当前位置:文档之家› 美国2012年EPA

美国2012年EPA

美国2012年EPA
美国2012年EPA

2012 Edition of the Drinking Water Standards and Health Advisories

2012 Edition of the Drinking Water Standards and Health Advisories

EPA 822-S-12-001

Office of Water

U.S. Environmental Protection Agency

Washington, DC

Spring 2012

Date of update: April, 2012

Recycled/Recyclable

Printed on paper that contains

at least 50% recycled fiber.

Spring 2012 Page iii of vi The Health Advisory (HA) Program, sponsored by the EPA’s Office of Water (OW), publishes concentrations of drinking water contaminants at Drinking Water Specific Risk Level Concentration for cancer (10-4 Cancer Risk) and concentrations of drinking water contaminants at which noncancer adverse health effects are not anticipated to occur over specific exposure durations - One-day, Ten-day, and Lifetime - in the Drinking Water Standards and Health Advisories (DWSHA) tables. The One-day and Ten-day HAs are for a 10 kg child and the Lifetime HA is for a 70 kg adult. The daily drinking water consumption for the 10 kg child and 70 kg adult are assumed to be 1 L/day and 2 L/day, respectively. The Lifetime HA for the drinking water contaminant is calculated from its associated Drinking Water Equivalent Level (DWEL), obtained from its RfD, and incorporates a drinking water Relative Source Contribution (RSC) factor of contaminant-specific data or a default of 20% of total exposure from all sources. Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs) for some regulated drinking water contaminants are also published.

HAs serve as the informal technical guidance for unregulated drinking water contaminants to assist Federal, State and local officials, and managers of public or community water systems in protecting public health as needed. They are not to be construed as legally enforceable Federal standards. EPA’s OW has provided MCL, MCLGs, RfDs, One-Day HAs, Ten-day HAs, DWELs, and Lifetime HAs. Drinking Water Specific Risk Level Concentration for cancer (10-4 Cancer Risk), and Cancer Descriptors in the DWSHA tables. HAs are intended to protect against noncancer effects. The 10-4 Cancer Risk level provides information concerning cancer effects. The MCL values for specific drinking water contaminants must be used for regulated contaminants in public drinking water systems.

The DWSHA tables are revised periodically by the OW so that the benchmark values are consistent with the most current Agency assessments. Reference dose (RfD) values are updated to reflect the values in the Integrated Risk Information System (IRIS) and the Office of Pesticide Programs (OPP) Reregistration Eligibility Decisions (REDs) documents. The associated DWEL is recalculated accordingly.

A Lifetime noncancer benchmark is made available to risk assessment managers for comparison to the cancer risk level drinking water concentration (10-4 Cancer Risk) and to determine whether the noncancer Lifetime HA or the cancer risk level drinking water concentration provides a more meaningful scenario-specific risk reduction. In this regard, the Office of Water defines the Lifetime HA as the concentration in drinking water that is not expected to cause any adverse noncarcinogenic effects for a lifetime of exposure, whereas the 10-4 Cancer Risk is the concentration of the chemical contaminant in drinking water that is associated with a specific probability of cancer. The Office of Water also advises consideration of the more conservative cancer risk levels (10-5, 10-6), found in the IRIS or OPP RED source documents, if it is considered more appropriate for exposure-specific risk assessment.

iii

Spring 2012 Page iv of vi Many of the values on the DWSHA tables have been revised since the original HAs were published. Revised RfDs, 10-4 Cancer Risk values, and cancer designations or descriptors obtained from Integrated Risk Information System (IRIS), and One-day and Ten-day

Health Advisories are presented in BOLD type. Revised RfDs, 10-4 Cancer Risk values, and cancer designations or descriptors obtained from Office of Pesticide Program’s

Registration Eligibility Decision (OPP RED) are presented in BOLD ITALICS type.

The summaries of IRIS Toxicological Reviews from which the RfDs and cancer

benchmarks, as well as the associated narratives and references can be accessed at:

https://www.doczj.com/doc/5d10518024.html,/IRIS. Those from OPP REDs can be accessed at:

https://www.doczj.com/doc/5d10518024.html,/pesticides/reregistration/status.htm.

In some cases, there is an HA value for a contaminant but there is no reference to an HA document. Such HA values can be found in the Drinking Water Criteria Document for

the contaminant.

With a few exceptions, the RfDs, Health Advisories, and Cancer Risk values have been

rounded to one significant figure following the convention adopted by IRIS.

For unregulated chemicals with current IRIS or OPP REDs RfDs, the Lifetime Health

Advisories are calculated from the associated DWELs, using the RSC values published in the HA documents for the contaminants.

The DWSHA tables may be reached from the Water Science home page at:

https://www.doczj.com/doc/5d10518024.html,/waterscience/. The DWSHA tables are accessed under the Drinking Water icon.

