当前位置:文档之家› 电化学方法制备纳米材料

电化学方法制备纳米材料

电化学方法制备纳米材料
电化学方法制备纳米材料

电化学方法制备纳米材料

Mcc

引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。

摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。

关键词:纳米材料电化学制备特征应用

Electrochemical preparation of nano materials

Mcc

Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now.

Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.doczj.com/doc/5910320383.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

and morphology of nanometer materials control synthesis is very important. As a senior nano structure materials and nano device the basic constitution unit (Bui1ding Blocks), nanoparticles of synthesis and assembly is an important part of the nanometer technology and the foundation. And electrochemical methods preparing nanometer material research, the experienced early nano, film, nano microcrystalline preparation, up until now the electrochemical preparation nanometer metal wire, metal oxide process, for nano materials made great contribution.

Abstract: nano is refers to the characteristic dimension size between 1-100 nm range of particle of tiny particles, called particle. When a particle size is small to the nanometer level, its will have face and interface effect, quantum size effect, small size effect and the macroscopic quantum tunnel effect, these effects makes the nano material has many strange performance. In this paper, the author briefly reviewed the synthesis and preparation of nanometer materials used in several ways and simple some applications, nanometer material reviewed emphatically the electrochemical preparation methods and the influence factors and the development situation to do simple explored.

Keywords: nano materials Electrochemical preparation Characteristics application

一、纳米材料

纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。处在原子簇和宏观物体交界的过渡区域,是一种典型的介观系统;它的大小介于宏观物质与微观粒子如电子、原子、分子之间,属于亚微观的范畴。人们将晶体区域或其它特征长度在纳米量级范围(小于100nm)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructured materials)。纳米材料由两种组元构成:晶体组元和界面组元。晶体组元由晶粒中的原子组成,这些原子都严格位于晶格位置上;界面组元由各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及:物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要包括:

(l)清洁或涂层表面的金属、半导体或聚合物薄膜;

(2)人造超晶格和量子阱结构;

(3)结晶聚合物和聚合物混和物;

(4)纳米晶体和纳米玻璃材料;

(5)金属键、共价键或分子组元构成的纳米复合材料。

经过科学家长期的的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。

二、纳米材料的性能

1. 原子的扩散行为

原子扩散行为影响材料的许多性能,诸如:蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。研究表明:Fe在纳米晶N i中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。

2.力学性能

目前,关于纳米材料的力学性能研究,主要包括:硬度、断裂韧性、压缩和拉伸的应力—应变行为、应变速率敏感性、疲劳和蠕变等的研究,所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。

研究表明许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。另外,纳米金属材料的韧性都很低,主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。

3.纳米晶金属的磁性

早期的研究发现,纳米晶Fe的饱和磁化强度比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。

4.催化及贮氢性能

在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。典型的如 Rh/Al2O3、 Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。

三、纳米材料的特征

纳米材料的特征主要有小尺寸效应、表面和界面效应、量子效应、宏观量子隧道效应等。

1.小尺寸效应(体积效应)

当超细微粒的尺寸与光波的波长、传导电子的德布罗意波长或超导态的相干长度或透射深度等物理特征尺寸相当或更小时,其周期性的边界条件将被破坏,那么这种材料在光、声、电、磁、热、力学等方面均会表现出与大颗粒不同的特性,这一效应称作小尺寸效应或体积效应。

2.表面与界面效应

表面与界面效应效应是指纳米材料表面原子与总原子数之比随着纳米粒子尺寸的减少而大幅度地增加,使其表面能及表面张力也随之增加。纳米粒子的表面原子所处的晶体场环境、结合能与内部的原子不同,存在许多悬空键,具有不饱和性质,因而极易与其他原子结合,具有很高的化学活性和电化学活性。

3.量子尺寸效应

当粒子的尺寸小到某一值时,金属费米能级附近的电子能级由连续变为离散,对于纳米半导体材料存在的不连续的最高被占据分子轨道和最低未被占据的分子轨道的能级和能隙变宽,此现象称为量子尺寸效应。

