当前位置:文档之家› 粒级_标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比_陈桥

粒级_标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比_陈桥

粒级_标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比_陈桥
粒级_标准偏差法和主成分因子分析法在粒度敏感因子提取中的对比_陈桥

主成分分析法运用

统计学简介及在实践中的应用 --以主成分分析法分析影响房价因素为例 姓名:阳飞 学号:2111601015 学院:经济管理学院 指导教师:吴东武 时间:二〇一七年一月六日

1 简介 统计语源最早出现于中世界拉丁语的Status,意思指各种现象的状态和状况。后来由这一语根组成意大利语Stato,有表示“国家”的概念,也含有国家结构和 国情知识的意思。根据这一语根,最早作为学名使用的“统计”的是在十八世纪德国政治学教授亨瓦尔(G.Achenwall)。他在1749年所著《近代欧洲各国国家学纲要》一书的绪言中,就把国家学名定义为“Statistika”(统计)这个词。原意是 指“国家显著事项的比较和记述”或“国势学”,认为统计是关于国家应注意事项的学问。自此以后,各国就相继沿用“统计”这个词,更把这个词译成各国的文字,其中,法国译为Statistique;意大利译为Statistica;英国译为Statistics;日本最初译为“政表”、“政算”、“国势”、“形势”等,直到1880年在太政官中设立了统计院,这个时候才确定以“统计”二字正名。 在我国近代史上首次出现是在1903年(清光绪廿九年)由钮永建、林卓南等翻译了四本由横山雅南所著的《统计讲义录》一书,这个时候才把“统计”这个词从日本传到我国。1907年(清光绪卅三年),由彭祖植编写的《统计学》在日本出版,同时在国内发行。这本书是我国最早的一本“统计学”书籍。自此以后“统计”一词就成了记述国家和社会状况的数量关系的总称。 关于“统计”这个词,后来又引申到了各种各样的组合,包括:统计工作、统计资料、统计科学。 统计工作是指利用科学的方法搜集、整理、分析和提供关于社会经济现象数量资料的工作的总称,它是统计的基础,也称统计实践或统计活动。是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。

粒度分析的基础知识

什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是 20×10×5mm。但你不能说这个火柴盒是20mm或10mm或5mm,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50μ的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50μ可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= 4/3π×r3×ρ-------------------------------- (1) 由公式(1)可以计算出一个唯一的数(2r)作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等。 假设有一直径D1=20μm(半径r=10μm),高为100μm的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2):

主成分分析法精华讲义及实例

主成分分析 类型:一种处理高维数据的方法。 降维思想:在实际问题的研究中,往往会涉及众多有关的变量。但是,变量太多不但会增加计算的复杂性,而且也会给合理地分析问题和解释问题带来困难。一般说来,虽然每个变量都提供了一定的信息,但其重要性有所不同,而在很多情况下,变量间有一定的相关性,从而使得这些变量所提供的信息在一定程度上有所重叠。因而人们希望对这些变量加以“改造”,用为数极少的互补相关的新变量来反映原变量所提供的绝大部分信息,通过对新变量的分析达到解决问题的目的。 一、总体主成分 1.1 定义 设 X 1,X 2,…,X p 为某实际问题所涉及的 p 个随机变量。记 X=(X 1,X 2,…,Xp)T ,其协方差矩阵为 ()[(())(())], T ij p p E X E X X E X σ?∑==-- 它是一个 p 阶非负定矩阵。设 1111112212221122221122T p p T p p T p p p p pp p Y l X l X l X l X Y l X l X l X l X Y l X l X l X l X ?==+++? ==+++?? ??==+++? (1) 则有 ()(),1,2,...,, (,)(,),1,2,...,. T T i i i i T T T i j i j i j V ar Y V ar l X l l i p C ov Y Y C ov l X l X l l j p ==∑===∑= (2) 第 i 个主成分: 一般地,在约束条件 1T i i l l =