Copies the Tables may be ordered free of charge from

SAFE DRINKING WATER HOTLINE

1-800-426-4791

Monday thru Friday, 9:00 AM to 5:30 PM EST

iv

Spring 2012 Page v of vi DEFINITIONS

The following definitions for terms used in the DWSHA tables are not all-encompassing, and should not be construed to be “official” definitions. They are intended to assist the user in understanding terms used in the DWSHA tables.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. For example, it is the level of lead or copper which, if exceeded in over 10% of the homes tested, triggers treatment for corrosion control. Cancer Classification: A descriptive weight-of-evidence judgment as to the likelihood that an agent is a human carcinogen and the conditions under which the carcinogenic effects may be expressed. Under the 2005 EPA Guidelines for Carcinogen Risk Assessment, Cancer Descriptors replace the earlier alpha numeric Cancer Group designations (US EPA 1986 guidelines). The Cancer Descriptors in the 2005 EPA Guidelines for Carcinogen Risk Assessment are as follows: ?“carcinogenic to humans” (H)

?“likely to be carcinogenic to humans” (L)

?“likely to be carcinogenic above a specified dose but not likely to be carcinogenic below that dose because a key event in tumor formation does not occur below that dose” (L/N) ?“suggestive evidence of carcinogenic potential” (S)

?“inadequate information to assess carcinogenic potential” (I)

?“not likely to be carcinogenic to humans” (N)

The letter abbreviations provided parenthetically above are now used in the DWSHA tables in place of the prior alpha numeric identifiers for chemicals that have been evaluated under the new guidelines (the 2005 guidelines or the 1996 and 1999 draft guidelines) or whose records in the DWSHA tables have been revised.

Cancer Group: A qualitative weight-of-evidence judgment as to the likelihood that a chemical may be a carcinogen for humans. Each chemical was placed into one of the following five categories (US EPA 1986 guidelines). The Cancer Group designations are given in the Tables for chemicals that have not yet been evaluated under the new guidelines or whose records in the DWSHA tables have been revised.

Group Category

A Human carcinogen

B Probable human carcinogen:

B1 indicates limited human evidence

v

Spring 2012 Page vi of vi B2 indicates sufficient evidence in animals and inadequate or no evidence in humans

C Possible human carcinogen

D Not classifiable as to human carcinogenicity

E Evidence of noncarcinogenicity for humans

10-4 Cancer Risk: The concentration of a chemical in drinking water corresponding to an excess estimated lifetime cancer risk of 1 in 10,000.

Drinking Water Advisory: A nonregulatory concentration of a contaminant in water that is likely to be without adverse effects on health and aesthetics for the period it is derived.

DWEL: Drinking Water Equivalent Level. A DWEL is a drinking water lifetime exposure level, assuming 100% exposure from that medium, at which adverse, noncarcinogenic health effects would not be expected to occur.

HA: Health Advisory. An estimate of acceptable drinking water levels for a chemical substance based on health effects information; an HA is not a legally enforceable Federal standard, but serves as technical guidance to assist Federal, State, and local officials.

One-Day HA: The concentration of a chemical in drinking water that is not expected to cause any adverse noncarcinogenic effects for up to one day of exposure. The One-Day HA is intended o protect a 10-kg child consuming 1 liter of water per day.

Ten-Day HA: The concentration of a chemical in drinking water that is not expected to cause any adverse noncarcinogenic effects for up to ten days of exposure. The Ten-Day HA is also intended to protect a 10-kg child consuming 1 liter of water per day.

Lifetime HA: The concentration of a chemical in drinking water that is not expected to

cause any adverse noncarcinogenic effects for a lifetime of exposure, incorporating a

drinking water RSC factor of contaminant-specific data or a default of 20% of total

exposure from all sources. The Lifetime HA is based on exposure of a 70-kg adult

consuming 2 liters of water per day. For Lifetime HAs developed for drinking water

contaminants before the Lifetime HA policy change to develop Lifetime HAs for all

drinking water contaminants regardless of carcinogenicity status in this DWSHA update, the Lifetime HA for Group C carcinogens, as indicated by the 1986 Cancer Guidelines,

includes an uncertainty adjustment factor of 10 for possible carcinogenicity.

MCLG: Maximum Contaminant Level Goal. A non-enforceable health benchmark goal which is set at a level at which no known or anticipated adverse effect on the health of persons is expected to occur and which allows an adequate margin of safety.

vi

Spring 2012 Page vii of vi MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLG as feasible using the best available analytical and treatment technologies and taking cost into consideration. MCLs are enforceable standards. Oral cancer slope factor: The slope factor is the result of application of a low-dose extrapolation procedure and is presented as the risk per (mg/kg)/day.

RfD: Reference Dose. An estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime.

Risk Specific Level Concentration: The concentration of the chemical contaminant in drinking water or air providing cancer risks of 1 in 10,000, 1 in 100,000, or 1 in 100,000,000.

SDWR: Secondary Drinking Water Regulations. Non-enforceable Federal guidelines regarding cosmetic effects (such as tooth or skin discoloration) or aesthetic effects (such as taste, odor, or color) of drinking water.

