 4、研发在熟知需求,开发完成之后要求自测,测试组能有一定的决策,并能对开发提测内容有初步用户体验,对不符合使用习惯或业务逻辑有偏差、样式有区别原型的功能需求提出整改建议。 5、在有产品人员出具的需求文档中,应该以需求文档为业务文档为用户需求,并以之为蓝本,进行开发,研发进行不对该需求中的方案及逻辑、规则进行随意变更; 陈莹莹 1、小池展示的原型文档相对完整,且有益于项目交接,但此文档单次输出时间较长,是否能适用于我们现有的开发流程?对开发和测试的工作是否有很大的推进作用? 2、如何解决项目开发时间紧的情况下保证开发流程的完整性? 3、如果解决开发与测试在需求评审过程中的主动性? 陈家辉 1、对已有系统业务细节无法很好的掌握,一个是历史的需求文档缺失或者记录的不够详细,第二个是代码那边的提交记录,好像代码迁移之后就没了,一些不明确的改动不知道是因为哪个需求改动的

行为培训四步骤

行为培训四步骤 文章来源:中训网https://www.doczj.com/doc/5c11886937.html, ■文/ 苏珊娜·斯基芬顿帕里·宙斯著 《行为培训》 作者: 苏珊娜·斯基芬顿 帕里·宙斯著 译者: 严峰 出版社:华夏出版社 定价:29.00元 内容简介: 接受杰出的培训,会让人们有更快的发展、更好的表现和更长远的职业前景。如今,无论是组织还是个人,都认识到培训至关重要。 本书打破了传统培训的框架,首次向人们提供了关于培训实践的全面科学模型。它吸收了现有的行之有效的培训方法,并且把它放到了更大的框架内进行论述。 通过阅读该书,你会发现大量有价值的信息。你不仅可以学到如何运用培训原理和技巧,以实现有意义的、持久的和可测的良好影响,而且还可以品味最鼓舞人心的培训理念。本书充满案例,同时配以大量图表、言简意赅,思路清晰。对于培训业的从业人员来讲,本书是一本难得的指导书。 行为培训的理论基础建立在詹姆斯·普罗卡斯卡和他的同事的研究之上。为了弄清楚人类行为改变的过程,普洛卡斯卡研究了400多个案例,归纳出一些普遍规律。 普罗卡斯卡和他的同事研究了人们在决定改变自己的行为方式时通常要经历哪些过程。他们发现各种各样的变化大体可以归结为5个步骤,前4个步骤是在1982年一项自己戒烟与参加戒烟培训的对比研究中发现的,第5步是在1991-1992年的研究中证明的。 起初,普氏理论只是众多被应用于行为培训领域的理论之一。实践证明,这一理论普遍适用于多种培训,如个人发展、组织管理、运动训练,还有心理治疗、领导培训和教育学等许多领域。 于是,普氏理论成为一种被广泛采用的行为培训的理论基础,下面介绍的行为培训4步骤的模式就是建立在这个基础上的。其他的培训模式虽然也强调改变的重要性,但缺乏科学的理论框架,因此较少被使用。 行为培训模式是在普氏理论的基础上发展而来的,形成了有时间限制的4个步骤。在每个步骤中,培训师使用不同的策略和技巧,指导受训人的行为。在普氏理论的基础上,再加上强调保持培训效果的重要性阶段,就构成了我们下面介绍的行为培训的4个步骤:·反思阶段,包括第一步和第二步; ·准备阶段; ·实施阶段; ·保持阶段。 在反思阶段的第一步,人们由于各种各样的原因,还不打算改善自己的行为。第二步时,人们才意识到问题的存在,但并未进一步采取行动。 准备阶段,受训人了解了培训的性质和过程,开始打算进行改变,同时为下一步做好知

步进电机资料word版

程序 //本实验需要购买步进电机模块 /*----------------------------------------------- 名称:步进电机 内容:本程序用于测试4相步进电机常规驱动 4个按键分别控制加速、减速、开启、停止 数码管显示 01-18速度等级,数字越大,速度越大 ------------------------------------------------*/ #include #define KeyPort P3 #define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换 sbit LATCH1=P2^6;//定义锁存使能端口段锁存 sbit LATCH2=P2^7;// 位锁存 Unsignedcharcode dofly_DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};// 显示段码值0~9 unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 unsigned char TempData[8]; //存储显示值的全局变量 sbit A1=P1^0; //定义步进电机连接端口 sbit B1=P1^1; sbit C1=P1^2; sbit D1=P1^3; #define Coil_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电 #define Coil_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电 #define Coil_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电 #define Coil_DA1 {A1=1;B1=0;C1=0;D1=1;}//D相通电,其他相断电 #define Coil_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电 #define Coil_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电 #define Coil_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电 #define Coil_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电 #define Coil_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电 unsigned char Speed=1; bit StopFlag; void Display(unsigned char FirstBit,unsigned char Num);