及 (,)0,1,2,..., 1.T i k i k C ov Y Y l l k i =∑==- 下,求 l i 使 Var(Y i )达到最大,由此 l i 所确定的 T i i Y l X = 称为 X 1,X 2,…,X p 的第 i 个主成分。 1.2 总体主成分的计算 设 ∑是12(,,...,) T p X X X X =的协方差矩阵,∑的特征值及相应的正交单位化特 征向量分别为 120p λλλ≥≥≥≥ 及 12,,...,, p e e e 则 X 的第 i 个主成分为 1122,1,2,...,,T i i i i ip p Y e X e X e X e X i p ==+++= (3) 此时 (),1,2,...,,(,)0,. T i i i i T i k i k V ar Y e e i p C ov Y Y e e i k λ?=∑==??=∑=≠?? 1.3 总体主成分的性质 1.3.1 主成分的协方差矩阵及总方差 记 12(,,...,) T p Y Y Y Y = 为主成分向量,则 Y=P T X ,其中12(,,...,)p P e e e =,且 12()()(,,...,),T T p Cov Y Cov P X P P Diag λλλ==∑=Λ= 由此得主成分的总方差为 1 1 1 ()()()()(),p p p T T i i i i i i V ar Y tr P P tr P P tr V ar X λ ==== =∑=∑=∑= ∑∑∑ 即主成分分析是把 p 个原始变量 X 1,X 2,…,X p 的总方差

主成分分析-实例

§8 实例 实例1 计算得 1x =71.25,2x =67.5 分析1:基于协差阵∑ 求主成分。 369.6117.9117.9214.3S ?? = ??? 特征根与特征向量(S无偏,用SPSS ) Factor 1 Factor 2 11x x - 0.880 -0.474 22x x - 0.474 0.880 特征值 433.12 150.81 贡献率 0.7417 0.2583 注:样本协差阵为无偏估计11(11)1n n n S X I X n n ''= --, 所以,第一、二主成分的表达式为 112212 0.88(71.25)0.47(67.5) 0.47(71.25)0.88(67.5)y x x y x x =-+-?? =--+-? 第一主成分是英语与数学的加权和(反映了综合成绩),且英语的权数要大于数学的权数。1y 越大,综合成绩越好。(综合成分) 第二主成分的两个系数异号(反映了两科成绩的均衡性)。不妨将英语称为文科,数学称为理科。2y 越大,说明偏科(文、理成绩不均衡),2y 越小,越接近于零,说明不偏科(文、理成绩均衡)。(结构成分)

问题:英语的权数为何大?如何解释? 分析2: 基于相关阵R 求主成分。因为 1x =71.25,2x =67.5 所以相关阵 11R ? =? ? ? 解得R 的特征根为:1λ=1.419,2λ=0.581,对应的单位特征向量分别为: Factor 1 Factor 2 11 1x x s - 0.707 0.707 22 2 x x s - 0.707 -0.707 特征根 1.419 0.581 贡献率 0.709 0.291 所以,第一、二主成分的表达式为 12112271.2567.50.7070.70717.9813.6971.2567.50.7070.70717.9813.69x x y x x y --? =+=+?? ? --?=-=-?? 1122120.039(71.25)0.052(67.5) 0.039(71.25)0.052(67.5)y x x y x x =-+-?? =---? 112212 0.0390.052 6.273 0.0390.0520.671y x x y x x =+-?? =-+? * 2*11707.0707.0x x y += *2*12707.0707.0x x y -= 基于相关阵的更说明了: 第一主成分是英语与数学的加权总分。 第二主成分是对两科成绩均衡性的度量。 此例说明:基于协差阵与基于相关阵的主成分分析的结果不一致。结合此例的实际背景,经对比分析可知,基于协差阵的主成分分析更符合实际。

