当前位置:文档之家› 微波铁氧体器件在雷达和电子系统中的应用_研究与发展_上_

微波铁氧体器件在雷达和电子系统中的应用_研究与发展_上_

微波铁氧体器件在雷达和电子系统中的应用_研究与发展_上_
微波铁氧体器件在雷达和电子系统中的应用_研究与发展_上_

微波技术应用

微波技术 一概述 微波是指波长范围为1mm~1m,频率范围为30×102 ~30×105MHz,具有穿透特性的电磁波。常用的微波频率为91 5MHz和 2 450MHz。微波作为一种电磁波,通常应用于广播、电视及通信技术中,近年来,随着科学技术的发展,微波作为一种能源,已逐渐应用于食品杀菌、干燥、烘烤、膨化、解冻等方面。 微波技术在食品工业中的应用可追溯到四十年代末期,1947年由美国雷声公司马文·贝克根据微波的加热效应制成了世界上第一台用于食品加热的微波炉。鉴于微波具有在食品内部生热并迅速产生均匀温度的观点,人们开始研究将它用于工业加热技术上以其开辟新的热能源,提高热能利用率和缩短加工时间,大约经历了十余年的探索,终于在1965年由美国Cryodry Comporation 公司研制成功了世界上第一台 915MHz/50kW隧道式微波干燥设备,并在Seyfert Foods食品公司首次投入实际应用,用来干燥油炸马铃薯片。此后微波能技术在美国、日本、加拿大和欧洲等发达国家在用来解决食品工业中的多种加热干燥、烹制、杀虫灭菌和回温解冻等方面相继获得成功并表现出强大的技术优势。到七十年代,世界各国普遍推广应用。例如在气候温和潮湿的日本,微波在食品工业中的应用占整个工业应用的60%。我国自1973年由南京电子管厂率先研制成功了工业微波干燥设备以来,经过了20年的努力,也积累了比较丰富的经验。目前我国已成功地应用微波能烧烤食品、干果焙烤、牛肉干燥、蔬菜脱水、快餐面干燥、食品杀菌、饮料杀菌、白酒陈化催熟等许多领域,并取得显著进展。 二微波技术的原理及特点 综合微波技术在食品工业中的各种应用可归结为如下原理。 (一)微波加热干燥原理 微波加热技术是一种新的加热方式。它是依靠以每秒245000万次速度进行周期变化的微波透入物料内,与物料的极性分子相互作用,物料中的极性(如水分子)吸收了微波能以后,改变其原有的分子结构,亦以同样的速度作电场极性运动,致使彼此间频繁碰撞而产生了大量的摩擦热,从而使物料内各部分在同一瞬间获得热能而升温。由于微波辐射下介质的热效应是内部整体加热的,即理论上所谓的“无温度梯度加热”,基本上介质内部不存在热传导现象,因此,微波可相当均匀地加热介质。微波加热技术与传统加热方法相比,有如下特性:①穿透力强。②热惯性小。③呈现选择加热特性。④具有反射性和透射性。 微波干燥是在微波理论,微波技术和微波电子管成就的基础上发展起来的一门新技术,微波干燥已在许多领域内获得广泛的应用。它是应用微波加热的原理, 使品温度上升,达到干燥的目的。微波干燥具有如下的特点: 1 .干燥速度快、干燥时间短 由于常规加热需要加热传热介质和环境,再进入食品,故需较长时间才能达到所需加热温度。而微波加热则是加热物体直接吸收微波能,加热速度大大高于常规加热方法,此时只需一般方法的十分之一到百分之一的时间就能完成整个加热和干燥的过程。 2. 产品质量高 由于加热时间短,又非热效应配合,因此,可以保存加工原料的色、香、味,并且维生素的破坏也较少。 3. 加热均匀

微波技术在各领域的应用 (2)

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波就是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波与短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其她波段的重要特点,它自被人类发现以来,就不断的得到发展与应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究与利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别就是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为止,家用微波炉、工业微波应用

