当前位置:文档之家› 初二几何证明一(线段垂直平分线、角平分线和等腰三角形的性质) 2

初二几何证明一(线段垂直平分线、角平分线和等腰三角形的性质) 2

初二几何证明一(线段垂直平分线、角平分线和等腰三角形的性质) 2
初二几何证明一(线段垂直平分线、角平分线和等腰三角形的性质) 2

1、 熟练掌握线段垂直平分线、角平分线和等腰三角形的性质

2、 能够灵活应用性质及判定定理进行几何证明 ★ 知识点梳理

1、 线段垂直平分线性质定理及其逆定理:

定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等. 逆定理:和一条线段两个端点距离相等的点,在这条线段的直平分线上. 2、 角平分线的性质定理及其逆定理:

定理:在角的平分线上的点到这个角两边的距离相等.

逆定理:在一个角的内部(包括顶点)且到这个角两边距离相等的点,在这个角的平分线上.

D

2

1P C

A

B

E

O

3、 等腰三角形的性质

等边对等角:等腰三角形的两个底角相等。

三线合一:等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合 证明以下推论:

等腰三角形的两底角的平分线相等; 两条腰上的中线相等; 两条腰上的高相等。

等腰三角形的一腰上的高与底边的夹角等于顶角的一半

P

M N

C B

A

4、 等腰三角形的判定:

等角对等边:有两个角相等的三角形是等腰三角形 ◆ 命题、公理、定理

命题:判断性的语句 陈述句,一般由题设和结论组成,写成“如果……,那么……”的形式

几个重要的公理(不需证明): (1) 两点之间线段最短;

(2) 过直线外一点有且只有一条直线与已知直线平行 (3) 过一点有且只有一条直线与已知直线垂直;

(4) 同位角相等,两直线平行; (5)两直线平行,同位角相等。 ★

1、已知:如图,∠ABC ,∠ACB 的平分线交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E 。

求证:BD +EC =DE 。

2、已知:如图所示△ABC ,∠ACB=90°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD ,M 为垂足,DE 交AC 于F ,求证:E 在AF 的垂直平分线上.

M

E

F

B

A C

3、如图,已知:CD 、CE 分别是AB 边上的高和中线,且ACE ECD DCB ∠=∠=∠。求证:

90o ACB ∠=

A

4、如图,已知:在,90,30o

o

ABC C A ?∠=∠=中,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD 。求证:AF=FG=BG 。

F E A

5、 如图,已知:在△ABC ,∠ACB=90°,CD ⊥AB 于D ,EF ⊥AB 于F ,且CE=EF 。 求证:FG//AC

D

F

B

A

6、如图,在ABC ?中,OE 、OF 分别是AB 、AC 边的垂直平分线,,OBC OCB ∠∠的平分线相交于点I ,判断OI 与BC 的位置关系,并证明你的判断。

B

7:如图,已知:BAC CBF ∠∠与的平分线相交于P ,联结CP ,分别过点B 、C 作PC 、PB 的垂线交AC 、AB 的延长线于E 、F ,G 、H 为垂足。 求证:

BF=CE

B

8、 △ABC 中,AB=AC ,BD 、CE 为角平分线,AH ⊥CE 于F 交BC 于H ,AG ⊥BD 于G. 求证(1)AC=CH (2)AF=AG.

9、△ABC中,AC>AB.求证:∠B>∠C.

10、△ABC中,AB=AC,D在AB上,E在AC延长线上,且BD=CE,DE交BC于P,求证:DP=EP.

11、如图14-75所示,已知点O是∠ABC,∠ACB的平分线的交点,且OD∥AB,OE∥AC.

(1)图形中共有哪几个等腰三角形?选一者证明之;

(2)试说明△ODE的周长与BC的关系;

(3)若BC=12cm,则△ODE的周长 .

★课后练习

1、如图,C是线段AB上的一点,△ACD和△BCE是等边三角形,AE交CD于M,BD交CE于N,交AE于O。求证:(1)∠AOB=120°;

(2)CM=CN;

(3)MN∥AB。

2、如图14-73所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分线交AB于D,交BC 于E,若CE=3cm,求BE的长.

3、如图14-74所示,在Rt△ABC中,∠C=90°,∠B=15°,AB的垂直平分线分别与BC,AB交于M,N.求证MB=2AC.

4、如图14-85所示,在锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,且CD ,BE 交于一点P ,若∠A=50°,则∠BPC 的度数是( ) A.150°

B.130°

C.120°

D.100°

5、如图14-86所示,在梯形ABCD 中,AB=AD ,AD ∥BC ,∠A=100°,试求∠DBC 的度数.