建立归纳理论的步骤

建立归纳理论的步骤 我们认为建立归纳理论是从经验观察开始,构建过程不是从抽象的理论出发,一般经由下述步骤:①不做理论假设而直接进入实地研究阶段;②描述实际发生的现象和事实,用一系列经验命题的方式加以陈述;③在大量观察的基础上找出最有概括性的命题,由此提出具有普遍意义的模式。以上三步是归纳理论的一般步骤,但是如果更加严谨的话,会加上第四步④对所归纳的理论进行验证。 就拿一篇文献为例,《变革型领导的结构与测量》。这篇文章首先采用开放式问卷对249名管理者与员工进行了调查,对问卷的内容进行归纳,总结出我国的变革型领导包括8类行为或特征。然后通过专家讨论,编制了适合我国国情的变革型领导问卷。431份有效问卷的探索性因素分析表明,变革型领导是一个四因素的结构,具体包括:德行垂范、领导魅力、愿景激励与个性化关怀。为了进一步验证变革型领导的构想效度,并考察问卷的信度与同时效度,在6家企业进行了调查,获得了440份有效问卷。最终证实变革型领导的构想效度可行。这篇文章整体的逻辑结构就是严格的符合归纳理论的步骤。其中对问卷的内容进行归纳,总结出我国的变革型领导包括8类行为或特征,这部分的结构也符合理论归纳的步骤。那接下来,我分别说一下整体和部分的结构是如何展开的。 首先,是对问卷内容的归纳部分。他的步骤分别是:步骤一,首先给出BASS对变革型领导的定义,要求被试根据他们的经验和观察列出5~6条管理人员所表现出来的、符合变革型领导定义的行为或特

征。为了保证取样的代表性,本研究在全国七城市(包括北京、杭州、西安、广州、深圳、郑州和重庆)总共调查了249名来自不同行业,不同性质单位的被试。这一步就是不做理论假设而直接进入实地研究阶段,就是做问卷调查,接下来就是描述实际发生的现象和事实,用一系列经验命题的方式加以陈述,也就是由公司员工对变革型领导进行描述。 步骤二,根据被试所列出的描述,由两名组织行为学专家对描述 进行归纳。249名被试总共列出了1, 276条描述(平均每人5. 12条) 。所有描述都输入计算机,并在数据输入之后由两名组织行为学专家对所有描述根据标准进行筛选。标准为: ( 1)被试的描述必须有清楚的涵义; (2)必须是管理者所表现出来的行为或特征;(3)不会明显属于交易型领导。根据以上标准,总共有93项(7. 3% )描述被认为是“不可用的”。这样,本研究总共得到了1370 (1276 - 93 + 149 + 19 + 19)项涵义单一的描述。然后,根据1370项描述内容的类似性, 2名从事组织行为学研究的专家采用讨论的方式,对所有的描述进行归纳。经过多轮归纳,最后得到了8大类。这一步就是在大量观察的基础上找出最有概括性的命题,由此提出具有普遍意义的模式。 步骤三、让3名研究生重新对所有的描述进行归纳。为了检验2 名研究者归纳的正确性和有效性,我们又请3名研究生对所有的描述 重新进行归纳。,从比较结果可以看出三名研究生或者二名研究生与研究者归纳一致的描述有1061项,占总项目的85. 5% ,说明研究者的归纳是合理的有效的。据此,我们最后确定中国的变革型领导主要包

重要。雷赛步进电机控制祥细资料

什么是步进电机 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步 进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B 与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。

步进电机基本知识

步进电机基本知识(2009-01-08 13:51:30) 1、步进电机:是一种将电脉冲转化为角位移或线位移的执行机构。其特点是没有积累误差(精度为100%),广泛应用于各种开环控制。 2、步进电机分类:永磁式(PM),反应式(VR),混合式(HB)。 3、保持转矩:是指步进电机通电,但没有转动时,定子锁住转子的力矩。 4、精度:为步进角的3~5%,且不累积。 5、细分驱动器:是通过改变相邻(A,B)电流的大小,以改变合成磁场的夹角来控制步进电机的运转的。细分功能完全是由驱动器靠精确控制电机的相电流所产生的,与电机无关。对于2,4相电机,细分后的步距角等于电机的整步步距角除以细分数。对于3相反应式电机,细分后的步距角等于电机的半步步距角除以细分数。 6、步距角:对应一个脉冲信号,电机转子转过的角位移用θ表示。0.9°/1.8°(表示半步工作时为0.9°,整步工作时为1.8°)此步距角为电机固有步距角。 7、相数:产生不同对极N、S磁场的激磁线圈对数。常用m表示。 8、失步:电机运转时运转的步数,不等于理论上的步数。称之为失步。 9、最大空载起动频率:电机在某种驱动形式、电压及额定电流下,在不加负载的情况下,能够直接起动的最大频率。 10、最大空载运行频率:电机在某种驱动形式,电压及额定电流下,电机不带负载的最高转速频率。 11、步进电机最好不使用整步状态,整步状态时振动大。 12、电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。方向由导电顺序决定。控制步进脉冲信号的频率,可以对电机进行精确调速;控制步进脉冲的个数,可以对电机进行精确定位。