TT: Treatment Technique. A required process intended to reduce the level of a contaminant in drinking water.

Unit Risk: The unit risk is the quantitative estimate in terms of either risk per μg/L drinking water or risk per μg/m3 air breathed.

vii

Spring 2012 Page viii of vi ABBREVIATIONS

D Draft

DWEL Drinking Water Equivalent Level

DWSHA Drinking Water Standards and Health Advisories

F Final

HA Health Advisory

I Interim

IRIS Integrated Risk Information System

MCL Maximum Contaminant Level

MCLG Maximum Contaminant Level Goal

NA Not Applicable

NOAEL No-Observed-Adverse-Effect Level

OPP Office of Pesticide Programs

OW Office of Water

P Proposed

Pv Provisional

RED Registration Eligibility Decision

Reg Regulation

RfD Reference Dose

TT Treatment Technique

viii

美国EPA通用土壤筛选值

美国EPA通用土壤筛选值

美国EPA通用土壤筛选值

CAS 号污染 物 土壤(mg/kg) 地下 (μg/L 居 住 备 注 工 业 备 注 基于 地下 水保 护 饮用 水 1 +04 E+0 5 +00 +04 75-86- 5 丙酮氰 醇 2.0E +02 n 2.1 E+0 3 n 1.2E -02 5.8E +01 75-05- 8 乙腈 8.7E +02 n 3.7 E+0 3 n 2.6E -02 1.3E +02 98-86- 2 乙酰苯 7.8E +03 ns 1.0 E+0nms 1.1E +00 3.7E +03

CAS 号污染 物 土壤(mg/kg) 地下 (μg/L 居 住 备 注 工 业 备 注 基于 地下 水保 护 饮用 水 -8 -01 E-0 1 -06 -02 79-06- 1 丙烯酰 胺 2.3E -01 c 3.4 E+0 c 9.1E -06 4.3E -02 79-10- 7 丙烯酸 3.0E +04 n 2.9 E+0 5 nm 3.7E +00 1.8E +04 107-13 -1 丙烯腈 2.4E -01 c* 1.2 E+0c* 9.9E -06 4.5E -02

CAS 号污染 物 土壤(mg/kg) 地下 (μg/L 居 住 备 注 工 业 备 注 基于 地下 水保 护 饮用 水 60-8 +00 E+0 1 -04 +00 116-06 -3 涕灭威 6.1E +01 n 6.2 E+0 2 n 9.1E -03 3.7E +01 1646-8 8-4 涕灭威 砜 6.1E +01 n 6.2 E+0 2 n 8.0E -03 3.7E +01 309-00 -2 艾氏剂 2.9E -02 c* 1.0 E-0 c 6.5E -04 4.0E -03

美国环保局 EPA 试验 方法 3520c

METHOD 3520C CONTINUOUS LIQUID-LIQUID EXTRACTION 1.0SCOPE AND APPLICATION 1.1This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration techniques suitable for preparing the extract for the appropriate determinative steps described in Sec. 4.3 of Chapter Four. 1.2This method is applicable to the isolation and concentration of water-insoluble and slightly soluble organics in preparation for a variety of chromatographic procedures. 1.3Method 3520 is designed for extraction solvents with greater density than the sample. Continuous extraction devices are available for extraction solvents that are less dense than the sample. The analyst must demonstrate the effectiveness of any such automatic extraction device before employing it in sample extraction. 1.4This method is restricted to use by or under the supervision of trained analysts. Each analyst must demonstrate the ability to generate acceptable results with this method. 2.0SUMMARY OF METHOD 2.1 A measured volume of sample, usually 1 liter, is placed into a continuous liquid-liquid extractor, adjusted, if necessary, to a specific pH (see Table 1), and extracted with organic solvent for 18 - 24 hours. 2.2The extract is dried, concentrated (if necessary), and, as necessary, exchanged into a solvent compatible with the cleanup or determinative method being employed (see Table 1 for appropriate exchange solvents). 3.0INTERFERENCES 3.1Refer to Method 3500. 3.2The decomposition of some analytes has been demonstrated under basic extraction conditions required to separate analytes. Organochlorine pesticides may dechlorinate, phthalate esters may exchange, and phenols may react to form tannates. These reactions increase with increasing pH, and are decreased by the shorter reaction times available in Method 3510. Method 3510 is preferred over Method 3520 for the analysis of these classes of compounds. However, the recovery of phenols may be optimized by using Method 3520 and performing the initial extraction at the acid pH. 4.0APPARATUS AND MATERIALS 4.1Continuous liquid-liquid extractor - Equipped with polytetrafluoroethylene (PTFE) or glass connecting joints and stopcocks requiring no lubrication (Kontes 584200-0000, 584500-0000, 583250-0000, or equivalent). CD-ROM3520C - 1Revision 3 December 1996