6、 如图14-97所示,CE 是△ABC 的角平分线,过点E 画BC 的平行线,交AC 于点D ,交外角∠ACG 的平分线于点F.试证明DE=DF.

7、 AD 为△ABC 的角平分线,M 为BC 中点,ME ∥AD 交BA 延长线于E ,交AC 于F.求证BE=CF=

2

1

(AB+AC)。

初二数学压轴几何证明题含答案

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC. (1)如图1,若点E在CB边的延长线上,直接写出EG与GC的位置关系及的值; (2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由; (3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值. 解:(1)EG⊥CG,=, 理由是:过G作GH⊥EC于H, ∵∠FEB=∠DCB=90°, ∴EF∥GH∥DC, ∵G为DF中点, ∴H为EC中点, ∴EG=GC,GH=(EF+DC)=(EB+BC), 即GH=EH=HC, ∴∠EGC=90°, 即△EGC是等腰直角三角形, ∴=;

(2) 解:结论还成立, 理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中 ∴△EFG≌△HDG(SAS), ∴DH=EF=BE,∠FEG=∠DHG, ∴EF∥DH, ∴∠1=∠2=90°-∠3=∠4, ∴∠EBC=180°-∠4=180°-∠1=∠HDC, 在△EBC和△HDC中 ∴△EBC≌△HDC. ∴CE=CH,∠BCE=∠DCH, ∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°, ∴△ECH是等腰直角三角形, ∵G为EH的中点, ∴EG⊥GC,=, 即(1)中的结论仍然成立; (3) 解:连接BD,

初二数学几何证明初步练习题含答案

几何证明初步练习题 1、三角形的内角和定理:三角形的内角和等于180°. 推理过程: ○ 1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○ 2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800 . 2.求证:在一个三角形中,至少有一个内角大于或者等于60°。 3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。 4. 已知,如图,AE 5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题 6.求证:两条直线相交有且只有一个交点. 7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。 求证:AB 与CD 必定相交。 8.2 一.角平分线--轴对称 9、已知在ΔABC 中,E为BC的中点,AD 平分BAC ∠,BD ⊥AD 于D .AB =9,AC=13 求DE的长 第9题图 第10题图 第11题图 分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为Δ BCF 的中位线.∴DE=12FC=12 (AC-AB)=2. 10、已知在ΔABC 中,108A ∠=,AB =AC ,分ABC ∠.求证:BD 平BC =AB +CD . 分析:在BC上截取BE=BA,连接D E.可得ΔBAD ≌ΔBED .由已知可得:18ABD DBE ∠=∠=,108A BED ∠=∠=, 36C ABC ∠=∠=.∴72DEC EDC ∠=∠=,∴CD =CE ,∴BC =AB +CD . 11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交BAC ∠的平分线AD 于D , 过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN . 分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN . 二、旋转 12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF . 求证:45EAF ∠=. 分析:将ΔADF 绕A顺时针旋转90得ABG .∴GAB FAD ∠=∠.易 证ΔAGE ≌ΔAFE . ∴ 1452FAE GAE FAG ∠=∠=∠= 13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠, AC=AE.求证:ΔABC ≌ΔADE . C B A D E F D A B C B A E D N M B D A C 213E D B A

线段的垂直平分线各种证明

证明线段的垂直平分线的性质的逆定理 线段的垂直平分线 一、学生知识状况分析 学生对于掌握定理以及定理的证明并不存在多大得困难,这是因为在七年级学习《生活中的轴对称》中学生已经有了一定的基础。 二、教学任务分析 本节课的教学目标是: 1.知识目标: ①经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定里和判定定理. ②能够利用尺规作已知线段的垂直平分线. 2.能力目标: ①经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力. ②体验解决问题策略的多样性,发展实践能力和创新精神. ③学会与人合作,并能与他人交流思维的过程和结果. 3.情感与价值观要求

①能积极参与数学学习活动,对数学有好奇心和求知欲. ②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.4.教学重点、难点 重点是写出线段垂直平分线的性质定理的逆命题。难点是两者的应用上的区别及各自的作用。 三、教学过程分析 本节课设计了七个教学环节:第一环节:创设情境,引入新课;第二环节:探究新课;第三环节:想一想;第四环节:做一做;第五环节:随堂练习;第六环节:课时小结第七环节:课后作业。 第一环节:创设情境,引入新课 教师用多媒体演示: 如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置? 其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用. 在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点