13、步进电机驱动器:是把计算机控制系统提供的弱信号放大为步进电机能够接受的强电流信号。 14、拍数:是完成一个磁场周期性变化所需脉冲数。指电机转过一个齿距角所需脉冲数。 15、脱机信号free:此信号为选用信号,并不是必须要用的,只有在一些特殊情况下使用,此端为低电平有效,这时电机处于无力矩状态;此端为高电平或悬空不接时此功能无效,电机可正常运行,此功能若用户不采用,只需将此端悬空即可。 16、CP脉冲宽度一般要求不小于2us。 17、CP电平方式:对于共阳接法的驱动器要求为负脉冲方式,脉冲状态为低电平,无脉冲时为高电平;对于共阴接法的驱动器要求为正脉冲方式,脉冲状态为高电平,无脉冲时为低电平。 18、dir信号:一定要在电机降速停止后再换向。 19、步进电机在启动时,必须有升速过程;在停止时必须有降速过程,一般来说升速过程和降速过程规律相同。特例:步进电机运行速度不超过突跳频率,这时不存在升降速问题。 20、自动半电流功能:驱动机在步进脉冲信号停止施加2S左右,会自动进入半电流状态,这时电机相电流为运行时的一半,以减少功耗和保护电机。 21、细分优点:完全消除了电机的低频振荡。 22、步进电机的工作性能在很大程度上取决于所使用的驱动电路的类型和参数。 23、常用的有两相,四相混合式步进电机。 24、电机是有内阻的感性负载。 25、步进电机驱动方式:恒压,恒流,恒流斩波,使同样电机输出更大速度和功率。 26、步进电机启动:A、低初速度,低加速度阶段

产品研发流程

1目的及适用范围 1.1为规范产品研发过程,提高产品研发的效率、质量, 降低研发成本,特制定本程序; 1.2本程序文件适用于侏罗纪公司产品研发; 1.3本程序文件由侏罗纪公司制定,其解释权及修 改权属于; 1.4本程序文件从2017年月日起执行; 2职责 2.1产品部负责产品研发; 2.2质量控制部负责对组件开发过程中的里程碑产生的 相关成果和文档进行质量控制,并将符合规范的成果 放入资源中心存档; 2.3技术支持部和市场部负责宣传材料和用户手册的制 作,以及和产品销售流程的衔接环节和动作;

3产品研发流程 3.1CEO从公司战略规划决案中形成产品规划,下发给产 品部; 3.2产品(副)总监接到产品规划后,依据产品规划委托 产品经理进行产品研发立项; 3.3执委会对产品立项进行评审,若评审未通过,相关文 档放入资源管理部备案; 3.4若立项评审通过,质量控制部对立项进行质量检验, 若质检未通过,产品经理修改立项报告; 3.5若质检通过,产品经理开始制订项目计划,同时质量 控制部将立项相关文档放入资源管理部归档; 3.6产品经理将项目计划提交给产品(副)总监评审,若 未通过,产品经理修改项目计划; 3.7若评审通过,产品总监安排研发项目资源; 3.8产品经理获得研发项目资源后,进行需求分析,并将 相关成果交技术委员会进行内容评审; 3.9若内容评审未通过,产品经理修改需求分析;若内容 评审通过,质量控制部对《需求分析说明》进行质量 检验; 3.10若质检未通过,产品经理修改《需求分析说明》,若

质检通过,相关成果和文档放入资源管理部归档,同时产品经理带领研发相关人员进行总体设计; 3.11产品经理和研发人员完成总体设计后将相关成果交 技术委员会进行内容评审; 3.12若内容评审未通过,产品经理修改《总体设计说明》; 若内容评审通过,质量控制部对《总体设计说明》进行质量检验; 3.13若质检未通过,产品经理修改《总体设计说明》,若 质检通过,相关成果和文档放入资源管理部归档,同时产品经理和研发人员进行程序设计/测试; 3.14完成程序设计/测试后,产品经理将相关成果交质量控 制部进行功能测试,若测试未通过,产品经理修改相关成果,若测试通过,质量控制部对相关成果和文档进行质量检验; 3.15若质检未通过,产品经理修改相关成果和文档;若质 检通过,质量控制部将相关成果和文档放入资源管理部门归档; 3.16同时产品研发组制作软件,技术支持部和市场部制作 宣传材料,之后,技术支持部对销售人员进行内部培训,市场部申请并取得著作权; 3.17市场部在取得著作权后制作用户/技术手册;

步进电机常识与矩频曲线

步进常识 1.什么是步进电机? 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种? 步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。 这种步进电机的应用最为广泛。 3.什么是保持转矩(HOLDING TORQUE)? 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进

电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m 的步进电机。 4.什么是DETENT TORQUE?(起动转扭) DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少?是否累积? 一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少? 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 7.为什么步进电机的力矩会随转速的升高而下降?