美国EPA200种潜在致癌物的危害等级

潜在致癌剂的危害等 级 致癌性是筛选优先污染物的重要依据之一,下表列出了美国EPA公布的200种致癌剂的危害等级。其中的参数含义为: 1、证据的充分程度(Degree of Evidence) 化学品对人体的致癌性证据之充分程度可以分为下列几类。 (1)证据充分,指致癌剂和人体癌症之间有因果关系。 (2)证据有限,指能提供一些可信的致癌性证据,但证据尚有限,还需作进一步补充。 (3)证据不充分,可能有3种情况,①能获取的致癌性数据很少;②与证据有关的研究尚不能排除偶然性、误差及混淆等情况;③研究结果无致癌性证据。 根据动物实验取得的致癌性证据的充分程度可分4级。 1级,致癌性证据充分。 2级,致癌性证据有限。 3级,致癌性证据不充分。 4级,无致癌性证据。 2、IARC标准分组 国际癌症研究所 (International Agency for research on cancer,简称IARC)将人类的肿瘤风险分为3组。 1组:列在此组内的化学品属致癌物,流行病学和暴露实验均已肯定,基致癌证据是充分的。 2组:化学品可能对人体有致癌性。其中有的对人体的致癌性证据几乎是“充分的”,另一类的证据不够充分。证据程度较高的为A组,较低的为B 组。例如,2A指对人体的致癌性至少存在着有限证据。当动物证据充分而人体数据不充分时,归入2B。 3组:列在本组中的化学品对人类没有致癌性。

3、潜力因素值F(Potency Factor Estimate) 潜力因素值F定义为1/ED 10。ED 10 等于10%终身致癌风险的致癌剂剂量。 F可以和致癌性的确认证据一起,用来划分化学品潜在致癌性的危险等级。 4、潜力因素分组(Potency factor Grouping) 由于潜力因素值F可表示致癌危险性的相对大小,因而,可将潜在致癌剂的相对潜力因素分为4组。潜力因素最高的化学品分在1组,中等潜力因素的为2组,低潜力因素的为3组,最低潜力因素的为4组。 5、致癌危害等级(Cancer Hazard Ranking) 根据人和动物试验所取得的致癌性证据,结合潜力因素分组数据,可将化学品致癌危害等级分为高、中、低3级。

美国EPA标准方法

DETERMINATION OF ETHYLENE THIOUREA (ETU) IN WATER USING GAS CHROMATOGRAPHY WITH A NITROGEN-PHOSPHORUS DETECTOR Revision 1.0 December 1992 D.J. Munch and R.L. Graves T.M. Engel and S.T. Champagne Battelle, Columbus Division ENVIRONMENTAL MONITORING SYSTEMS LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 509-1

DETERMINATION OF ETHYLENE THIOUREA (ETU) IN WATER USING GAS CHROMATOGRAPHY WITH A NITROGEN-PHOSPHORUS DETECTOR 1.0SCOPE AND APPLICATION 1.1This method utilizes gas chromatography (GC) to determine ethylene thiourea (ETU, Chemical Abstracts Registry No. 96-45-7) in water. 1.2This method has been validated in a single laboratory during development. 1 The method detection limit (MDL) has been determined in reagent water and is listed in Table 2. Method detection limits may vary among laboratories, depending upon the analytical instrumentation used and the experience of the analyst. In addition to the work done during the development of this method and its use in the National Pesticide Survey, an interlaboratory method validation study of this method has been conducted. 1.3This method is restricted to use by or under the supervision of analysts experienced in the use of GC and in the interpretation of gas chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method using the procedure described in Section 9.3. 1.4When a tentative identification of ETU is made using the recommended primary GC column (Section 6.7.1), it must be confirmed by at least one additional qualitative technique. This technique may be the use of the confirmation GC column (Section 6.7.2) with the nitrogen-phosphorus detector or analysis using a gas chromatograph/mass spectrometer (GC/MS). 2.0SUMMARY OF METHOD 2.1The ionic strength and pH of a measured 50 mL aliquot of sample are adjusted by addition of ammonium chloride and potassium fluoride. The sample is poured onto an Extrelut column. ETU is eluted from the column in 400 mL of methylene chloride. A free radical scavenger is then added in excess to the eluate. The methylene chloride eluant is concentrated to a volume of 5 mL after solvent substitution with ethyl acetate. Gas chromatographic conditions are described which permit the separation and measurement of ETU with a nitrogen-phosphorus detector (NPD). 3.0DEFINITIONS 3.1Artificial Ground Water -- An aqueous matrix designed to mimic a real ground water sample. The artificial ground water should be reproducible for use by others. 509-2

美国EPA 第三阶段法规介绍

重庆润通2008-12-18 1 美国通机EPA 第三阶段法规新 要求介绍 天津内燃机研究所第一研究室 贾滨

重庆润通 2008-12-18 2 III, IV, V 类发动机 string trimmer chainsaw edger leaf blower Sales: 12 million/year+