四、纳米材料的合成与制备方法

我国近年来在纳米材料的制备、表征、性能及理论研究方面取得了国际水平的创新成果,已形成一些具有物色的研究集体和研究基地,在国际纳米材料研究领域占有一席之地。

纳米材料的制备理论基础,简单地说就是如何控制粒子生长,使其在所要求的阶段停止。目前国内外纳米材料的制备方法大体可以分为物理制备方法和化学制备方法2种。1. 物理制备方法

1.1 机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。

1.1.1 机械球磨法

机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。

1.1.2 机械粉碎法以及超重力技术

机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

1.2 气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。

1.2.1 蒸发冷凝法

蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50 nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。

1.2.2 溶液蒸发法

溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。

1.2.3 深度塑性变形法

深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

1.3 磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.化学制备方法

2.1 溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。Marcus Jones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,QY)为13.8%。

2.2 离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80 nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.3 溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成

相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Liu等用Bi(NO3)3?5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的Bi2S3纳米带。

2.4 微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd 等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

化学制备方法的特点:组分容易控制;设备及材质要求较低,操作简单、方便;粒子均匀性较好,不易产生偏析;易产生吸附现象等。

3. 辐射法

该方法不很常见,一般有紫外辐射、红外辐射、激光辐射、粒子射线辐射以及核辐射等。

五、电化学方法制备金属纳米材料

电化学制备纳米材料的主要方法有:电化学电解法、

电化学沉积法以及电化学还原法等。

1. 电化学电解法制备纳米材料

电化学电解法是指利用要制备金属的盐溶液做电解液,再向其中加入一定量的配体来控制电解液中该金属阳离子的浓度,加入一定量的表面活性剂和大分子(聚乙烯吡咯烷酮和十二烷基硫酸钠的混合物)做保护剂来防止生成的纳米金属离子发生团聚。纳米金属粒子的粒径大约为75nm。此方法在室温下即可进行,是一种非常有用的方法,具有反应条件温和、仪器设备简单等优点。可用以制备铜纳米颗粒。

2.电化学沉积法制备纳米材料

电化学沉积法是指利用点荷正负吸引,使其带电,然后再用反点荷去沉淀的制备方法,实验装置相对比较简单,花费较低,实验过程容易控制,是一种简单有效的纳米材料制作方法。可用以制备银纳米材料。

3.电化学还原法制备纳米材料

电化学还原法是电化学方法的一种,此方法利用金属的电沉积理论,通过金属离子在阴极上的还原反应,控制电解速度,在阴极的电解液中收集沉积到金属并通过其他科学方法制备成纳米材料的方法。具有设备简单、操作方便。易于控制、反应条件温和、制得的纳米微粒纯度高、对环境污染少等优点,其实质也是电解的一种。可用于制备Pt、Ni纳米材料。

六、纳米技术在国内的研究情况及取得的成果

纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,主要如下:定向纳米碳管阵列的合成,由中国科学院物理研究所解思深研究员等完成。他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。并由此制备出纳米管阵列,其面积达3毫米×3毫米,碳纳米管之间间距为100微米。

氮化镓纳米棒的制备,由清华大学范守善教授等完成。他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的半导体氮化镓一维纳米棒,并提出碳纳米管限制反应的概念。并与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长。

准一维纳米丝和纳米电缆,由中国科学院固体物理研究所张立德研究员等完成。他们利用碳热还原、溶胶—凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体SiO2纳米电缆。

用催化热解法制成纳米金刚石,由中国科学技术大学的钱逸泰等完成。他们用催化热解法使四氯化碳和钠反应,以此制备出了金刚石

纳米粉。

但是,同国外发达国家的先进技术相比,我们还有很大的差距,希望我们新一代学者在这方面能取得骄人的成绩。

总之,纳米技术正成为各国科技界所关注的焦点,正如钱学森院士所预言的那样:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是新世纪的又一次产业革命。”结束语:在过去十多年里,尽管纳米材料的研究已经取得了显著进展,但许多重要问题仍有待探索和解决。诸如,如何获得清洁、无孔隙、大尺寸的块体纳米材料,以真实地反映纳米材料的本征结构与性能?如何开发新的制备技术与工艺,实现高品质、低成本、多品种的纳米材料产业化?纳米材料的奇异性能是如何依赖于微观结构(晶粒尺寸与形貌、晶界等缺陷的性质、合金化等)的?然而,如何利用微观结构的设计与控制,发展具有新颖性能的纳米材料,以拓宽纳米材料的应用领域?某些传统材料的局域纳米化能否为其注入新的生命力?如何实现纳米材料的功能与结构一体化?如何使纳米材料在必要的后续处理或使用过程中保持结构与性能的稳定性等这些基本问题是进一步深入研究纳米材料及其实用化的关键,也是纳米材料研究被称为“高风险与高回报并存”的原因。