初三英语四步骤任务型写作教学法初探

初三英语四步骤任务型写作教学法初探 大连市第六十六中学高国伟 摘要:本文根据《英语新课程标准》倡导的任务型教学的理念,汲取了国内外英语教育理论家的研究精华,结合实际工作中写作教学中的实践经验,论述了初三英语写作教学实施“导入----操练----写作----评改”四个步骤的教学方法,能够发挥学生的主体作用和创造性。 关键词:任务型写作教学自主学习评改 英语写作教学一直以来是教师教学中的一个侧重点,也是学生在综合运用英语时较难掌握的一个技能。它不但涉及到了英语的基本的词法、语法,还有学生的分析能力、思维能力和逻辑能力的综合体现,所以一直以来是初中英语课堂教学的重点和难点。初中英语四步骤任务型写作课教学模式就是指是在建构主义教学理论和英语写作教学策略的指导下,为了达到综合语言运用能力的教学目标,在具体的任务功能的驱动下,教师在课堂教学中依照“激活思路---感知体验---实际操练---真实运用”的教学过程,采取“导入----操练----写作----评改”四个步骤的教学方法,进而引导学生发挥主体作用和创造性,培养学生掌握英语写作方法和技巧,达到综合运用语言的目的。 一、定义 所谓任务型教学,就是在教学活动中,教师应当围绕特定的交际和语言项目,设计出具体的、可操作的任务,学生通过表达、沟通、交涉、解释、询问等各种语言活动形式来完成任务,以达到学习和掌握语言的目的。任务型教学法是吸收了以往多种教学法的优点而形成的,它和其它的教学法并不排斥。 任务型写作教学,就是写作教学活动中,教师围绕特定的交际和语言项目,设计出具体的、可操作的写作任务,学生通过表达、沟通、交际、解释和评价等各种语言活动形式来完成写作任务,以达到学习和掌握语言的目的。 二、理论依据 1、建构主义理论:建构主义认为,知识不是通过教师传授得到,而是学

研发项目流程

研发项目流程 (讨论稿) 一、编制说明 1.目的及重点 在事业部层面规范研发项目立项、实施、验收流程,从过程上保障研发项目保质、保量按期完成;合理分配研发资源,明确各部门职责,加强部门间的沟通协作;及时、科学评价项目过程及项目成果,对研发人员在项目中取得的业绩给予及时确认。 2.研发项目划分原则 原则上每个项目的计划周期不超过6周,人员不超过7人、特殊情况下不超过10人(指具体进行开发工作的人员,不包含过程管理、产品管理、发布管理等),若超过该标准则原则上需要对项目进行分解。 3.组织结构及职责分解 本流程中涉及的组织结构、角色及其职责分工如下: ●经理办公会 经理办公会在本流程中的职责为: 立项审批:对是否立项进行决策 验收审核:对项目成果是否予以验收进行决策 ●项目管理办公室(简称PMO) PMO成员:张某某、李某某、王某某、陈某某; PMO管理员:刘某某。 项目管理办公室的主要职责是:负责研发项目的过程监管、研发项目团队及其研发成果的考核评价。具体包括以下工作 制定并持续优化本流程; 监督本流程的实施; 进行任务书审核和立项评分; 在项目实施过程中进行项目监管; 组织项目变更控制委员会(CCB)进行项目变更评审,每个项目的CCB由PMO成员、研发部经理、项目需求提出者、项目产品管理人员、项目过程管理人员组成;

组织项目考核组进行项目考核,项目考核组由PMO成员、PMO 管理员、研发部经理、项目经理、项目产品管理人员、项目过程管理人员组成。 ●需求提出者 需求提出者可以是任何人,绝大多数情况下,开发类项目的需求提出者为产品部相关产品经理;研究类项目的需求提出者为事业部领导或研发部经理。需求提出者的主要职责是: 指定或担任项目产品管理人员进入项目组进行产品管理相关工作。 进行产品定义,做立项必要性分析; 配合研发部进行详细需求分析,对项目需求进行终审、确认; 制定验收标准,组织进行项目成果验收测试,组织召开验收审核会议; 接收项目成果; 对项目成果质量进行评价。 ●研发部经理 研发部经理在本流程中的主要职责包括: 参与立项流程 指定技术可行性分析人员、项目经理,组建项目团队; 参加任务书审核和立项评分会议 对项目进行监管 参加项目变更评审 参与项目考核 ●项目经理 项目经理在本流程中的主要职责包括: 对项目研发过程进行组织、设计、规划; 对项目组成员进行分工、检查、督导、协调; 对项目组成员进行项目业绩考核。 ●项目组成员 项目组成员的主要职责是在项目经理领导下,按照过程要求完成项目的设计、开发、测试、移交、培训。 4.后续工作