重庆润通2008-12-18 3 generator walk-behind mower zero-turn mower riding mower pressure washer generator Sales: 10 million/year+ Sales: 4 million/year+ ? I 类发动机 II 类发动机

重庆润通2008-12-184 美国EPA 检查出的不符合满足法规要求 的主要方面 –标签上没有写明EPA 发动机系族名称和发动机制造商的名称; –发动机的型号没有包括在认证申报文件中; –催化器的问题:缺失或者性能达不到要求; –标签可以被完整的撕下来;– 排放标签内容有问题

重庆润通2008-12-18 5 美国EPA 对于不符合要求进口产品的策略 ?Outreach 联手 ?Target most significant violators 将目标锁定在显著违反法规的情况?Inspect and test representative samples of engines and catalysts 检查和测试有代表性的发动机和催化器样品 ?Leverage resources with Customs, Regions, States, Manufacturers, and Retailers 使用海关,地区,州,生产商和零售商的资源 ?Address the Flow of noncompliant Products 搞清楚不符合要求产品的流向 ?Upcoming North American auditing program 即将到来的北美稽查计划 ? 美国EPA 于2007年12月已经与国家质量监督检验总局签署合作备忘录, 将加强进出口产品的检验

环境空气 挥发性有机物的测定 美国EPA Method TO-1

METHOD TO-1 Revision 1.0 April, 1984 METHOD FOR THE DETERMINATION OF VOLATILE ORGANIC COMPOUNDS IN AMBIENT AIR USING TENAX? ADSORPTION AND GAS CHROMATOGRAPHY/MASS SPECTROMETRY (GC/MS) 1.Scope 1.1The document describes a generalized protocol for collection and determination of certain volatile organic compounds which can be captured on Tenax? GC (poly(2,6- Diphenyl phenylene oxide)) and determined by thermal desorption GC/MS techniques. Specific approaches using these techniques are described in the literature (1-3). 1.2This protocol is designed to allow some flexibility in order to accommodate procedures currently in use. However, such flexibility also results in placement of considerable responsibility with the user to document that such procedures give acceptable results (i.e., documentation of method performance within each laboratory situation is required). Types of documentation required are described elsewhere in this method. 1.3Compounds which can be determined by this method are nonpolar organics having boiling points in the range of approximately 80E - 200E C. However, not all compounds falling into this category can be determined. Table 1 gives a listing of compounds for which the method has been used. Other compounds may yield satisfactory results but validation by the individual user is required. 2.Applicable Documents 2.1ASTM Standards: D1356Definitions of Terms Related to Atmospheric Sampling and Analysis. E355Recommended Practice for Gas Chromatography Terms and Relationships. 2.2Other documents: Existing procedures (1-3).

美国饮用水水质标准EPA

《美国饮用水水质标准》(EPA) [标题]:《美国饮用水水质标准》 [颁布者]:美国 [编号]: [颁布日期]: [实施日期]: [有效性]:有效 国家一级饮用水规程(NPDWRs或一级标准),是法定强制性的标准,它适用于公用给水系统。一级标准限制了那些有害公众健康的及已知的或在公用给水系统中出现的有害污染物浓度,从而保护饮用水水质。 表1将污染物划分为:无机物,有机物,放射性核素及微生物。 表1

国家二级饮用水规程:

二级饮用水规程(NSDWRs或二级标准),为非强制性准则,用于控制水中对美容(皮肤,牙齿变色),或对感官(如嗅,味,色度,)有影响的污染物浓度。 美国环保局(EPA)为给水系统推荐二级标准但没有规定必须遵守,然而,各州可选择性采纳,作为强制性标准。 表2 注: ①、污染物最高浓度目标MCLG-对人体健康无影响或预期无不良影响的水中污染物浓度。它规定了确当的安全限量,MCLGs是非强制性公共健康目标。 ②、污染物最高浓度-它是供给用户的水中污染物最高允许浓度,MCLGs它是强制性标准,MCLG是安全限量,确保略微超过MCL限量时对公众健康不产生显著风险。 ③、TT处理技术-公共给水系统必须遵循的强制性步骤或技术水平以确保对污染物的控制。 ④、除非有特别注释,一般单位为mg/L。 ⑤、1986年安全饮水法修正案通过前,未建立MCLGs指标,所以,此污染物无MCLGs值。 ⑥、在水处理技术中规定,对用铅管或用铅焊的或由铅管送水的铜管现场取龙头水样,如果所取自来水样品中超过铜的作用浓度1.3mg/L,铅的作用浓度