近十几年来对电化学制备纳米晶体的研究,发现电化学法制备纳米晶体具有其他普通晶体所不具有的优异性能,例如耐磨性、延展性、硬度、电阻、电化学性能以及耐腐蚀性等。并且电化学制备纳米晶体也相对比较容易,因而其在科学技术上的发展前景是非常广阔的,然

而在激烈的国际竞争形势下,急需以现有工作为基础,以若干学科为突破目标,集中人力、物力、财力的投入,使我国在这一领域的研究水平上一个新台阶。

致谢:作者自开展本论文以来,非常感谢百度、谷歌、搜狐以及小木虫、豆丁、中国知网等给我提供了大量的参考信息,非常感谢西北师范大学图书馆给我提供了无限量的资料,同时也非常感谢薛中华老师一学期来的辛苦教导,让我储备了一些专业基础知识,为论文的顺利开展奠定了基础,也使我薄弱的电分析专业知识上了一个台阶。

参考文献:

[ 1 ] 张立德,牟季美,纳米材料学,辽宁科技出版社,1994

[ 2 ] 邓姝皓;龚竹青;陈文汩电沉积纳米晶体材料的研究现状与发展[期刊论文] -电镀与涂饰2001(04)

[ 3 ] 梅本富,吴炳尧.材料科学与工程,1992,10(4):1

[ 4 ] 周根陶等,无机化学学报,1996, 1(1):96-99

[ 5 ] 王育华等,兰州大学学报,(自然科学版),1994, 30(3); 53-58 [ 6 ] 刘虹雯;侯士敏;张耿民电化学沉积金纳米线结构及其电学特性[期刊论文] -物理化学学报2002(04)

[ 7 ] 王林等:纳米材料在一些领域的应用及其前景[J].纳米科

技,2005,(4),6 90.

[ 8 ] 刘建伟,刘有智,超重力技术制备纳米氧化锌的工艺研究[J].化学

工程师,2001,(5):21 22.