57MM步进电机资料说明书(玖洋)

57系列二相步进电机 ◆步进电机详细信息 ◆步进电机性能参数 注:1. 以上仅为代表性产品,如需其它非代表性产品可以根据客户需求定制。 2.根据客户不同需求可以定制4线,6线,8线步进电机 3.两相步进电机基本步距角是1.8°,三相步进电机步距角是1.2°。 ◆步进电机安装尺寸(单位:mm)

57 FH系列步进电机标准出轴为光轴,直径6.35mm,直径8mm,伸出轴长度21mm。可按用户要求铣单扁、做双出轴、变更出轴长度;也可按用户要求定制电气参数,例如电流大小;或根据用户使用环境做参数调整,例如供电电压36V 要求低速大力矩;还可按用户提供样品仿制步进电机。 ◆步进电机曲线图说明 ◆步进电机接线图说明

注意: ◆电机特性数据和技术数据都是在匹配我公司驱动器驱动YBM86的情况下测得,测试电压为DC28V。 ◆步进电机力矩测试数据与驱动器型号、参数设置、驱动器供电电压密切相关;同规格步进电机因定转子间隙不同,饶线方式不同,其矩频特性也不同。 ◆电机安装前务必用电机前端盖安装止口定位,并注意公差配合,严格保证电机轴与负载轴的同心度,不同心会导致断轴。 ◆电机与负载连接时,严禁敲击,电机轴与轴承受敲击后可能影响电机性能,甚至损坏。 ◆电机与驱动器连接时,请勿接错相,错相或缺相时电机不能正常运转,可能损伤步进电机驱动器。 ◆无电机接线图时,用万用表测量,电机线两两相通,分别接A+A-、B+B-。无万用表时,挑两根电机线短接,若电机轴旋转阻力增大,则这两根线是一组线圈。电机旋转初始方向与所需方向相反时,把A+A-两线换位即可 57BYGH系列步进电机说明书 步距角:0.9/1.8度 绝缘电阻:500 V DC 100MΩ 绝缘强度:500V AC 1 Minute 温升:65K 环境温度:-10℃~+55℃ 绝缘等级:B 二相混合式步进电机

一个完整的新产品开发的八个阶段步骤

一个完整的新产品开发的八个阶段步骤 新产品开发是指企业从事新产品的研究、试制、投产,以更新或扩大产品品种的过程。一个完整的新产品开发过程要经历八个阶段:创意产生、创意筛选、产品概念发展和测试、营销规划、商业分析、产品实体开发、试销、商品化。 企业开发新产品一般来说有两条途径: 1、收购。即购买整家企业,以获取该企业的专利或生产他人产品的许可证。 2、自主开发。即通过企业自己的研发部门进行新产品开发。 一个完整的新产品开发有八个阶段: 一、新产品创意的产生 新产品开发过程的第一个阶段是寻找产品创意,即对新产品进行设想或创意的过程。一个好的新产品创意是新产品开发成功关键,缺乏好的新产品构思已成为许多行业新产品开发的瓶颈。 企业通常可从企业内部和企业外部寻找新产品构思的来源。公司内部人员包括:研究开发人员、市场营销人员、高层管理者及其他部门人员。这些人员与产品的直接接触程度各不相同,但他们总的共同点是熟悉公司业务的某一或某几方面。企业可寻找的外部构思来源有:顾客、中间商、竞争对手、企业外的研究和发明人员、咨询公司、营销调研公司等。 二、创意筛选 创意筛选是采用适当的评价系统及科学的评价方法对各种创意进行分析比较,从中把最有希望的创意挑选出来的一个过滤过程。在这个过程中,力争做到除去亏损最大和必定亏损的新产品创意,选出潜在盈利大的新产品创意。构思筛选的主要方法是建立一系列评价模型。评价模型一般包括:评价因素、评价等级、权重和评价人员。其中确定合理的评价因素和给每个因素确定适当的权重是评价模型是否科学的关键。 三、新产品概念的发展和测试 新产品创意是企业希望提供给市场的一些可能新产品的设想,新产品设想只是为新产品开发指明了方向,必须把新产品创意转化为产品概念才能真正指导新产品的开发。产品概念是企业从消费者的角度对产品构思进行的详尽描述。即将新产品构思具体化,描述出产品的性能、具体用途、形状、优点、外形、价格、名称、提供给消费者的利益等,让消费者能一目了然地识别出新产品的特征。因为消费者不是购买新产品构思,而是购买新产品概念。新产品概念形成的过程亦即把粗略的产品创意转化为详细的产品概念。并通过产品概念测试筛选出可以进一步商业化的产品概念。