0.015mg/L的10%,则需进行处理。 ⑦、如给水系统采用丙烯酰胺及熏杀环(1-氯-2,3环氧丙烷),它们必须向州政府提出书面形式证明(采用第三方或制造厂的证书),它们的使用剂量及单体浓度不超过下列规定; 丙烯酰胺=0.05%,剂量为1mg/L(或相当量) 熏杀环=0.01%,剂量为20mg/L(或相当量) ⑧、地表水处理规则要求采用地表水或受地面水直接影响的地下水的给水系统,(1)进行水的消毒,并(2)为满足无须过滤的准则,要求进行水的过滤,以满足污染物能控制到下列浓度: 贾第氏虫,99.9%杀死或灭活 病毒99.99%杀死或灭活 军团菌未列限值,EPA认为,如果一旦贾第氏虫和病毒被灭活,则它就已得到控制。 浊度,任何时候浊度不超过5NTU,采用过滤的供水系统确保浊度不大于是NTU,(采用常规过滤或直接过滤则不大于0.5NTU),连续两个月内,每天的水样品中合格率至少大于95%。 HPC每毫升不超过500细菌数。 ⑨、每月总大肠杆菌阳性水样不超过5%,于每月例行检测总大肠杆菌的样品少于40只的给水系统,总大肠菌阳性水样不得超过1个。含有总大肠菌水样,要分析粪型大肠杆菌,粪型大肠杆菌不容许存在。 ⑩、粪型及艾氏大肠杆菌的存在表明水体受到人类和动物排泄物的污染,这些排泄物中的微生物可引起腹泻,痉挛,恶心,头痛或其它症状。 岳宇明译 岳舜琳校

美国EPA气体污染检测方法TO-14和TO-15的比较

Analytical Methods TO-14a and TO-15: What are the Differences?
Determining the presence of volatile organic compounds in air can be complex given the many choices available. Many options exist for sample collection (sorbent tubes, bags, filters, and canisters), as well as, a variety of analytical techniques. To assist in providing technical assistance with the options for the organic compounds EPA has available a compendia of methods in the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air -- Second Edition (EPA/625/R-96/010b, January 1999)1. Specifically this guidance document includes two methods using the specially-treated canister: Method TO-14a and Method TO-15. Method TO-15 is a new method available in the second edition of the compendium and Method TO-14a is a revision to Method TO-14 available from the 1987 compendium. Although Methods TO-14a and TO-15 are similar, there are differences that may impact the outcome of the desired results. For sampling, Method TO-15 and Method TO-14a are identical; therefore, the analyte list and detection limit become the deciding factors when selecting the method of choice. Method Specifications Non-polar VOCs (e.g., toluene, benzene) Polar VOCs (e.g., methanol, alcohols, ketones) GC/MS instrumentation Sample collection by prepared canister (holding time = 30d) Sample collection by sorbent tube Water management techniques (avoid loss of polar compds) Enhanced provisions for quality control Method performance criteria Selected Ion Monitoring (SIM) Specific Cleaning procedures Air sample concentrated onto solid sorbent trap Use of other detectors for GC (e.g., GC/MD) Detection Limit 0.2 – 25 ppbV √ √ √ √ √ √ √ TO-14a √ TO-15 √ √ √ √ √ √ √ √ √ √ √
1
The Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air and updates can be obtained from the EPA’s OAQPS Technology Transfer Network website at http:/https://www.doczj.com/doc/5d10518024.html,/ttn/amtic/airtox.html.
Page 1 of 5
Quality Assurance Team October 14, 2004

美国 EPA 方法5

METHOD 5 - DETERMINATION OF PARTICULATE MATTER EMISSIONS FROM STATIONARY SOURCES NOTE: This method does not include all of the specifications (e.g., equipment and supplies) and procedures (e.g., sampling and analytical) essential to its performance. Some material is incorporated by reference from other methods in this part. Therefore, to obtain reliable results, persons using this method should have a thorough knowledge of at least the following additional test methods: Method 1, Method 2, Method 3. 1.0 Scope and Application. 1.1 Analyte. Particulate matter (PM). No CAS number assigned. 1.2 Applicability. This method is applicable for the determination of PM emissions from stationary sources. 1.3 Data Quality Objectives. Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. 2.0 Summary of Method. Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter maintained at a temperature of 120 ± 14E C (248 ± 25E F) or such other temperature as specified by an applicable subpart of the standards or approved by the Administrator for a particular application. The PM mass, which includes any material that