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

电化学法制备纳米铜粉

文章编号:167325196(2008)0320009203 电化学法制备纳米铜粉 徐建林1,2,陈纪东1,2,张定军1,2,马应霞1,2,冉 奋1,2,龙大伟1,2 (1.兰州理工大学甘肃省有色金属新材料重点实验室,甘肃兰州 730050;2.兰州理工大学有色金属合金及加工教育部重点实验室,甘肃 兰州 730050) 摘要:在十二烷基硫酸钠、吐温80、苯、正丁醇、十二烷基硫醇和硫酸铜混合而成的乳液中,采用电化学合成的方法制备稳定的、粒径均匀的Cu 纳米颗粒.采用XRD 、TEM 及FT -IR 对所制备的Cu 纳米颗粒的结构、形貌、粒径大小及表面键合性质进行表征.结果表明,制备的纳米铜粉为球型颗粒,分散较好,尺寸较为均匀,约为60~80nm ,并且具有立方晶型结构;得到的纳米铜颗粒表面含有一层有机物质,形成了包覆层较薄的核壳结构,这种包覆层阻止了纳米铜粉在空气中或水中的团聚和氧化,起到提高纳米铜颗粒的分散性和稳定性的作用.关键词:纳米颗粒;Cu ;乳液;电化学中图分类号:TB383 文献标识码:A Preparation of copper nano 2powder by using electrochemical method XU Jian 2lin 1,2,C H EN Ji 2dong 1,2,ZHAN G Ding 2jun 1,2 MA Y ing 2xia 1,2,RAN Fen 1,2,LON G Da 2wei 1,2 (1.State Key Lab.of Gansu Advanced Non 2ferrous Metal Materials ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ;2.Key Lab.of Non 2ferrous Metal Alloys ,The Ministry of Education ,Lanzhou Univ.of Tech.,Lanzhou 730050,China ) Abstract :Stable and uniform Cu nanoparticles was p repared wit h electrochemical met hod in emulsio ns containing of sodium dodecyl sulfate ,tween 80,benzene ,12butanol ,dodecyl mercaptan and CuSO4?5H 2O.The morp hology and struct ure of t he resulting copper nanoparticles were investigated wit h XRD ,TEM and F T 2IR.It was found t hat t he copper nano 2powder was of sp herical st ruct ure wit h a better dis 2persity ,uniform particlesize.t he average size being 60~80nm and cubic crystalline.A layer of organic compound was absorbed on t he surface of copper nanoparticles ,forming a shell 2core st ruct ure wit h t hin surface coating film ,which could be p revent t he Cu nano 2powder f rom aggregation and oxidation in t he at 2mo sp here or water ,and increase t he dispersibility and stability of t he Cu nanoparticles as well. K ey w ords :nanoparticles ;Cu ;emulsions ;elect rochemist ry 纳米铜颗粒的比表面积大,表面活性中心数多,在石油化工和冶金中是良好的润滑剂;此外,纳米铜颗粒具有极高的活性和选择性,可以用作高分子聚合物的氢化和脱氢化反应的催化剂[1,2].1995年,Pekka [3]等指出纳米铜由于其低电阻而可用于电子 连接,引起电子界的很大兴趣.纳米铜粉也可用于制 造导电浆料(导电胶、导磁胶等),广泛应用于微电子工业中的布、封装、连接等,对微电子器件的小型化生产起重要作用. 目前,常用的制备纳米铜粉的方法有:机械化学 收稿日期:2007201207 作者简介:徐建林(19702),男,陕西岐山人,博士,副教授. 法、气相蒸汽法、化学还原法、辐照还原法等.此外,Gedanken 等人报道了一种用自还原前驱体制备纳米铜的方法[4],Pileni 等人用表面活性剂囊泡技术制备了各种形状的铜纳米颗粒[5].机械化学法制备的粉体组成不易均匀,粉末易团聚,粒径分布宽,所以缺乏现实意义;气相蒸汽法所需原料气体价格昂贵,设备复杂,成本高.目前研究最多的是液相还原法,但是液相还原又需要用到一些剧毒的还原剂,这对研究者本身或者是环境都会造成危害.电化学合成方法具有反应条件温和、仪器设备简单、无毒无污染的优点,是合成纳米材料的有效手段之一[6,7]. 本文采用电化学电解法,在十二烷基硫酸钠、吐 第34卷第3期2008年6月兰 州 理 工 大 学 学 报 Journal of Lanzhou University of Technology Vol.34No.3 J un.2008

碳纳米材料在电化学传感器中的应用

碳纳米材料在电化学传感器中的应用研究 摘要由于碳纳米材料具有良好的力学、电学及化学性能而被人们广泛研究,特别是对于具有大比表面积、高的电导率和良好生物相容性的碳纳米管、碳纳米纤维和石墨烯更是研究的热点。这些新型碳材料具有许多优异的物理和化学特性,被广泛地应用于诸多领域,特别是在电化学领域中显示出其独特的优势。本文主要阐述了碳纳米材料在电化学传感器领域的应用。 关键词碳纳米管石墨烯电化学传感器 1电化学传感器概述 电化学传感器主要由两部分组成:识别系统;传导或转换系统。 识别系统与待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,电化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。电化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。 最早的电化学传感器可以追溯到 20 世纪 50 年代,当时用于氧气监测。到了 20 世纪80 年代中期,小型电化学传感器开始用于检测 PEL 范围内的多种不同有毒气体,并显示出了良好的敏感性与选择性。目前,为保护人身安全起见,各种电化学传感器广泛应用于许多静态与移动应用场合。 2 碳纳米材料——碳纳米管和石墨烯 随着科学技术的进步,研究者发现空间尺寸在0.1-100 nm之间的物质拥有很多宏观状态下没有的特性[1]。我们把这些具有一定功能性、三维空间尺寸至少有一维介于0.1-100 nm 之间的一类物体统称为纳米材料。它是由纳米微粒、原子团簇、纳米丝、纳米管、纳米薄膜或由纳米粒子组成的块体。由于具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的量子尺寸效应[2, 3]、体积效应[4]、表面效应[5]和量子隧道效应[6]等特性,纳米材料在光学、热学、催化、光化学以及敏感特性等方面具有一系列特殊的性质,因此它具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、生物、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。 碳是一种非金属元素,位于元素周期表的第二周期IV A族。作为地球上最容易得到的元素之一,碳元素以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,它在常温下的化学性质比较稳定,不溶于水、稀酸、稀碱和有机溶剂。利用现代科技的不同制备方法,我们可以制备出不同独特空间结构和特异性能的碳纳米材料,其中包括零维的富勒烯、一维的碳纳米管、二维的石墨烯和三维的石墨或金刚石。依靠独特的空间结构和优异的化学性能,它们可以应用于各个领域中。接下来我们主要介绍一下碳纳米管和石墨烯。 2.1碳纳米管 CNTs是1991 年日本电镜学家Iijima在高分辨透射电子显微镜下检验石墨电弧中产生