软磁铁氧体材料基本类别及主要应用Featuresand

软磁铁氧体材料基本类别及主要应用(Features and applicat ion of Soft magnet) 软磁铁氧体按成份一般分为MnZn、NiZn系尖晶石和平面型两大类。前者主要用于低、中频(MnZn)和高频(NiZn),后者可用于特高频范围;从应用角度又可分高磁导率μi、高饱和磁通密度Bs、高电阻率及高频大功率(又称功率铁氧体)等几大类。由于软磁铁氧体在高频作用下具有高导磁率、高电阻率、低损耗等特点,同时还具有陶瓷的耐磨性,因而被广泛用于工业和民用等领域。工业产品主要用于计算机、通信、电磁兼容等用开关电源、滤波器和宽带变压器等方面;民用产品主要用于电视机、收录机等电子束偏转线圈、回扫变压器、中周变压器、电感器及轭流圈部分等。 一:国内外研发现状: 在软磁铁氧体磁性材料中一般以μi>5000的材料称为高磁导率,该材料近年来产量不断递增,尤其是随着当今数字技术和光纤通信的高速发展,以及市场对电感器、滤波器、轭流圈、宽带和脉冲变压器的需求大量增加,它们所使用的磁性材料都要求μi>10000以上,从而可使磁芯体积缩小很多,以适应元器件向小型化、轻量化发展要求。另外为满足使用需求,这类高磁导率小磁芯表面必须很好,平滑圆整,没有毛刺,且表面上须涂覆一层均匀、致密、绝缘、美观的有机涂层,针对这一技术难点,高磁导率软磁铁氧体产业需求中迫切希望再提高该功能材料的磁导率(μi>10000)。 上世纪90年代后,一些国外知名公司如日本TDK、TOKIN、HITACHI、IROX-NKK、FDK、KAWATETSU等、德国SIEMENS、荷兰Philips、美国SPANG磁性分公司等相继研发出新一代超高磁导率H5D(?i=15000)、H5E(?i=18000)铁氧体材料。日本TDK公司是全球磁性材料最富盛名的领头羊企业,他们在早期生产的H5C2(?i=10000)基础上,又先后开发了H5C3(?i=12000)、H5D(?i=15000)和H5E(?i=18000)等系列高?软磁铁氧体材料;90年代末已试验成功?i=20000的超高磁导率Mn-Zn铁氧体材料。TOKIN公司已向市场推出了12000H(?i=12000)、15000H(?i=15000)和18000H(?i=18000)的铁氧体材料。德国西门子、荷兰飞利浦、美国SPANG公司分别开发的高磁导率软磁铁氧体T42、T46、T56、3E6、3E7和MAT-W、MAT-H材料,其中T46:?i=15000、3E7:?i=15000、MA T-H:?i=15000,2000年西门子和飞利浦公司研制的T56、3E9材料最高磁导率已超过?i=18000。 虽然,我国软磁铁氧体工业发展较快,现有的生产厂家通过技术改造和工艺改进已取得不少成果,产品质量和产量得到明显提高,但目前国内只能大量生产?i=5000-7000的低档铁氧体材料,在高磁导率锰锌铁氧体材料研发生产上,国内与国外的水平与距离相差甚远,且大多数企业生产规模还太小,年产量普遍在1000吨以下,μi>10000的材料生产厂家更是屈指可数,而初具规模的国外公司一般年产软磁铁氧体在3000吨以上,TDK、FDK等公司年产量更是高达20000吨以上。依据我国磁性行业协会的统计,1999年我国生产μi=8000-10000材料的产量很少,但2000年后生产这类中低档软磁铁氧体材料却有较大改观。上海、浙江、

微波铁氧体隔离器环行器的应用与发展

摘要: 简述了微波铁氧体环行器/隔离器在现代微波通讯及军事上所发挥的重要作用着重介绍了 它在微波通讯系统中的应用和发展前景 关健字:微波铁级体隔离器环行器微波通讯应用发展。 一、引言 上世纪中叶,微波技术中的一大突破是铁氧体的发现,它是一种金属氧化物构成的陶瓷性磁性材料。利用这种材料在直流磁场和微波场共同作用下呈现出的旋磁效应制成的微波铁氧体器件如隔离器,环行器,移相器等,在二次世界大战中解决了雷达的级间隔离,阻抗以 及天线共用等一系列实际问极大地提高了题,雷达系统的战术性能,成为其中的关键部件之一。随着微波铁氧体技术的不断发展, 0以 8上用于军事,包括精密制导雷达。舰载雷达,%机载远程带戒预等雷达。导航,炮瞄雷达等都采用了相控阵天线,支持了如A GS A R T E IPT O, 等大型相控阵雷达的发展。冷战结束后,美俄等发达国家也实行了“军转民”战略,微波铁氧体器件的应用逐渐大量向民用方面转移,并逐渐在卫星通信,微波通信,微波能应用,医疗,微波测量技术等多种电子设备中起着特殊的作用。其中微波铁氧体隔离器/环行器在这一时期得到了也迅猛的发展,美国的C g研制出个法拉第自 H e L on第一旋转环行器以己来,研制出如结环行器,波导四端口差相移式环行器,场移式隔离器,同轴线谐振吸收式隔离器等多种类型和功能各异铁氧体环行器和隔离器。在现代通讯,雷达系统中的市场日益扩大。 二、应用 在电子系统中级间隔离,止串阻防扰,抗匹配,天线共用,去祸等都是由小型,轻量,集成化的微波铁氧体隔离器/环行器来完成,从而达到保护系统提高其稳定性,可靠性的目的,下面就简要介绍一下它在各种电子系统中的具体应用 2.1 环行器提供隔离 当作为隔离器应用时,环行器一端接上匹配负载,有四种真空管是用来产生或放大微波信号,它们是速调管,行波管返波振荡器以及二级管或晶体管组成的固态器件也可作振荡器或放大器,由于负载阻抗的变化 (载频率负牵引),所有型号的微波振荡管都会受到频率漂移的支配,如果在振荡器和负载之间装上一个隔离器,振荡器仍发射功率给负但是从载,负载反射回的信号在到达振荡器之前被r离器衰减掉了。因此振荡管看上去是不变的阻 m抗,在许多应用中隔离器就代替缓冲放大器。 2.2 通讯系统双工器 (无线收发转换开关) 双工器在通讯系统中既是发射机也是接收机的一种天线开关,因此,一个器件具有双重作用,铁氧体双工器是其中的一种开关形式,其结构如图(1)所示