美国EPA重新审定空气质量标准

8期朱文转等:惠州市土壤重金属污染景观空间格局特征研究 891 [3] 王政权.地统计学及其在生态学中的应用 [M]. 北京:科学出版 社, 1999. [4] 周慧珍,龚子同.土壤空间变异性研究 [J]. 土壤学报, 1996, 33(3):232-241. [5] Lin Y P. Multivariate geostatistical methods to identify and map spatial variations of soil heavy metals [J]. Environmental Geology, 2002,42:1-10. [6] Brit L S, Tome A, Eirik F, et al. Heavy metal surveys in Nordic Lakes: concentrations, geographic patterns and relation to critical limits [J]. AMBIO, 2001,30(1):2-10. [7] 郑袁明,陈同斌,陈煌,等.北京市近郊区土壤镍的空间结构及 分布特征 [J]. 地理学报, 2003,58(3):470-476. [8] 王铁宇,罗维,吕永龙,等.官厅水库周边土壤重金属空间变异 特征及风险分析 [J]. 环境科学, 2007,28(2):225-231. [9] 胡克林,张凤荣,吕贻忠,等.北京市大兴区土壤重金属含量的空 间分布特征 [J]. 环境科学学报, 2004,24(3):463-468. [10] 朱建军,崔保山,杨志峰,等.纵向岭谷区公路沿线土壤表层重金 属空间分异特征 [J]. 生态学报, 2006,26(1):146-153. [11] 钟晓兰,周生路,赵其国,等.长三角典型区土壤重金属有效态的 协同区域化分析、空间相关分析与空间主成分分析 [J]. 环境科学, 2007,28(12):2758-2765. [12] 李飞,易卫东.原子荧光光谱法代替传统方法同时测定汞和砷 [J]. 工业水处理, 2003,23(10):54-56. [13] 鲁如坤.土壤农业化学分析方法 [M]. 北京:中国农业科技出版 社, 2000. [14] GB15618-1995 土壤环境质量标准 [S]. [15] 邬建国.景观生态学 [M]. 北京:高等教育出版社, 2000. 作者简介:朱文转(1970-),女,河南镇平人,高级工程师,中山大学博士研究生,主要从事污染生态和环境管理等研究.发表论文10余篇. 美国EPA重新审定空气质量标准 2009年2月24日,联邦政府下达了一份行政裁定书,使美国环保局(EPA)制定更加严格的有关细颗粒物的空气质量标准. 在裁定书中,美国华盛顿特区巡回法院要求EPA重新审定前总统布什于2006年下达的“继续使用1997年制定的细颗粒物标准”的行政法令,即每立方米空气中允许含有15mg的细颗粒物(15mg/m3). 粒径≤2.5mm的颗粒物被称为细颗粒物,暴露于这种颗粒物中,会导致心血管疾病或过早死亡.细颗粒物的排放源主要来自电厂、工业部门、汽车尾气和森林火灾. EPA于1997年制定的细颗粒物排放标准为15mg/m3.根据《清洁空气法》的规定, EPA于2006年对该标准限值进行了重新审定.审定期间,EPA的清洁空气科学顾问委员会提出,以1997年的研究为基础,出于保护人体健康的目的,应将细颗粒物的排放标准下降至13~14mg/m3. 2006年9月,布什任命的EPA最高领导人Stephen L. Johnson,决定不采纳科学顾问委员会的提议,继续使用15mg/m3的排放标准.美国法院指责EPA没有对现有排放标准(15mg/m3)是否能保护人体健康进行解释.法院认为:“考虑到短期暴露的危险和长期暴露的发病率问题,EPA没能充分地论证现有排放标准是否足以保护公众健康.” 目前,美国法院再次要求EPA重新审查这一标准.因为他们认为奥巴马的环境政策会促使EPA考虑提高该排放标准. 李英杰摘自《C & EN》March 2(2009)

503 美国EPA的PART503原文(中译)

美国污水污泥利用与处置标准 环境保护 第一章 美国环保署 第0节污水污泥 503部分——污水污泥利用与处置标准 A 总则 503.1 目的与适用性 503.2 遵守阶段 503.3 许可及管理实施力 503.4 与其它法规的关系 503.5 附加及更为严格的规定 503.6 不属本法规的内容 503.7 对污泥制备者的要求 503.8 取样与分析 503.9 总体定义 B 土地利用 503.10 适用性 503.11 术语与定义 503.12 总体要求 503.13 污染物质的极限 503.14 管理实践 503.15 操作标准——减少病原体和对病媒的吸引 503.16 监测频率 503.17 保存记录 503.18 报告 C 地表处置

503.20 适用性 503.21 术语与定义 503.22 总体要求 503.23 污染物质的极限(不同于生活腐泥)503.24 管理实践 503.25 操作标准——减少病原体和对病媒的吸引503.26 监测频率 503.27 保存记录 503.28 报告 D 减少病原体数量和对病媒的吸引 503.30 范围 503.31 术语与定义 503.32 病原体 503.33 减少对病媒的吸引 E 焚烧 503.40 适用性 503.41 术语与定义 503.42 总体要求 503.43 污染物质的极限 503.44 操作标准——总烃 503.45 管理实践 503.46 监测频率 503.47 保存记录 503.48 报告 附录A 全年污水污泥总利用率的确定过程 附录B 病原体处理过程