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

多孔碳纳米球的制备及其电化学性能_杨秀涛

物理学报Acta Phys.Sin.Vol.66,No.4(2017)048101 多孔碳纳米球的制备及其电化学性能 ?杨秀涛梁忠冠袁雨佳阳军亮夏辉? (中南大学物理与电子学院,长沙 410083) (2016年10月11日收到;2016年10月31日收到修改稿) 以三嵌段共聚物F108为软模板,通过水热法合成酚醛树脂球并在氮气氛围下碳化、KOH 活化处理,最终得到多孔碳纳米球材料.通过扫描电子显微镜,透射电子显微镜和氮气吸附分析仪对样品进行表征,结果表明样品的平均粒径为120nm,球形度高,比表面积达到1403m 2/g,孔径分布广.通过X 射线衍射研究样品的结晶度, 序度提高明,10000次循环充放电后,关键词:PACS:1引上的电池,长、能影响较大[纳米管[5,6]球[12?14].物为模板,活化,得到活 P123(PEO 20-. 为软模板,利用水(porous .通过扫描电子X 射线,研究孔隙结构、 ?国家自然科学基金(批准号:51673214)资助的课题.?通信作者.E-mail:xhui73@https://www.doczj.com/doc/5910320383.html, ?2017中国物理学会Chinese Physical Society https://www.doczj.com/doc/5910320383.html, 网络出版时间:2017-01-12 10:56:13 网络出版地址:https://www.doczj.com/doc/5910320383.html,/kcms/detail/11.1958.O4.20170112.1056.016.html

结晶度和表面官能团的影响.结合PCNS 样品的电化学性能的测试,研究了PCNS 样品的理化特性对其电化学性能的影响. 2实验部分 2.1 多孔碳纳米球的合成 首先,称取1.96g 三嵌段共聚物F108溶解于30mL 水中搅拌均匀得到澄清溶液A.然后称1.2g 的苯酚并量取4.2mL 质量分数为37%的甲醛溶液溶解于30mL 的0.1M(mol/L)氢氧化钠溶液,搅拌均匀, min 体系中加入到溶液B.取物质烘干.氛下以700? 物PCNS 为中性,900?C 时,2.2600i)TWIX)比表面积S 孔面积(S 计算.品的孔径分布.用X 射线衍射仪(XRD,SIEMENS D500)在电压为40kV 、电流为100mA,Cu 靶、K α射线(λ=0.15056nm)、石墨单色滤波器以及衍射角为10?—70?的条件下以2?/s 的速度对样品扫描. 用红外光谱仪(FTIR,Niclet 380)对样品在波数500cm ?1—4500cm ?1范围内进行扫描,根据得到的吸收光谱图分析样品的表面元素及官能团组成. 2.3电化学特性测试 采用辰华CHI660E 电化学工作站在三电极体 系进行电化学特性的测试.测试体系的对电极和参比电极分别采用铂片电极和Hg/HgO 电极,而工作电极的制备采用(1×1)cm 2泡沫镍为基底,将制备的多孔碳纳米球样品作为活性物-质和乙炔黑,用乙醇作为溶剂,60wt%聚四氟乙烯(PTFE)混合,调成浆状,,于10MPa 压(cyclic (galvano-GC)和电化学阻spectroscopy,5,10,20,50,100V 的电压区间进行·m ), (1) (A),放电时间(g).电化学kHz,微扰为,1(b)分别是PCNS 1(c)和图1(d)是照片,图1(e)和TEM 照片,每TEM 照片,KOH 处理后其粒径大小没有明显的改变.从选区电子衍射图可知,样品在?002?和?100?晶面处具有衍射特征峰.由超高放大倍数TEM 照片,可以看出样品PCNS700和PCN900的微晶有序度要高于PCNS 的有序度.