微波技术在各领域的应用

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波和短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断的得到发展和应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究和利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为

微波技术的当前应用浅析

2012—2013学年上学期微波工程 期中论文 微波技术的当前应用浅析 学生姓名:邓兴盛 学号: 10908030101 课程名称: 微波工程 指导教师:何俊 专业班级:电子信息工程 完成时间: 2012年5月20日

微波技术的当前应用浅析 【摘要】微波技术早在二战结束不久就已经在工业上得到应用,但真正得到重视确实在上世纪七八十年代,经过了多年的发展已逐步形成了一系列的交叉技术,在不同的领域都发挥着其独有的优势和特殊作用,本文就目前世界上微波技术在不同领域的应用及其前景做一简单的分析,并就微波技术在应用中的一些需要我们共同关注的问题试图做一些思考。 【关键词】微波技术,应用价值,影响思考 【正文】1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。1887年德国物理学家赫兹用实验证实了电磁波的存在。之后,1898年,马可尼又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别。至此,随着人们对电磁波概念的认知,开始不断地认识到了电磁波在实际生活中的应用价值。 一个典型的例子,1936年4月美国科学家South Worth用直径为12.5cm 青铜管将9cm的电磁波传输了260m远,从而它证实了麦克斯韦的另一个预言──电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造出了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行探测定位的高分辨率雷达,大大促进了微波技术的发展。 一、微波的存在 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦的一个预言──电磁波的存在。

射频与微波技术原理及应用汇总

射频与微波技术原理及应用培训教材 华东师范大学微波研究所 一、Maxwell(麦克斯韦)方程 Maxwell 方程是经典电磁理论的基本方程,是解决所有电磁问题的基础,它用数学形式概括了宏观电磁场的基本性质。其微分形式为 0 B E t D H J t D B ρ???=- ????=+??=?= (1.1) 对于各向同性介质,有 D E B H J E εμσ=== (1.2) 其中D 为电位移矢量、B 为磁感应强度、J 为电流密度矢量。 电磁场的问题就是通过边界条件求解Maxwell 方程,得到空间任何位置的电场、磁场分布。对于规则边界条件,Maxwell 方程有严格的解析解。但对于任意形状的边界条件,Maxwell 方程只有近似解,此时应采用数值分析方法求解,如矩量法、有限元法、时域有限差分法等等。目前对应这些数值方法,有很多商业的电磁场仿真软件,如Ansoft 公司的Ensemble 和HFSS 、Agilent 公司的Momentum 和ADS 、CST 公司的Microwave Studio 以及Remcom 公司的XFDTD 等。 由矢量亥姆霍兹方程联立Maxwell 方程就得到矢量波动方程。当0,0J ρ==时,有 222200E k E H k H ?+=?+= (1.3) 其中k 为传播波数,22k ωμε=。 二、传输线理论 传输线理论又称一维分布参数电路理论,是射频、微波电路设计和计算的理论基

础。传输线理论在电路理论与场的理论之间起着桥梁作用,在微波网络分析中也相当重要。 1、微波等效电路法 低频时是利用路的概念和方法,各点有确切的电压、电流概念,以及明确的电阻、电感、电容等,这是集总参数电路。在集总参数电路中,基本电路参数为L、C、R。由于频率低,波长长,电路尺寸与波长相比很小,电磁场随时间变化而不随长度变化,而且电感、电阻、线间电容和电导的作用都可忽略,因此整个电路的电能仅集中于电容中,磁能集中于电感线圈中,损耗集中于电阻中。 射频和微波频段是利用场的概念和方法,主要考虑场的空间分布,测量参数由电压U、电流I转化为频率f、功率P、驻波系数等,这是分布参数电路。在分布参数电路中,电磁场不仅随时间变化也随空间变化,相位有明显的滞后效应,线上每点电位都不同,处处有储能和损耗。 由于匀直无限长的传输系统在现实中是不存在的,因此工程上常用微波等效电路法。微波等效电路法的特点是:一定条件下“化场为路”。具体内容包括: (1)、将均匀导波系统等效为具有分布参数的均匀传输线; (2)、将不均匀性等效为集总参数微波网络; (3)、确定均匀导波系统与不均匀区的参考面。 2、传输线方程及其解 传输线方程是传输线理论的基本方程,是描述传输线上的电压、电流的变化规律及其相互关系的微分方程。电路理论和传输线之间的关键不同处在于电尺寸。集总参数电路和分布参数电路的分界线可认为是l/λ≥0.05。 以传输TEM模的均匀传输线作为模型,如图1所示。在线上任取线元dz来分析(dz<<λ),其等效电路如图2所示。终端负载处为坐标起点,向波源方向为正方向。 图1. 均匀传输线模型图2、线元及其等效电路根据等效电路,有