“颗粒粒径分析方法”汇总大全

“颗粒粒径分析方法”汇总大全 来源:材料人2016-08-05 一、相关概念: 1、粒度与粒径:颗粒的大小称为粒度,一般颗粒的大小又以直径表示,故也称为粒径。 2、粒度分布:用一定方法反映出一系列不同粒径区间颗粒分别占试样总量的百分比称为粒度分布。 3、等效粒径:由于实际颗粒的形状通常为非球形的,难以直接用直径表示其大小,因此在颗粒粒度测试领域,对非球形颗粒,通常以等效粒径(一般简称粒径)来表征颗粒的粒径。等效粒径是指当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,就用该球形颗粒的直径代表这个实际颗粒的直径。其中,根据不同的原理,等效粒径又分为以下几类:等效体积径、等效筛分径、等效沉速径、等效投影面积径。需注意的是基于不同物理原理的各种测试方法,对等效粒径的定义不同,因此各种测试方法得到的测量结果之间无直接的对比性。 4、颗粒大小分级习惯术语:纳米颗粒(1-100 nm),亚微米颗粒(0.1-1 μm),微粒、微粉(1-100 μm),细粒、细粉(100-1000 μm),粗粒(大于1 mm)。 5、平均径:表示颗粒平均大小的数据。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 6、D50:也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5 μm,说明在组成该样品的所有粒径的颗粒中,大于5 μm的颗粒占50%,小于5 μm的颗粒也占50%。 7、最频粒径:是频率分布曲线的最高点对应的粒径值。 8、D97:D97指一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。这是一个被广泛应用的表示粉体粗端粒度指标的数据。 二、粒度测试的基本方法及其分析 激光法 激光法是通过一台激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。纳米型和微米型激光料度仪还可以通过安装的软件来分析颗粒的形状。现在已经成为颗粒测试的主流。 1、优点:(1)适用性广,既可测粉末状的颗粒,也可测悬浮液和乳浊液中的颗粒;(2)测试范围宽,国际标准ISO 13320 - 1 Particle Size Analysis 2 Laser Diffraction Meth 2 ods 2 Part 1: General Principles中规定激光衍射散射法的应用范围为0.1~3000 μm;(3)准确性高,重复性好;(4)测试速度快;(5)可进行在线测量。 2、缺点:不宜测量粒度分布很窄的样品,分辨率相对较低。 激光散射技术分类: 1、静态光散射法(即时间平均散射):测量散射光的空间分布规律采用米氏理论。测试的有效下限只能达到50纳米,对于更小的颗粒则无能为力。纳米颗粒测试必须采用“动态光散射”技术。 2、动态光散射法:研究散射光在某固定空间位置的强度随度时间变化的规律。原理基于ISO 13321分析颗粒粒度标准方法,即利用运动着的颗粒所产生的动态的散射光,通过光子相关光谱分析法分析PCS颗粒粒径。 按仪器接受的散射信号可以分为衍射法、角散射法、全散射法、光子相关光谱法,光子交叉相关光谱法(PCCS)等。其中以激光为光源的激光衍射散射式粒度仪(习惯上简称此类仪器为激光粒度仪)发展最为成熟,在颗粒测量技术中已经得到了普遍的采用。 激光粒度分析仪:

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析PCA(含有详细推导过程以及案例分析matlab版)

主成分分析法(PCA) 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 I. 主成分分析法(PCA)模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。 主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求 0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21=

粒度分析的基本原理

粒度分析的基本原理 (作者:Malvern 仪器有限公司Alan Rawle 博士,翻译:焉志东,整理:董青云) 什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 (见图1略) 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是20×10×5mm 。但你不能说这个火柴盒是20mm 或10mm 或5mm ,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。 等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50 u 的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50u 可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= )1(r 3 4 3-----------------------ρ??π 由公式(1)可以计算出一个唯一的数(2r )作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等等。如图2(略)。 假设有一直径D1=20um (半径r=10um ),高为100 um 的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2): 圆柱体积V 1=)2()m (10000h r 3 2 ----------------μπ=??π