青岛版初中数学八年级上册5.6几何证明举例

§5.6 几何证明举例(2) 教学目标: 1. 学生能够证明等腰三角形的性质定理和判定定理。 2. 会运用等腰三角形的性质和判定进行有关的证明和计算。 3. 应用等腰三角形的性质和判定进一步认识等边三角形。 4. 培养学生分析问题和逻辑推理的能力。 教学重、难点: 重点:会证明等腰三角形的性质定理和判定定理。 难点:等腰三角形的性质定理和判定定理的应用。 教学准备: 电子白板、直尺、圆规、直角三角板 教学过程 一、情境导入、复习回顾 1、等腰三角形的性质是什么,这个命题的逆命题是什么? 二、交流展示(鼓励学生自己写出证明的过程,注意几何证明的三步) (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明。 证明:等腰三角形的两个底角相等。 已知:如图,在△ABC中,AB=AC 求证:∠B=∠C 法1 证明:过点A作∠BAC的角平分线交BC于点D ∴∠BAD = ∠CAD (角平分线定义) 在△BAD与△CAD中 ∵AB = AC (已知) ∠BAD = ∠CAD (已证) AD = AD (公共边) ∴△BAD≌△CAD(SAS) ∴∠ B = ∠ C (全等三角形对应角相等) 法2 证明:作BC边上的中线 AD ∴ BD = CD (中线定义) 在△BAD与△CAD中 ∵AB = AC (已知) BD = CD (已证) AD = AD (公共边) ∴△BAD≌△CAD( SSS )

∴∠B = ∠ C (全等三角形对应角相等) (2)“等腰三角形的两个底角相等”的逆命题是真命题吗,怎样证明它的正确性? 证明:有两个角相等的三角形是等腰三角形。 已知:如图,在如图,在△ABC中,∠B=∠C 求证:AB=AC 证明:作AD⊥BC,垂足为D 则∠ADB=∠ADC=90°(垂直的定义), 在△ABD和△ACD中, ∵∠B=∠C (已知), ∠ADB=∠ADC=90°(已证) AD=AD (公共边) ∴△ABD≌△ACD (AAS) ∴AB=AC(全等三角形的对应边相等) (3) 利用等腰三角形的性质定理和判定定理证明: (鼓励学生当老师讲给其他同学听) ①等边三角形的每个内角都是60° ②三个角都相等的三角形是等边三角形。 三、精讲点拨: 1、等腰三角形的性质: 性质1: 性质2: 2、数学语言表达: 性质1:性质2: 在△ABC ∵ AB=AC ∵ AB=AC ∴∠B= ∠C ① AD平分∠BAC (等边对等角) ②AD⊥BC ③ BD=DC ( ①,② ,③均可作为一个条件,推出其他两项 ) (三线合一) 四、典例精析 例1 已知,D是△ABC内的一点,且DE=DC,BD平分∠ABC,CD平分∠ACB 求证:AB=AC

八年级上册几何证明题专项练习

八年级上册几何证明题专项练习 1.如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB. 2.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 3.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D. (1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长. 4.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 5.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

6.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC. 7.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 8.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF. 9.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF. 10.如图,已知∠CAB=∠DBA,∠CBD=∠DAC. 求证:BC=AD.

11.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 12.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 13.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N. 14.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E. 求证:△ACD≌△CBE. 15.如图,四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且BC=CE,AB=DE.求证:△ABC≌△DEC.

证明垂直平分线与角平分线

第二节 证明(二) ——垂直平分线与角平分线 【知识要点】 1.你知道线段的垂直平分线如何运用尺规作图吗?从做法上你得到什么启示? 2.你知道如何运用尺规作图做已知角的平分线吗?从做法上你得到什么启示? 3.你能说明为什么三角形的外心和内心相交于一点吗? 4.你能举出一些运用三角形外心和内心来解决实际生活问题的例子吗? 【典型例题】 # 例1 如图,AB=AC ,DE 垂直平分AB 交AB 于D ,交AC 于E .若 ABC ?的周长为28,BC=8,求BCE ?的周长. # 例2 如图,AB >AC ,A ∠的平分线与BC 的 垂直平分线DM 相交于D ,自D 作AB DE ⊥于E , AC DF ⊥于F .求证:BE=CF A