我国微波YIG铁氧体技术的发展

!:::±至±生全璺丝兰主璧兰茎茎全兰笙耋苎!:: 我国微波YlG铁氧体技术的发展 余声明 中国西南应用磁学研究所四川绵阳621000 简述了我国微波YIG铁氧体技术的发展,衷明它在军用电子工程和高精微波仪器中起耆兀可取代的重要怍用,有着广阔的应用前景。 l发展简史 微波钇铁柘榴石(YIG)铁氧体技术系指利用微波铁氧体材料的铁磁共振特性研制的旋磁调谐器件产品及其技术的统称,它几乎都是使用YIG铁氧体制成球形谐振子作为调谐元件的,它已广泛应用于电子战、频谱分析仪与网络分析仪等高精电子设备和仪器中。 国外微波YIG磁调谐技术始于60年代,至80年代初,以美国为代表的微波YIG磁调器件——YIG调谐滤波器、振荡器产品已经系列化,分别覆盖O5~40GHz频率范围并开发出了YIG调谐谐波发生器、倍频器、滤波器/振荡器统调组件等。近20年来国外在进一步提高产品技术性能、向高低频段方向扩展频率范围、多倍频程阐谐带宽、缩小体积减轻重量、降低成本,扩大应用领域,集成化薄膜化,组件多功能化等方面取得了长足进展。 我国的YIG磁调谐技术始于60年代末70年代初,当时研制开发单位达到十几家,与国外的差距并不大。我国的ⅥG调谐器件几乎也都用于电子战设备等军事重点工程和高级微波电子仪器与系统中。近十年来,由于国内用量很少,品种多丽杂,销售价格远低于国外正常价,所以先前踊跃参研的单位纷纷退出来,至目前仅剩下西南应用磁学研究所在坚持研发,电子科大、华中理工大学只在毫米波滤波器、静磁波等方面作一些学术理论性研究,几个整机单位则着重于系统应用开发了。 2YIG铁氧体材料 西南应用磁学研究所是目前国内主要从事微波YIG铁氧体材料研制生产单位,现有四个成熟的材料系列(表1),主要是以球形谐振器形式提供。 此外.还有从80年代末开始的YIG液相外延(LPE)薄膜材料,膜厚在2~200p之间,M一139kA/m,AH~O.04kA/m。近期又生长出膜厚320um,△H~O04kA/m的YIG单晶超厚膜材料。 表1Y'iG铁氧体材料 材料M/kA/m△H/kA/mT。/℃ YIG.CraYIG单晶24--142012~004170~280 BiCalrtV单晶20~52012~O06170~215 NiZn单晶422≤08≥300 YIG多晶(小线宽)48~111≤03280~120Li铁氧体单晶材料业已研制出来,M,值为295kA/m.AH≤0.8kA/m,L/>630℃。 近年来在摸索设计规律、配合器件设计、合理选球方面取得了可喜的进展。目前,在器件设计理论上的进展与上述设计规律的探讨,已证明了过大与过小的YIG小球线宽都无法实现特定要求的最佳性能:材料的线宽越小,表明材料的性能越好:由质量均匀的优质材料做成具有特定表面光洁度(粗糙度)的小球,是满足某一特定器件最佳设计的优良谐振器。 今后,供YIG调谐器件用的材料可能有四个发展方向: 1)把已有系列,按M,值划分更多的档次,以满足不同频段器件以及多球器件的最佳设计的要求;建立按需要实现表面抛光与表面精化的工艺设施; 2)研制新的材料系列,特别是毫米波旋磁材料系列: 3)提高实现不同尺寸、定向与不同形状样品的精细加工能力,以适应新器件,特别是磁光器件研制与生产的需要: 4)巩固与提高多晶小线宽材料系列化的成果,为民用产品的研制与生产打下基础。 3YIG调谐器件 西南应用磁学研究所研制的YIG调谐器件以YIG调谐滤波器(YTF)和振荡器(YTO)两大主导产品(表2)逐步扩展为六大类产品技术:

微波的技术小论文

微波技术小论文 题目名称微波技术的发展方向与前景 概述 学院(系)电子与信息工程学院 专业电子信息工程 学生姓名任子辉学号1152351 2014 年 5 月21 日