4.1 总则 503.1 目的与适用性 目的 (1)本法案为城市污水处理厂在处理污水的过程中产生的污泥的最终利用和处置建立了标准,该标准包括:总体要求、污染物质的极限、管理实践和操作标准。本法案还包括污水污泥土地利用标准、地表处置标准、焚烧标准以及在土地利用和地表处置过程中如何减少病原体数量和对病媒吸引的要求。 (2)另外,本标准还对在污水污泥土地利用、地表处置和焚烧过程中的监测频率和记录保存提出了要求。同时对Ⅰ类污泥管理装置的报告,日处理能力达到和超过100万加仑或者服务人口达到和超过1万人以上的公共所有的处理设施的报告提出了要求。 适用性 本标准适用于以下这些人:污水污泥的制备者,将污泥土地利用的人,焚烧污泥的人和地表处置场地的所有者或者操作者实施者。 本标准适用于以下过程:污泥的土地利用、地表处置和焚烧。 本标准适用于污泥焚烧装置排出的烟气。 本标准适用于以下场地:污泥土地利用的场地、污泥地表处置的场地和污泥焚烧的场地。 503.2 遵守阶段 (a)本标准应当尽快实施,不得晚于1994年2月19日,实施过程中需要建造新的污染控制设施的,最晚不得晚于1999年2月19日。 (b)本标准中关于污泥焚烧炉内排出总烃的监测、记录和报告频率的要求从1993年2月19日起生效,在操作过程中需要建造新的污染控制设施的,从1995年2月19日起生效。 (c)本标准中所有其它关于监测、记录和报告频率的要求从1993年7月20日起生效。 (d)除了E部分中特别指出的外,1999年9月3日对以下内容进行了修改,

美国EPA排放法规

美国高速公路摩托车排放法规介绍 尹涛(天津大学天津摩托车技术中心) Yin Tao (Tianjin University Tianjin Motorcycle Technical center) 高速公路摩托车排放法规自1980年生效20多年来未做过修订,2002年7月,美国环保署提出了重新修订高速公路摩托车排放法规的议案,2005年正式推出了法规的修订本,其法规排放试验限值变化如表1所示。 表1 高速公路摩托车排放限值第1阶段(2006年执行) 表2 高速公路摩托车排放限值第2阶段(2010年执行) 从表中看到,新的排放法规对排量小于50 mL的摩托车提出了限值要求,并规定测试循环与原Ⅰ类摩托车测试循环相同,均为505秒的冷起阶段,864秒的过渡阶段,600秒的热浸阶段及505秒的热起阶段;Ⅰ类摩托车测试循环相对II、III类摩托车而言,最高车速要低,为58.7 km/h(36.5mph),而II、III 类摩托车测试循环最高车速为92 km/h(57.2mph)。美国环保署在调研中发现,很多排量小于50 mL的摩托车最高车速不能达到58.7 km/h,因此在很多摩托车制造商的要求下,2006年对于排量小于50 mL的摩托车,允许采用修正的Ⅰ类摩托车测试循环,即每个试验点的速度值乘以摩托车最高车速(km/h)与58.7 km/h 的比值,见图1所示。高速公路摩托车燃油蒸发限值如表3所示。 图1 高速公路摩托车测试循环

表3 EPA燃油蒸发标准(2008年执行) 以证明高速公路摩托车符合蒸发排放标准,二是通过设计声明40 CFR 1051.245(e)来证明可以达到蒸发排放标准要求。试验流程图如图2所示,设计声明格式如表4所示。 表4 设计声明符合标准 *备注:根据耐久试验情况可 以缩短静置时间 全部试验流程利用劣化系数的试验 流程

美国EPA200种潜在致癌物的危害等级

美国EPA200种潜在致癌物的危害等级 致癌性是筛选优先污染物的重要依据之一,下表列出了美国EPA公布的200种致癌剂的危害等级。其中的参数含义为: 1、证据的充分程度(Degree of Evidence) 化学品对人体的致癌性证据之充分程度可以分为下列几类。 (1)证据充分,指致癌剂和人体癌症之间有因果关系。 (2)证据有限,指能提供一些可信的致癌性证据,但证据尚有限,还需作进一步补充。 (3)证据不充分,可能有3种情况,①能获取的致癌性数据很少;②与证据有关的研究尚不能排除偶然性、误差及混淆等情况;③研究结果无致癌性证据。 根据动物实验取得的致癌性证据的充分程度可分4级。 1级,致癌性证据充分。 2级,致癌性证据有限。 3级,致癌性证据不充分。 4级,无致癌性证据。 2、IARC标准分组 国际癌症研究所(International Agency for research on cancer,简称IARC)将人类的肿瘤风险分为3组。 1组:列在此组内的化学品属致癌物,流行病学和暴露实验均已肯定,基致癌证据是充分的。 2组:化学品可能对人体有致癌性。其中有的对人体的致癌性证据几乎是“充分的”,另一类的证据不够充分。证据程度较高的为A组,较低的为B组。例如,2A指对人体的致癌性至少存在着有限证据。当动物证据充分而人体数据不充分时,归入2B。 3组:列在本组中的化学品对人类没有致癌性。 3、潜力因素值F(Potency Factor Estimate) 潜力因素值F定义为1/ED 10。ED 10 等于10%终身致癌风险的致癌剂剂量。F可 以和致癌性的确认证据一起,用来划分化学品潜在致癌性的危险等级。

相关主题
文本预览
相关文档 最新文档