步进电机驱动器的技术发展

将“电机固有步距角”细分成若干小步的驱动方法,称为细分驱动,细分是通过驱动器精确控制步进电机的相电流实现的,与电机本身无关。其原理是,让定子通电相电流并不一次升到位,而断电相电流并不一次降为0(绕组电流波形不再是近似方波,而是N级近似阶梯波),则定子绕组电流所产生的磁场合力,会使转子有N个新的平衡位置(形成N个步距角)。 最新技术发展: 国内外对细分驱动技术的研究十分活跃,高性能的细分驱动电路,可以细分到上千甚至任意细分。目前已经能够做到通过复杂的计算使细分后的步距角均匀一致,大大提高了步进电机的脉冲分辨率,减小或消除了震荡、噪声和转矩波动,使步进电机更具有“类伺服”特性。 采用细分技术与步进电机精度提高的关系:步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。 步电机系统解决方案

细分后电机运转时对每一个脉冲的分辨率提高了,但运转精度能 否达到或接近脉冲分辨率还取决于细分驱动器的细分电流控制精度 等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。 真正的细分对驱动器要有相当高的技术要求和工艺要求,成本亦会较高。国内有一些驱动器采用对电机相电流进行“平滑”处理来取代细分,属于“假细分”,“平滑”并不产生微步,会引起电机力矩的下降。真正的细分控制不但不会引起电机力矩的下降,相反,力矩会有所增加。 对实际步距角的作用:在没有细分驱动器时,用户主要靠选择不同相数的步进电机来满足自己对步距角的要求。如果使用细分驱动器,则用户只需在驱动器上改变细分数,就可以大幅度改变实际步距角,步进电机的‘相数’对改变实际步距角的作用几乎可以忽略不计。 深圳市维科特机电有限公司成立于2005年,是步进电机产品的销售、系统集成和应用方案提供商。我们和全球产品性价比高的生产 厂家合作,结合本公司专家团队多年的客户服务经验,给客户提供有 步电机系统解决方案

步进电机培训教材

步进电动机简介 一、步进电动机概述 1.1步进电机特点 步进电动机(stepping motor)也称脉冲电动机、脉动电动机、分级电动机;更老一些叫法也叫阶动电动机。 这种电动机以规定的次序对定子线圈励磁,每次只转动一定的角度。这种电动机主要特点如下: (1)控制电路 步进电动机的驱动控制电路是将脉冲分配到各相线圈中去的逻辑分配电路,或者是对线圈提供励磁的驱动开关电路。这种电路同其他伺服控制电路相比较是很简单。 (2)对数控机器的适应性 步进电动机很容易同应用微机的设备组合起来,优点是对旋转角度、速度、正反转;启动停止等动作的控制准确、迅速。 (3)定位控制 直流电动机等伺服电动机进行定位控制时,使转子保持在某一角度,一定要不间断通电,以达到制动作用。而步进电机只要维持励磁就能得到保持转矩。永磁型、混合型步进电动机即使 切断励磁也能得到定位转矩;因此,用步进电动机实现准确的定位控制既简单、成本又低。 (4)步距角误差 步进电动机的角度误差通常是基本步距角的5%左右,因此输入脉冲没有积累误差,所以定位精度很高。 (5)低转速、高转矩 步进电动机与其他类似电动机比较,是属于低速、高转矩电动机。其他伺服电动机的工作转速在1000rpm以上,而以每秒1000个脉冲的速度来驱动1.8°的步进电动机时转速只有300rpm, 以它是属于低转速、高转矩的电动机。 (6)速度可变控制 步进电机的旋转角度同输入脉冲成正比,旋转速度同输入的脉冲(频率)成正比,只要简单的改变脉冲速率,就能达到大幅度控制速度变化的目的。 (7)可靠性高 步进电机除了轴承以外没有电刷、换向器等磨损部分,无须特殊的维修保养是可靠性高寿命长的电动机。 (8)稳定性差 步进电动机的驱动转矩随着转子旋转的位置而变化,而每次励磁都会引起转矩的波动,所以速率的波动比较大。另外电动机的转矩和惯量决定着电动机固有的频率和驱动脉冲速率,同步进电动机安装的固有的振动之间引起共振,而产生共振噪音,这是一大缺点。 2.2步进电动机的历史 进入20世纪有关步进电动机的发明不断出现。最初美国的Andrew T MacCoy发明了电动打字机用的步进电动机,这是一种带逆转轮的结构的永磁步进电动机,步距角为30°。这种电动机获得了1907年美国专利。 1923年苏格兰的James Weir French发明了VR三相步进电动机。 2.3步进电动机的分类 根据步进电动机的结构可以分为三大类: (1)磁阻式步进电动机(Variable---reluctance type)(反应式) (2)永磁式步进电动机(permanent magnet type) (3)混合式步进电动机(hybrid type)(感应子式) 1.磁阻式步进电机,这种步进电机磁阻是可变的,也称VR型步进电机。追溯历史在19世纪中期, 这种步进电机的结构是最基础的。定子和转子上配置有一定间距的突极,当对线圈励磁时,定子和转子的突极相互吸引成直线状,利用这一原理获得步进式转矩。每一相突极分别错开一定的轴相角度重叠排列。 2.永磁式步进电机,也称PM步进电机,转子采用永磁磁钢。这种步进电机定子采用冲压方式加