微波技术小论文 1.引言 微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信再到微波炉,微波技术对社会的发展和人们生活的进步产生着深远的影响。微波通常是指频率范围在300MHz-300GHz内的电磁波,其波长约在1米到1毫米之间,可被进一步细分为分米波,厘米波和毫米波,其对应频率分别为特高频(UHF,ultra high frequency),超高频(SHF,super high frequency),极高频(EHF,extremely high frequency)。随着现代微波技术的发展,波长在1毫米以下的亚毫米波也被视为微波的范畴,这相当于把微波的频率范围进一步扩大到更高的频率。因此,有的文献里也把微波的频率范围定义为300MHZ-3000GHZ 本文介绍了微波技术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。 2.微波技术发展简史 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。自从19世纪末德国物理学家赫兹发现并用实验证明了电磁波的存在后,对电磁波的研究便迅速展开。对微波直到20世纪初期对微波技术的研究又有了一定的进展。但早期的设备不能满足实验的需要,主要表现为缺乏大功率的信号发生器和灵敏的信号接收器,因此早期的研究并没有取得实质性的进展。到了20世纪30 年代,高频率的超外差接受器和半导体混频器的出现为微波技术的进一步发展提供了条件,使得微波技术的发展取得的一定的进步。 在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不仅系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断地完善。我国开始研究和利用微波技术是在20世纪70年代初期,首先是在连续微波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。20世纪80年代,我国开始生产微波炉,到目前为止,已经发展有家用微波炉、工业微波炉等系列产品,产品质量接近或达到世界先进水平。随着科学技术的迅猛发展,微波技术的研究向着更高频段──毫米波段和亚毫米波段发展。 3.微波技术发展现状和未来趋势 进入21 世纪,微波技术继续在广播、有线电视、电话和无线通信领域发挥着巨大的作用,在其他领域如计算机网络等应用中也崭露头角。在广播电视方面,截至2005 年,我国共有中波、短波、调频广播和电视发射台、转播台共计6.57

射频与微波论文-射频与微波应用与发展综述

射频与微波技术应用与发展综述 班级: 姓名: 学号: 序号: 日期:

摘要: 微波技术是近一个世纪以来最重要的科学技术之一,从雷达到广播电视、无线电通信,再 到微波炉,微波技术对社会发展和人们生活的进步产生着深远的影响。本文介绍了微波技 术的发展以及在各个领域中的应用,并对微波技术未来的发展方向进行了讨论。Abstract: Microwave technology is one of the most important technology in the nearly century, from radar to broadcast TV, radio communication, microwave oven, microwave technology had a profound impact on society development and progress of people's lives .The paper introduced the development of microwave technology and it’s applications in various fields. It also discussed the future direction of microwave technology. 关键词:微波技术,微波电效应,污水处理 Keywords: Microwave technology, microwave electric effect, sewage treatment 微波是指波长在1mm~1000mm、频率在300MHz~300GHz范围之间的电磁波,因为 它的波长与长波、中波与短波相比来说,要“微小”得多,所以它也就得名为“微波”了。微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断地得到发展和应用。 19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其 进行了研究。但赫兹本人并没有想到将这种电磁波用于通信,他的实验仅证实了麦克斯韦 的一个预言──电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4 月美国科学家SouthWorth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导 传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个预言──电磁波可以 在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,又提供了一个有效

微波铁氧体材料的现状与发展

微波铁氧体材料的现状与发展 金宇龙 (南京电子技术研究所,江苏南京210013) 摘要:结合国内外微波铁氧体器件的发展趋势,综述了当今微波铁氧体材料领域的发展现状。对于石榴石型材料,低损耗、高功率和低成本等材料配方体系已相应建立。而对于尖晶石类材料,由于磁矩分布范围广,剩磁高等特点,在毫米波以及移相器件中得到广泛应用。对产品性能和产能规模等作了相应的阐述。重点指出开发微带用材料、低互调材料及铁氧体材料工程化的必要性和紧迫性,同时指出了研究思路和方法。 关键词:微波铁氧体材料;石榴石;尖晶石 中图分类号:TM277文献标识码:A文章编号:1006-4990(2011)07-0009-04 Status and progress on microwave ferrite materials Jin Yulong (Nanjing Research Institute of Electronics Technology,Nanjing210013,China) Abstract:Status and progress on microwave ferrite materials by combining the developing trend of microwave ferrite devices at home and abroad were summarized.In terms of garnet-based materials,new formulas have been developed with low loss,high power,and low cost materials.For spinel-based materials,they were widely applied in millimeter wave devices and phase shift devices due to the broad magnetization and high remanence.Also,product performance and production capability were clarified.It was emphasized on the importance and necessarity for the development of new microstrip materials and low intermodulation materials as well as industrialization of ferrites.Meanwhile,research ideas and methods were indicated.Key words:microwave ferrite materials;garnets;spinel 铁氧体材料作为功能材料的一个分支,经过近两个世纪的发展基本趋于成熟,建立了较为完备的理论和工艺体系。由于铁氧体的旋磁特性使其在射频和微波频段内得到广泛应用,特别是近50a随着微波铁氧体器件如隔离器、环行器、移相器的大量应用,微波铁氧体材料的研究进入一个新的高潮。近年来,军事对抗和民用通讯两大领域的飞速发展,对微波元器件特别是新型微波铁氧体器件的需求更为旺盛。高功率、小型化、低损耗、高频段、低互调(IMD)器件对材料提出了更高的要求。 1微波铁氧体的现状 常用的微波铁氧体材料主要包括石榴石型、尖晶石型和磁铅石型多晶和单晶材料。 1.1石榴石型铁氧体 复合钇铁石榴石材料(YIGs)由于电磁损耗小、理论密度高、耐功率强等优点,使其在厘米波至米波段的微波铁氧体器件中有着重要应用。目前的研究主要围绕低损耗、高功率、低成本等课题展开。1.1.1低损耗材料 微波铁氧体的损耗来源于磁损耗和电损耗,磁损耗往往在总损耗中占据主导地位。往往磁损耗又是由共振线宽决定的。从△H∝K1/M s关系来看,饱和磁矩越大,各向异性常数K1接近于0的材料具有小的共振线宽。传统上,减小K1值(如添加适量的In3+、Zr4+、Sn4+、Ti4+)可以减小材料的磁损耗,而采用缺铁配方或氧气烧结,避免Fe3+还原即可避免产生大的电损耗。目前美国的Trans-Tech公司、Pacific Ceramics公司以及俄罗斯的Domen公司代表了国际的先进水平,他们窄线宽材料一般能做到1592A/m以下[1-3],而居里温度仍然保持在一个合理水平。国内的水平在2388A/m左右。 对于微波铁氧体材料损耗机制的研究,有学者认为,非共振区的磁损耗主要来源于晶粒表层自旋波的激发[4]。因此,晶粒越小,晶粒界面所占分数越多,从而损耗会越大。 总之,低损耗一直是微波铁氧体材料工作者追求的目标,因为它对铁氧体器件的耐功率、小型化、 9 第43卷第7期2011年7月 无机盐工业INORGANIC CHEMICALS INDUSTRY