材料测试分析方法(究极版)

绪论 3分析测试技术的发展的三个阶段? 阶段一:分析化学学科的建立;主要以化学分析为主的阶段。 阶段二:分析仪器开始快速发展的阶段 阶段三:分析测试技术在快速、高灵敏、实时、连续、智能、信息化等方面迅速发展的阶段4现代材料分析的内容及四大类材料分析方法? 表面和内部组织形貌。包括材料的外观形貌(如纳米线、断口、裂纹等)、晶粒大小与形态、各种相的尺寸与形态、含量与分布、界面(表面、相界、晶界)、位向关系(新相与母相、孪生相)、晶体缺陷(点缺陷、位错、层错)、夹杂物、内应力。 晶体的相结构。各种相的结构,即晶体结构类型和晶体常数,和相组成。 化学成分和价键(电子)结构。包括宏观和微区化学成份(不同相的成份、基体与析出相的成份)、同种元素的不同价键类型和化学环境。 有机物的分子结构和官能团。 形貌分析、物相分析、成分与价键分析与分子结构分析四大类方法 四大分析:1图像分析:光学显微分析(透射光反射光),电子(扫描,透射),隧道扫描,原子力2物象:x射线衍射,电子衍射,中子衍射3化学4分子结构:红外,拉曼,荧光,核磁 获取物质的组成含量结构形态形貌及变化过程的技术 材料结构与性能的表征包括材料性能,微观性能,成分的测试与表征 6.现代材料测试技术的共同之处在哪里? 除了个别的测试手段(扫描探针显微镜)外,各种测试技术都是利用入射的电磁波或物质波(如X射线、高能电子束、可见光、红外线)与材料试样相互作用后产生的各种各样的物理信号(射线、高能电子束、可见光、红外线),探测这些出射的信号并进行分析处理,就课获得材料的显微结构、外观形貌、相组成、成分等信息。 9.试总结衍射花样的背底来源,并提出一些防止和减少背底的措施 衍射花样要素:衍射线的峰位、线形、强度 答:(I)花材的选用影晌背底; (2)滤波片的作用影响到背底;(3)样品的制备对背底的影响 措施:(1)选靶靶材产生的特征x射线(常用Kα射线)尽可能小的激发样品的荧光辐射,以降低衍射花样背底,使图像清晰。(2)滤波,k系特征辐射包括Ka和kβ射线,因两者波长不同,将使样品的产生两套方位不同得衍射花样;选择浪滋片材料,使λkβ靶<λk滤<λkα,Ka射线因因激发滤波片的荧光辐射而被吸收。(3)样品,样品晶粒为50μm左右,长时间研究,制样时尽量轻压,可减少背底。 11.X射线的性质; x射线是一种电磁波,波长范围:0.01~1000à X射线的波长与晶体中的原子问距同数量级,所以晶体可以用作衍射光栅。用来研究晶体结构,常用波长为0.5~2.5à 不同波长的x射线具有不同的用途。硬x射线:波长较短的硬x封线能量较高,穿透性较强,适用于金属部件的无损探伤及金属物相分析。软x射线:波长较长的软x射线的能量较低,穿透性弱,可用干分析非金属的分析。用于金属探伤的x射线波长为0.05~0.1à当x射线与物质(原子、电子作用时,显示其粒子性,具有能量E=h 。产生光电效应和康普顿效应等 当x射线与x射线相互作用时,主要表现出波动性。 x射线的探测:荧光屏(ZnS),照相底片,探测器