# 例3 如图,在ABC ?中,ο108=∠A , AB=AC ,21∠=∠.求证:BC=AC+CD # 例4 如图,AB=AC ,C B ∠=∠,BAC ∠的平分线AF 交DE 于F .求证:AF 为DE 的垂直平分线. A E F B D C

例5 如图,P 为ABC ?的BC 边的垂直平分线PG 上 一点,且A PBC ∠=∠2 1 .BP ,CP 的延长线分别交 AC ,AB 于点D ,E .求证:BE=CD 例6 如图,在ABC ?中,C ABC ∠=∠3, 21∠=∠,BD AD ⊥.求证:AC=AB+2BD C G A E B D P

例7 如图,已知 AD 是 ABC ?中A ∠的平分线, DE ABC ?ο 60=∠B BAC ∠ACB ∠ABC ?BDC ?ο120=∠BDC ο60AMN ?AMN ?ABC ?AOC MON ∠=∠2MBN ?AC PAQ ∠ACB ∠AC ∠ABC ∠PAB ?PAB ?ABC ?BC DE ⊥ο25=∠B ο25=∠B ADC ∠ACB ∠ABC ?BDC ?ο40=∠A DBC ∠ABC ?ο120=∠BAC PAQ ∠9cm APQ ? # 7.在ABC ?中,B ∠,C ∠的平分线交于D 点,已知 ο100=∠BDC .则A ∠的度数为 . # 8.在ABC ?中,B ∠,C ∠的平分线交于D 点,过D 作 EF ∥BC ,分别交AB ,AC 于E ,F 两点,若AB=6,AC=5,则AEF ? 的周长为 . # 9.如图,在ABC Rt ?中,ο90=∠C ,BE 平分 ABC ∠,交AC 于E ,DE 是斜边AB 的垂直平分线, 且DE=1cm ,则AC= cm. 10.如图,P 为正方形外一点,ο15=∠=∠PBC PAD , 求证:PDC ?为等边三角形.

初二奥数几何证明题

第一讲:如何做几何证明题 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【例题精讲】 【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多 其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【例1】已知:如图所示,「'ABC 中,.C=90,AC 二BC, AD 二DB,AE 二CF。 求证:DE= DF

C F B

【巩固】如图所示,已知.ABC为等边三角形,延长BC到D,延长BA到E,并且使AE =BD 连结CE DE 求证:EC= ED 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两 【例2】已知:如图所示,A吐CD AD- BC AE= CF 求证:/ E=Z F D 直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【例3】如图所示,设BP CQ是AABC的内角平分线,AH AK分别为A到BP CQ的垂线。 求证:KH// BC A Q K H B C

几何证明举例教学设计

几何证明举例——等腰三角形教学设计 教学目标 1、初步掌握等腰三角形的性质及简单应用。 2、理解等腰三角形和等边三角形的性质定理之间的关系。 3、培养分类讨论、方程的思想和添加辅助线解决问题的能力。 教学重点和难点 重点是等腰三角形性质的应用; 难点是等腰三角形的“三线合一”性质的灵活运用。 教学过程设计 一、探索并证明等腰三角形的三条性质复习引入新课: 动手操作 你还记得八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程吗?(学生事先准备好纸剪的等腰三角形操作)。展示等腰三角形折叠动画。 二、新课探索新课探索一:等腰三角形的性质定理和判定定理 1、回答下面的问题,并与同学交流: (1)“等腰三角形的两个底角相等”是真命题吗?怎样证明? (2)说出命题“等腰三角形的两个底角相等”的逆命题; (3)这个逆命题是真命题吗?怎样证明它的正确性? 2、知识点1:等腰三角形的性质定理1 等腰三角形的两个底角相等。(等边对等角) (1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”) (2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C 温馨提示一: 回顾八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程。由当时的操作,如何添加辅助线,然后给出证明。注意作辅助线的方法可有多种,如作底边上的高、底边上的中线、顶角的平分线,相应地,在判定两个三角形全等时的依据也不同。 例4如果一个三角形有两个角相等,那么这个三角形是等腰三角形。 3、方法点拨 (3)证明一:取BC的中点D,连接AD 在△ABD和△ACD中 ∴△ABD≌△ACD(SSS) ∴∠B=∠C(全等三角形的对应角相等)

八年级(上)数学培优专题_如何做几何证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF C F B A E D 图1

分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD AC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F D B C F E A 图2 证明:连结AC 在?ABC 和?CDA 中, AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CF BE DF ===∴?∴∠=∠==∴=,,,??() 在?BCE 和?DAF 中,