铁氧体抑制电磁干扰的应用

铁氧体在抑制电磁干扰的应用QC项目《LCD产品EMC测量设计规范》总结

铁氧体在抑制电磁干扰的应用 QC项目《LCD产品EMC测量设计规范》总结 铁氧体是一种立方晶格结构的亚铁磁性材料(见图1)。他的制造工艺和机械性能与陶瓷相同。但颜色为黑灰色,故又称黑磁性瓷。铁氧体的分子结构为MO·Fe2O3,其中MO为金属氧化物,通常是氧化锰(MnO)或氧化锌(ZnO)。在电磁兼容(EMC)应用方面,铁氧体材料是一种广泛应用的有耗器件,能将电磁干扰(骚扰)的能量吸收后,转化为热能损耗,从而起到滤波作用,即构成吸收式低通滤波器。 图1 各种铁氧体抑制元件 在抑制电磁干扰(骚扰)应用方面,对铁氧体性能来说,磁导率是影响铁氧体材料的特性最大的性能指标,它直接与铁氧体芯的阻抗成正比。 铁氧体一般通过几种方式来抑制无用的传导或辐射(干扰)信号。 (1)将铁氧体用作为电感器件,使其以构成低通滤波器,在低频时提供感性-容性通路,而在较高频率时损耗较大。即低频信号可以通过,而较高信号将被阻止。 (2)将铁氧体芯直接用于元器件的引线或线路板上,这是铁氧体最常用的方式。在这种应用中,铁氧体芯能抑制任何寄生振荡和衰减感应或传输到元器件引线上或与之相连的电缆线中的高频无用信号。 (3)将铁氧体作为实际的屏蔽层,来将导体、元器件或电路与环境中的散射电磁场隔离开。 从理论上讲,理论的铁氧体能在高频段提供高阻抗;而在所有其他频段上提供零阻抗。而实际上,铁氧体芯的阻抗是与频率有关的,一般来说,在频率低于1MHz时,其阻抗最低。但对于不同性能或特性的铁氧体材料来说,最高阻抗出现在10~500MHz之间。在前叙述的(1)、(2)方式中,铁氧体芯是通过消除或极大地衰减电磁干扰(骚扰)源的高频电流,来抑制传导骚扰。其核心为采用铁氧体,能提供足够高的高频阻抗来减小高频电流。 铁氧体电磁干扰(骚扰)抑制元件有着各种各样的规格、尺寸、形状和特性,如铁氧体磁环、铁氧体磁珠、多孔磁珠、表面贴装磁珠等。也有氧化锰(MnO)和氧化锌(ZnO)材料之分。因此,根据不同特性、规格、尺寸、形状,铁氧体抑制元件广泛应用于PCB(印制电路板)、电源线和数据线上。 1.铁氧体抑制元件在电源线上的应用 电源线能将外界电网地干扰、开关电压的噪音(骚扰)传到主电路。在电源的出口和印制电路板的入口设置铁氧体抑制元件,既可抑制电源与印制电路板之间的高频干扰的传输。也可抑制印制电路板之间高频噪音(骚扰)的相互干扰。 对于在电源线上应用铁氧体抑制元件来说,流过电源线的电流的大小是要影响铁氧体元件的性能,将是在应用是值得注意的事情。在电源线上应用铁氧体元件时,要关注有直流(低频交流)偏流存在的情况。铁氧体的阻抗和插入损耗会随着直流(低频交流)的偏流的增加