主成分分析法的步骤和原理

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis)是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p个变量来描述研究对象,分别用X1,X2…X p来表示,这p个变量构成的p维随机向量为X=(X1,X2…X p)t。设随机向量X的均值为μ,协方差矩阵为Σ。对X进行线性变化,考虑原始变量的线性组合: Z=μX+μX+…μX Z=μX+μX+…μX ……………… Z=μX+μX+…μX 主成分是不相关的线性组合Z1,Z2……Z p,并且Z1是X,X…X的线性组合中方差最大者,Z2是与Z1不相关的线性组合中方差最大者,…,Z是与Z1,Z2……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n,选取的财务指标数为p,则由估计样本的原始数据可得矩阵X=(x ij)m×p,其中x ij表示第i家上市公司的第j项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij(i,j=1,2,…,p)为原始变量X i与X j的相关系数。R为实对称矩阵

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子

SPSS软件进行主成分分析的应用例子 2002年16家上市公司4项指标的数据[5]见表2,定量综合赢利能力分析如下: 公司销售净利率(X1)资产净利率(X2)净资产收益率(X3)销售毛利率(X4) 歌华有线五粮液用友软件太太药业浙江阳光烟台万华方正科技红河光明贵州茅台中铁二局红星发展伊利股份青岛海尔湖北宜化雅戈尔福建南纸43.31 17.11 21.11 29.55 11.00 17.63 2.73 29.11 20.29 3.99 22.65 4.43 5.40 7.06 19.82 7.26 7.39 12.13 6.03 8.62 8.41 13.86 4.22 5.44 9.48 4.64 11.13 7.30 8.90 2.79 10.53 2.99 8.73 17.29 7.00 10.13 11.83 15.41 17.16 6.09 12.97 9.35 14.3 14.36 12.53 5.24 18.55 6.99 54.89 44.25 89.37 73 25.22 36.44 9.96 56.26 82.23 13.04 50.51 29.04 65.5 19.79 42.04 22.72 第一,将EXCEL中的原始数据导入到SPSS软件中; 注意: 导入Spss的数据不能出现空缺的现象,如出现可用0补齐。 【1】“分析”|“描述统计”|“描述”。 【2】弹出“描述统计”对话框,首先将准备标准化的变量移入变量组中,此时,最重要的一步就是勾选“将标准化得分另存为变量”,最后点击确定。 【3】返回SPSS的“数据视图”,此时就可以看到新增了标准化后数据的字段。 所做工作: a. 原始数据的标准化处理

主成分分析法概念及例题

主成分分析法 [ 编辑 ] 什么是主成分分析法 主成分分析也称 主分量分析 ,旨在利用降维的思想,把多 指标 转化为少数几个综合指标。 在 统计学 中,主成分分析( principal components analysis,PCA )是一种简化数据集的技 术。它是一个线性变换。 这个变换把数据变换到一个新的坐标系统中, 使得任何数据投影的第一 大方差 在第一个坐标 (称为第一主成分 )上,第二大方差在第二个坐标 (第二主成分 )上,依次类推。 主成分分析经常用减少数据集的维数, 同时保持数据集的对 方差 贡献最大的特征。 这是通过保留 低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是, 这也不是一定的,要视具体应用而定。 [ 编辑 ] , PCA ) 又称: 主分量分析,主成分回归分析法 主成分分析( principal components analysis

主成分分析的基本思想 在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [ 编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [ 编辑] 主成分分析的主要作用

主成分分析法matlab实现,实例演示

利用Matlab 编程实现主成分分析 1.概述 Matlab 语言是当今国际上科学界 (尤其是自动控制领域) 最具影响力、也是 最有活力的软件。它起源于矩阵运算,并已经发展成一种高度集成的计算机语言。它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面设计、与其他程序和语言的便捷接口的功能。Matlab 语言在各国高校与研究单位起着重大的作用。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。 1.1主成分分析计算步骤 ① 计算相关系数矩阵 ?? ? ???? ???? ?? ?=pp p p p p r r r r r r r r r R 2 122221 11211 (1) 在(3.5.3)式中,r ij (i ,j=1,2,…,p )为原变量的xi 与xj 之间的相关系数,其计算公式为 ∑∑∑===----= n k n k j kj i ki n k j kj i ki ij x x x x x x x x r 1 1 2 2 1 )() () )(( (2) 因为R 是实对称矩阵(即r ij =r ji ),所以只需计算上三角元素或下三角元素即可。