工作方法(重要)(理论)

工作方法 一、先决条件 1、工作系统化 a、物品、办公桌井然有序 b、不用用太多时间整理物品 c、检查应有的常用工具:订书机、各色笔、透明胶、名片簿、文件夹、剪刀。。。。。。 2、建立工作档 a、目前专题 b、确定日常工作,分为:立即可用、待议项目、固定工作、专题资料、问题档案 3、建立资料档 二、方法理论 PDCA方法论: PLAN计划工作—》DO IT 执行—》CHECK 检查执行情况—》ACTION 修订计划 1、解决PLAN问题: a、目标的属性:必须明确、必须可达、必须量化、必须结果、必须时限 b、确定目标方法:剥洋葱法:大—》小—》即时 B树:大——子——子目标 c、收集信息,支持目标,寻找目标:快速阅读、捕捉灵感、专题调查、讨论交换 d、根据信息,决策目标:整理信息->设计方案->选择方案->评价方案; VSAFE法:价值、合适、认可、可行、持久; 头脑风暴法:只能用于查找方案,不能用于决策方案。 e、科学决策方案:利用决策树来对比所有方案 f、制订所得方案的行动计划: ①制订计划表:绿色——工作内容简单明了,所有条件齐全 黄色——没有确定怎么去做,或者信息条件不够 红色——麻烦比较大,很难完成 ②清理每一步的关系,寻找统筹方法,共同利用时间,绘制工作时间网络图 ③制订滚动计划,准备备用计划: 滚动:近细远粗,利用前面的执行情况来详细后面的计划 备用:如果有重大事情改变,则启用备用计划或者重新制订计划 2、DO IT 执行 a、立即行动(只有条件不够,才能缓做): ①不要把难做的事情往后拖,越拖越难做; ②不要把不喜欢的事情向后推,越推越讨厌; ③不要把喜欢的事情做过头,越做越浪费时间。 b、ABC法则: A型:今天必须做,重要并且紧急的任务

三相步进电机原理与控制方法资料

本模块由45BC340C型步进电机及其驱动电路组成。 (一)步进电机: 一般电动机都是连续旋转,而步进电动却是一步一步转动的,故叫步进电动机。每输入一个脉冲信号,该电动机就转过一定的角度(有的步进电动机可以直接输出线位移,称为直线电动机)。因此步进电动机是一种把脉冲变为角度位移(或直线位移)的执行元件。 步进电动机的转子为多极分布,定子上嵌有多相星形连接的控制绕组,由专门电源输入电脉冲信号,每输入一个脉冲信号,步进电动机的转子就前进一步。由于输入的是脉冲信号,输出的角位移是断续的,所以又称为脉冲电动机。 随着数字控制系统的发展,步进电动机的应用将逐渐扩大。 步进电动机的种类很多,按结构可分为反应式和激励式两种;按相数分则可分为单相、两相和多相三种。 图1 反应式步进电动机的结构示意图 图1是反应式步进电动机结构示意图,它的定子具有均匀分布的六个磁极,磁极上绕有绕组。两个相对的磁极组成一组,联法如图所示。 模块中用到的45BC340型步进电机为三相反应式步进电机,下面介绍它单三拍、六拍及双三拍通电方式的基本原理。 1、单三拍通电方式的基本原理 设A相首先通电(B、C两相不通电),产生A-A′轴线方向的磁通,并通过转子形成闭合回路。这时A、A′极就成为电磁铁的N、S极。在磁场的作用下,转子总是力图转到磁阻最小的位置,也就是要转到转子的齿对齐A、A′极的位置(图2a);接着B相通电(A、C 两相不通电),转了便顺时针方向转过30°,它的齿和C、C′极对齐(图2c)。不难理解,当脉冲信号一个一个发来时,如果按A→C→B→A→…的顺序通电,则电机转子便逆时针方向转动。这种通电方式称为单三拍方式。 图2 单三拍通电方式时转子的位置