微波技术原理及其发展与应用_孙凤坤

主观因素影响,尽量把这种影响淡化,但是仍然是有所欠缺的,因此,指标权值量化方面的研究仍然是以后工作的难点。 参考文献[1]杨松林.工程模糊论方法及其应用[M].北京:国防工业出版社,1996. [2]翟晓敏, 盛韶涵,何建敏[J].系统工程理论与实践,1998(7).[3]张景林.安全评价基础[M].北京.兵器工业出版社,1991. [4]陈万金.安全科学理论与与实践[M].北京:北京理工大学,2005. 作者简介:吴喜,男,助理工程师,注册安全工程师、安全评价师,现从事电力行业安全评价及安全设计相关工作。微波技术原理及其发展与应用 孙凤坤 邢泽炳 (山西农业大学工学院,山西太谷030801) 1引言 微波是一种波长很短的电磁波,其波长范围在0.1mm~1m 之间,由于其最长波长值比超短波最小波长值还要短,故称其为微波。微波具有极高的频率,其范围在300MHz~3000GHz 之间,故微波亦称作“超高频电磁波”。微波整体范围介于红外线与超短波之间,根据微波波长范围的不同,又可将微波分为分米波、厘米波、毫米波以及亚毫米波。微波在整个电磁波频谱中所处的位置简图如图1所示[1]。 图1电磁波频谱分布简图随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、 微波散射通信、模拟微波通信和数字微波通信等。为避免微波通信频率与工业、医学、科学等的频率相互干扰,故将微波通信频率与其他用途的微波频率分开使用。目前,工业、医学、科学常用的微波频率有433MHz 、915MHz 、2450MHz 、5800MHz 、22125MHz ,其中915MHz 和2450MHz 在我国常用于工业加热。 2微波技术的发展历程微波技术的发展主要取决于微波器件的应用和发展。早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,使得实验未能取得实质性的进展[2]。1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实验条件。美国电话电报公司的George C.Southworth.将波导用作宽带传输线并申请了专利,同时,美国麻省理工学院的M.L.Barrow 完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[3] 。20世纪40年代,第二次世界大战期间,雷达的出现和使用引起了人们对微波理论和技术的高度重视,并研制了很多微波器件,在此期间,微波技术迅速发展并在实际应用中得到认可。但在当时战争条件下,各国都忙于实际应用,对微波理论的研究尚为欠缺,所以使得微波理论滞后于实际应用。1945~1965年,微波技术的发展速度有了明显提高,同时,其应用范围也更加广泛。在这20年间,逐步开辟了微波新波段并形成了射电气象学、射电天文学、微波波谱学等一系列新的科学领域。比较系统和完整地建立了一整套微波电子学理论,为微波技术的进一步发展打下了理论基础。1965年以后,微波集成电路与微波固体器件的发展和应用时微波设备朝着定型化与小型化的方向发展。目前,微波设备正向着更高频段、宽频带、高功率、数字化、高可靠性、小型化等方面发展,单片集成化和毫米、亚毫米波段微波的发展已成为现阶段微波技术研究的重点方向[4] 。3两种常用的微波技术3.1微波加热3.1.1微波加热的原理微波加热是通过极性介质材料对微波的吸收作用从而将微波的电磁能转化为介质的热能来实现的。该转化过程与介质材料内部分子的极化有密切关系。具体原理如下:当把含有极性分子的物料置于微波电磁场中时,介质材料中的极性分子在高频交变的电磁场中产生每秒高达数亿次的剧烈转动,并随着高频交变电磁场的方向重新排列,极性分子这种有规律的周期性运动必须克服相邻分子间的干扰和阻碍,从而产生一种类似于摩擦的效应。该效应微观结果表现为微波的电磁能量转化为介质材料内的能量,而宏观即表现为被加热的物体温度升高[5-6]。 3.1.2实现微波加热的条件 由于微波加热是一种物料在电磁场中靠自身损耗电磁能而进行的体加热,是基于极性分子介质材料对微波的吸收作用而产生的热效应,所以,欲实现微波加热,就要求物料本身必须能够吸收微波[5]。 (1)极性分子组成的介质材料,吸收微波的能力比较好。例如,水分子的极性非常强,能够很好地吸收微波,所以但凡含水的物质必定能够吸收微波,即含水的物质一定能实现微波加热。 (2)非极性分子组成的介质材料,很少吸收甚至不吸收微波,但却能透过微波,所以这类物质可用作微波加热的容器,也可用作密封材料。例如,塑料制品、玻璃、陶瓷、竹器皿、聚乙烯、聚四氟乙烯等。用 这类物质作加热容器,微波射入后只能使食品加热,而容器本身不会 发热。(3)还有一种特殊的物质不吸收微波,即金属[4]。与光波照射到镜面会被全部反射的特性相似, 当微波照射到金属表面时,也会被全部反射,即微波对金属不起作用,从而可知,金属制品不可以用作微波加热容器。3.1.3微波加热的注意点 (1 )由于金属不吸收微波,并且会将照射到金属表面的微波全部反射,所以要避免用微波对金属膜包装的物品或在包装袋上印有金属粉制图像的物品进行加热,否则金属下面的部分将不会有任何加热效果[4]。(2)避免在被加热物体中混入金属片或金属针。不仅被加热物体表面要求不能有金属,而且被加热物体内部同样不可混入金属。这是因为金属尖端是微波电场最集中的地方,不仅不能实现正常加热,而 且还会形成尖端放电,从而在尖薄部位产生高热[4] 。 (3)对使用的加热容器有选择性。由于塑料、陶瓷、玻璃、竹器皿等非极性分子组成的材料能透过微波却不吸收微波,所以非常适合用作加热容器。一般情况下,用塑料或陶瓷做微波加热容器最佳。3.1.4微波加热的特点(1)微波加热的即时性[7]。由于微波加热是将电磁能转化为热能, 故为内部加热,不需要热传递过程,且内外同时加热,效果均匀,瞬时 即可达到高温,方便省时。(2)微波加热的高效性[7]。在微波加热过程中,只有被加热物体自身吸收微波并转化为热能,而微波设备的加热室壁是不吸收微波的金属材料,加热容器为几乎不吸收微波的非极性物质,所以,加热设备本身和相应的加热容器几乎没有热损失,故其热效率非常高。(3)微波加热的选择性。介质材料由极性分子和非极性分子组 成,根据微波加热的条件及原理,只有极性分子组成的物质才可以吸 收微波实现微波加热。因此,可以利用微波加热的这一特性来实现对混合物料中不同组分或不同部位的选择性加热[7]。(4)微波加热安全无害,没有废弃物产生。与采用矿物燃料燃烧进行加热的常规方法相比,微波加热不产生二氧化碳,对环境没有污 染[7] 。(5)微波加热时由于内部缺乏散热条件,所以使得内部温度高于外部温度,使温度呈现梯度分布,形成驱动内部水分向表面渗透的蒸摘 要:微波技术在短短的几十年内已渗透到各行各业,对社会发展和人们的生活产生了深远影响。文章在微波发展的基础上, 详细介绍了微波加热和微波灭菌两种技术的作用机理,并对微波加热的条件、特点等作出说明,另外,还包括微波技术在各个领 域的广泛应用, 同时对微波技术目前存在的问题作了分析,并对微波技术的发展前景作了展望。关键词:微波技术;微波加热;微波灭菌;原理;应用;前景3--