② 计算特征值与特征向量 首先解特征方程0=-R I λ,通常用雅可比法(Jacobi )求出特征值 ),,2,1(p i i =λ,并使其按大小顺序排列,即0,21≥≥≥≥p λλλ ;然后分别求 出对应于特征值i λ的特征向量),,2,1(p i e i =。这里要求i e =1,即112 =∑=p j ij e ,其 中ij e 表示向量i e 的第j 个分量。 ③ 计算主成分贡献率及累计贡献率 主成分i z 的贡献率为 ),,2,1(1 p i p k k i =∑=λ λ 累计贡献率为 ) ,,2,1(11 p i p k k i k k =∑∑==λ λ 一般取累计贡献率达85—95%的特征值m λλλ,,,21 所对应的第一、第二,…,第m (m ≤p )个主成分。 ④ 计算主成分载荷 其计算公式为 ) ,,2,1,(),(p j i e x z p l ij i j i ij ===λ (3)

主成分分析法实例

1、主成分法: 用主成分法寻找公共因子的方法如下: 假定从相关阵出发求解主成分,设有p 个变量,则可找出p 个主成分。将所得的p 个主成分按由大到小的顺序排列,记为1Y ,2Y ,…,P Y , 则主成分与原始变量之间存在如下关系: 11111221221122221122....................p p p p p p p pp p Y X X X Y X X X Y X X X γγγγγγγγγ=+++?? =+++??? ?=+++? 式中,ij γ为随机向量X 的相关矩阵的特征值所对应的特征向量的分量,因为特征向量之间彼此正交,从X 到Y 得转换关系是可逆的,很容易得出由Y 到 X 得转换关系为: 11112121212122221122....................p p p p p p p pp p X Y Y Y X Y Y Y X Y Y Y γγγγγγγγγ=+++?? =+++??? ?=+++? 对上面每一等式只保留钱m 个主成分而把后面的部分用i ε代替,则上式变为: 111121211 2121222221122................. ...m m m m p p p mp m p X Y Y Y X Y Y Y X Y Y Y γγγεγγγεγγγε=++++??=++++????=++++? 上式在形式上已经与因子模型相一致,且i Y (i=1,2,…,m )之间相互独立,且i Y 与i ε之间相互独立,为了把i Y 转化成合适的公因子,现在要做的工作只是把主成分i Y 变为方差为1的变量。为完成此变换,必须将i Y 除以其标准差,由主成分分析的知识知其标准差即为特征根的平方根 i λ/i i i F Y λ=, 1122m m λγλγλγ,则式子变为:

粒度分析报告的基本概念与知识

粒度测试的基本概念和基本知识 前言 1. 什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2. 什么叫粒度? 颗粒的大小称为颗粒的粒度。 3. 什么叫粒度分布? 不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 4. 常见的粒度分布的表示方法? ?表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分布和累计分布。 ?图形法:用直方图和曲线等图形方式表示粒度分布的方法。 5. 什么是粒径? 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。 6. 什么是等效粒径? 当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种: ?等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激光法所测粒径一般认为是等效体积径。 ?等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes径。 ?等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗粒的直径。库尔特法所测的粒径就是等效电阻粒径。 ?等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直径。图像法所测的粒径即为等效投影面积直径。 7. 为什么要用等效粒径概念? 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中所说的粒径并非颗粒的真实直径,而是虚拟的“等效直径”。等效直径是当被测颗粒的某一物理特性与某一直径的同质球体最相近时,就把该球体的直径作为被测颗粒的等效直径。就是说大多数情况下粒度仪所测的粒径是一种等效意义上的粒径。 不同原理的粒度仪器依据不同的颗粒特性做等效对比。如沉降式粒度仪是依据颗粒的沉降速度作等效对比,所测的粒径为等效沉速径,即用与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的大小。激光粒度仪是利用颗粒对激光的散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个实际颗粒的大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。 8. 平均径、D50、最频粒径 定义这三个术语是很重要的,它们在统计及粒度分析中常常被用到。 ?平均径: 表示颗粒平均大小的数据。有很多不同的平均值的算法,如D[4,3]等。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 ?D50: 也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5μm,说明在组 成该样品的所有粒径的颗粒中,大于5μm的颗粒占50%,小于5μm的颗粒也占50%。 ?最频粒径: 是频率分布曲线的最高点对应的粒径值。设想这是一般的分布或高斯分布。则平均值,中值和最频值将恰好处在同一位置,如下图。但是, 如果这种分布是双峰分布,则平均直径几乎恰 恰在这两个峰的中间。实际上并不存在具有该 粒度的颗粒。中值直径将位于偏向两个分布中