金属氧化物纳米材料的电化学合成与形貌调控研究进展

[Review] https://www.doczj.com/doc/5910320383.html, doi:10.3866/PKU.WHXB 201209145 物理化学学报(Wuli Huaxue Xuebao ) Acta Phys.-Chim.Sin.2012,28(10),2436-2446 October Received:August 30,2012;Revised:September 10,2012;Published on Web:September 14,2012.? Corresponding author.Email:dsxu@https://www.doczj.com/doc/5910320383.html,;Tel:+86-10-62760360. The project was supported by the National Natural Science Foundation of China (51121091,21133001,61176004),National Key Basic Research Program of China (973)(2007CB936201,2011CB808702),and Science and Technology on Electro-optical Information Security Control Laboratory,China (9140C150304110C1502). 国家自然科学基金(51121091,21133001,61176004),国家重点基础研究发展规划项目(973)(2007CB936201,2011CB808702)和国家光电信息控制和安全技术重点实验室基金(9140C150304110C1502)资助 ?Editorial office of Acta Physico-Chimica Sinica 金属氧化物纳米材料的电化学合成与形貌调控研究进展 焦淑红1 徐东升1,2,*许荔芬1张晓光2 (1北京大学化学与分子工程学院,分子动态与稳态结构国家重点实验室,北京分子科学国家实验室,北京100871; 2 光电信息控制和安全技术重点实验室,河北三河065201) 摘要:金属氧化物纳米材料因其丰富的形貌、独特的性能、广泛的应用成为材料合成领域研究的热点.调控金 属氧化物纳米材料的形貌对于调变其性能、拓展其应用空间具有重要意义.电化学方法由于操作简单易控、方法灵活多变,因此成为调控金属氧化物形貌的常用方法.本文综述了近年来我们在金属氧化物纳米材料的电化学合成与形貌调控方面已取得的研究结果;总结了不同金属氧化物在电化学过程中晶体生长机制和形貌调控的规律,为实现功能材料的定向合成奠定了基础.关键词: ZnO;金属氧化物;形貌调控;电沉积;纳米管;多级结构 中图分类号: O646 Recent Progress in Electrochemical Synthesis and Morphological Control of Metal Oxide Nanostructures JIAO Shu-Hong 1 XU Dong-Sheng 1,2,* XU Li-Fen 1 ZHANG Xiao-Guang 2 (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;2Science and Technology on Electro-optical Information Security Control Laboratory,Sanhe 065201,Hebei Province,P .R.China ) Abstract:There has been considerable focus on the synthesis of metal oxide nanostructures because of their extensive structures,unique properties,and wide applications.The morphological control of metal oxide nanostructures is of interest for tuning their performance and expanding their range of applications.Electrochemical methods have become a common way of controlling the morphologies of metal oxides,owing to their simple operation,ease of control,and flexible modes.This paper presents a brief overview of our research in the electrochemical synthesis and morphological control of metal oxide nanostructures.We will also discuss the crystal growth mechanism and the morphology control of different metal oxides during the electrochemical deposition process,which lays the foundation for orientation design and fabrication of functional materials. Key Words:ZnO;Metal oxide;Morphological control; Electrodeposition; Nanotube; Hierarchical structure 2436

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

电化学方法制备纳米材料

电化学方法制备纳米材料 Mcc 引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。 摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。 关键词:纳米材料电化学制备特征应用 Electrochemical preparation of nano materials Mcc Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now. Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.doczj.com/doc/5910320383.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

相关主题
文本预览
相关文档 最新文档