微波技术在各领域的应用

微波技术在各领域的应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

微波技术在各领域的应用 发布来源:三乐微波发布时间:2014/5/30 8:57:00 一、微波原理 微波是指波长在1mm~1000mm、频率在300MHz-300GHz范围之间的电磁波,因为它的波长与长波、中波和短波相比来说,要“微小”得多,所以称之为“微波”。 微波有着不同于其他波段的重要特点,它自被人类发现以来,就不断的得到发展和应用,19世纪末,人们已经知道了超高频的许多特性,赫兹用火花振荡得到了微波信号,并对其进行了研究,仅证实了麦克斯韦的一个预言—电磁波的存在。20世纪初期对微波技术的研究又有了一定的进展,1936年4月美国科学家South Worth用直径为12.5cm青铜管将9cm的电磁波传输了260m远,波导传输实验的成功激励了当时的研究者,因为它证实了麦克斯韦的另一个语言—电磁波可以在空心的金属管中传输,因此在第二次世界大战中微波技术的应用就成了一个热门的课题。战争的需要,促进了微波技术的发展,而电磁波在波导中传输的成功,有提供了一个有效的能量传输设备,微波电真空振荡器及微波器件的发展十分迅速。在1943年终于制造除了第一台微波雷达,工作波长在10cm。在第二次世界大战期间,由于迫切需要能够对敌机及舰船进行了探测定位的高分辨率雷达,大大促进了微波技术的发展。第二次世界大战后,微波技术进一步迅速发展,不进系统研究了微波技术的传输理论,而且向着多方面的应用发展,并且一直在不断的完善,我国开始研究和利用微波技术实在20世界70年代初期,首先在连续波磁控管的研制方面取得重大进展,特别是大功率磁控管的研制成功,为微波技术的应用提供了先决条件。此后我国在微波领域迅速发展,80年代我公司生产出中国第一台微波炉,到目前为止,家用微波炉、工业微波应用等系列产品微波产品接近或达到世界先进水平。 微波通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿透而不被吸收;对于水和食物等就会吸收微波而使自身发热;而对金属类东西,则会反射微波。从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点: 1 穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。微波透入介质时,由于微波能与介质发生一定的相互作用,以微波频率2450MHz,使介质的分子每秒产生24亿五千万次的震动,介质的分子间互相产生摩擦,引起的介质温度的升高,使介质材料内部、外部几乎同时

相关主题
相关文档 最新文档