材料分析方法__试卷2

材料现代分析方法试题2 材料学院材料科学与工程专业年级班级材料现代分析方法课程200—200学年第学期()卷期末考试题( 120 分钟) 考生姓名学号考试时间 主考教师:阅卷教师: 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 2.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重 新排列:(12),(100),(200),(11),(121),(111),(10),(220),(130),(030),(21),(110)。 3.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 4.罗伦兹因子是表示什么对衍射强度的影响?其表达式是综合了哪几方面考虑而得出的? 5.磁透镜的像差是怎样产生的? 如何来消除和减少像差? 6.别从原理、衍射特点及应用方面比较X射线衍射和透射电镜中的电子衍 射在材料结构分析中的异同点。 7.子束入射固体样品表面会激发哪些信号? 它们有哪些特点和用途? 8.为波谱仪和能谱仪?说明其工作的三种基本方式,并比较波谱仪和能谱 仪的优缺点。 9.如何区分红外谱图中的醇与酚羟基的吸收峰? 10.紫外光谱常用来鉴别哪几类有机物? 二、综合分析题(共5题,每题10分) 1.试比较衍射仪法与德拜法的优缺点? 2.试述X射线衍射单物相定性基本原理及其分析步骤?

3.扫描电镜的分辨率受哪些因素影响? 用不同的信号成像时,其分辨率有何不同? 所谓扫描电镜的分辨率是指用何种信号成像时的分辨率? 4.举例说明电子探针的三种工作方式(点、线、面)在显微成分分析中的应用。5.分别指出谱图中标记的各吸收峰所对应的基团? 材料现代分析方法试题2(参考答案) 一、基本概念题(共10题,每题5分) 1.实验中选择X射线管以及滤波片的原则是什么?已知一个以Fe为主要成分的样品,试选择合适的X射线管和合适的滤波片? 答:实验中选择X射线管的原则是为避免或减少产生荧光辐射,应当避免使用比样品中主元素的原子序数大2~6(尤其是2)的材料作靶材的X射线管。 选择滤波片的原则是X射线分析中,在X射线管与样品之间一个滤波片,以滤掉Kβ线。滤波片的材料依靶的材料而定,一般采用比靶材的原子序数小1或2的材料。 分析以铁为主的样品,应该选用Co或Fe靶的X射线管,它们的分别相应选择Fe和Mn为滤波片。 2.下面是某立方晶系物质的几个晶面,试将它们的面间距从大到小按次序重 新排列:(12),(100),(200),(11),(121),(111),(10),(220),(130),(030),(21),(110)。 答:它们的面间距从大到小按次序是:(100)、(110)、(111)、(200)、(10)、(121)、(220)、(21)、(030)、(130)、(11)、(12)。3.衍射线在空间的方位取决于什么?而衍射线的强度又取决于什么? 答:衍射线在空间的方位主要取决于晶体的面网间距,或者晶胞的大小。

相关主题
文本预览
相关文档 最新文档