新药研发过程

新药研发投资大,周期长,风险高。制药行业的普遍经验是一个新化学实 体药物的开发周期在10年以上成本在10亿美元以上。从候选药物到最终 产品上市其成功率只有一成。 新药研发是一项系统工程,涉及药学、药理、临床医学、伦理等各个相关 学科的相互配合与协作。其过程受国家相关政策、人类社会健康卫生的需 要等因素的影响。由于影响因素众多,新药研究的成功率也较低。 由于影响因素众多,新药研究的成功率也较低。统计 数据显示,过去整个制药行业从临床Ⅱ期进入Ⅲ期的成 功率平均达到25%。即使被批准上市的药物中也只有三分之一能被市场所接 受。因此只有克服及把握好新药研发中的难点与关键点,新药研发才有可 能取得包括市场销售等方面的成功。而目前认为,新药研发过程不仅仅是 指按照相关技术指导原则进行的生产前研究,也包括药品在上市后的Ⅳ期 临床研究及临床再评价研究,现就其进行扼要的论述。 剂量探索试验是新药临床试验的重要环节,应贯穿于新药研发的各个阶段, 其中又以I期和II期临床试验为重。I期临床试验主要用于探索新药的毒性, 即确定最大耐受剂量;II期临床试验主要用于探索新药的有效性,即确定剂 量效应关系和最小有效剂量。但目前国内对剂量探索试验重视程度不够,申 报的临床试验剂量往往在试验前已经由申办方或者相关研究人员确定,“剂 量探索”流于形式。究其原因,一是由于剂量探索试验属于新药剂量的初步探 索,药物有效性及安全性往往未知,而该试验又需要设置多个剂量组,因此面 临了更多的伦理学考验;二是剂量探索试验往往需要较大样本量,国内的申 办单位难以承受所带来的巨大风险。因此,国内很少有相关研究文献,对于剂 量探索试验设计及分析方法研究基本属于空白。除了上述实际应用中存在 的困难外,剂量探索试验对统计学家也提出了相应的挑战:剂量探索试验属 于多臂试验,应用多重比较的方法进行最小有效剂量估计不可避免。应用多 重比较时,即要防止I类错误的膨胀又要保证足够的检验效能;在自适应设计, 除了多臂问题以外,进行期中分析时也要考虑I类错误膨胀的问题,因此选择 合适的多重比较方法是剂量探索试验中的关键问题。 药物研发流程 药物从最初的实验室研究到最终摆放到药柜销售平均需要花费12年的时间。进行临床前试验的5000种化合物中只有5种能进入到后续的临床试验,而仅其中的1种化合物可以得到最终的上市批准。 总的来说新药的研发分为两个阶段:研究和开发。这两个阶段是相继发生有互相联系的。区分两个阶段的标志是候选药物的确定,即在确定候选药物之前为研究阶段,确定之后的工作为开发阶段。所谓候选药物是指拟进行系统的临床前试验并进入临床研究的活性化合物。

研发中心管理流程及规范-

研发中心管理流程及规范 未经允许,文档内容不可全部或部分发表、复制、使用于任何目的。

版本修订历史

目录 1. 目的..................................................... 错误!未定义书签。 2. 适用范围................................................. 错误!未定义书签。 3. 研发中心组织结构......................................... 错误!未定义书签。 . 研发中心架构....................................... 错误!未定义书签。 . 组织结构........................................... 错误!未定义书签。 . 部门岗位........................................... 错误!未定义书签。 4. 岗位职责................................................. 错误!未定义书签。 . 软件部主管岗位职责................................. 错误!未定义书签。 . 硬件部主管岗位职责................................. 错误!未定义书签。 . 机械结构部主管岗位职责............................. 错误!未定义书签。 . 质量部主管岗位职责................................. 错误!未定义书签。 . 系统方案部主管岗位职责............................. 错误!未定义书签。 . 产品经理(项目经理)岗位职责......................... 错误!未定义书签。 5. 项目管理规范............................................. 错误!未定义书签。 . 项目流程概述....................................... 错误!未定义书签。 . 项目来源........................................... 错误!未定义书签。 . 立项............................................... 错误!未定义书签。 . 设计............................................... 错误!未定义书签。 . 实现............................................... 错误!未定义书签。 . 测试............................................... 错误!未定义书签。 . 发布............................................... 错误!未定义书签。 . 生产............................................... 错误!未定义书签。 . 实施细则........................................... 错误!未定义书签。 6. 资料管理规范............................................. 错误!未定义书签。 . 日常资料备份....................................... 错误!未定义书签。 . 资料归档........................................... 错误!未定义书签。 . 资料安全管理....................................... 错误!未定义书签。 . 资料服务器管理..................................... 错误!未定义书签。 管理方式..................................... 错误!未定义书签。 资料目录..................................... 错误!未定义书签。 管理权限..................................... 错误!未定义书签。 7. 例会及报告制度........................................... 错误!未定义书签。 . 项目例会........................................... 错误!未定义书签。 . 部门例会........................................... 错误!未定义书签。 . 个人周报........................................... 错误!未定义书签。 . 项目周报........................................... 错误!未定义书签。 8. 员工入职管理流程......................................... 错误!未定义书签。 . 新员工入职要求..................................... 错误!未定义书签。 . 新员工入职流程..................................... 错误!未定义书签。 9. 员工离职管理流程......................................... 错误!未定义书签。 10. 办公用品使用规范..................................... 错误!未定义书签。

相关主题
文本预览
相关文档 最新文档