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

特好初二数学几何证明题完整版

特好初二数学几何证明 题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

A D 2011年中考数学几何证明(三角形、四边形)经典 1.(本题10分)如图,已知: ABCD 中,BCD ∠的平分线CE 交边AD 于E , ABC ∠的平分线BG 交CE 于F ,交AD 于G .求证:AE DG =. 2.在正方形ABCD 中,AC 为对角线,E 为AC 上一点,连接EB (1)求证:△BEC ≌△DEC ; (2)延长BE 交AD 于F ,当∠BED =120°时,求∠EFD 3.(本小题满分5分) 如图,在△ABC 中,点D 、E 分别在边AC 、AB 上,BD=CE ,∠求证:AB=AC 。 4.(本小题满分7分) 如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 形ADCE 是矩形。 5.(10分)在□ABCD 中,AC 是一条对角线,∠B =∠CAD ,延长至点,使= BC ,连接DE . (1)求证:四边形ABED 是等腰梯形. (2)若AB =AD =4,求梯形ABED 的面积. 6、(本小题7分)如图,点A 、E 、B 、D 在同一条直线上,AE=DB ,AC=DF ,AC ∥DF. 请探索BC 与EF 有怎样的位置关系?并说明理由。 7.如图,已知BE ⊥AD ,CF ⊥AD ,且BE =CF . (1) 请你判断AD 是△ABC 的中线还是角平 分线?请证明 你的结论. (2)连接BF 、CE ,若四边形BFCE 添加一个条件 ▲ 8.(2010广东广州,18,9分)如图5,在等腰梯形ABCD 中,AD ∥BC . 求证:∠A +∠C =180° 10.如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE . (1)求证:△ACD≌△BCE; (2)若∠D=50°,求∠B 的度数. 11.(本题6分) 如图,在△ABC 中,D 是BC 边上的点(不与B ,C 重合),F ,E 分别是AD 及其延长线上的点,CF ∥BE . 请你添加一个条件,使△BDE ≌△ CDF (不再添加其它线段,不再标注或使用其他字母),并给出证明. (1)你添加的条件是: ▲ ; B A C B D F

三角形的证明(垂直平分线,角平分线)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:线段垂直平分线的定理及其逆定理的内容分别是什么 答: 线段垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等; 线段垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 问题2:角平分线定理及其逆定理的内容分别是什么 答: 角平分线定理:角平分线上的点到这个角的两边的距离相等; 角平分线的逆定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上. 问题3:什么是反证法 答: 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或者已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法. 问题4:你能用反证法证明等腰三角形的底角必为锐角吗 答: 证明:假设等腰三角形ABC的底角是钝角或直角, ①妨设∠B和∠C是钝角,即∠B=∠C90°, ∴∠A+∠B+∠C180° 这与三角形内角和定理相矛盾,因此“∠B和∠C是钝角”的假设不成立; ②妨设∠B和∠C是直角,即∠B=∠C=90°, ∴∠A+∠B+∠C=90°+90°+∠C180° 这与三角形内角和定理相矛盾,因此“∠B和∠C是直角”的假设不成立; ∴等腰三角形的底角必为锐角. 三角形的证明(垂直平分线,角平分线)(北师版) 一、单选题(共11道,每道9分) 1.三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,则满足要求的加油站地址有( )种情况. 答案:D 解题思路:

试题难度:三颗星知识点:角平分线的性质定理 2.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且PA=PB,下列确定点P的方法正确的是( )

初二(上)几何证明专题复习精选

初二(上)几何证明专题复习1、如图,点D是△ABC的边AB上一点,点 E为AC的中点,过点C作CF∥AB交DE延 长线于点F.求证:AD=CF. 2、如图,AB=AE,∠1=∠2,∠C=∠D. 求证:△ABC≌△AED. 3、如图,点B、F、C、E在一条直线上,FB=CE AB∥ED,AC∥FD,求证:AC=DF. 4、如图,点B在AE上,点D在AC上, AB=AD.请你添加一个适当的条件,使△ABC ≌△ADE(只能添加一个). (1)你添加的条件是. (2)添加条件后,请说明△ABC≌△ADE的 理由. 5、如图,在△ABC中,∠C=90°,AD平分 ∠CAB,交CB于点D,过点D作DE⊥AB 于点E.(1)求证:△ACD≌△AED; (2)若∠B=30°,CD=1,求BD的长; (3)求△ADB的面积. P1

6、如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.求证:AD=BE. 7、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l 交l于点D.求证:AC=OD. 8、(2013山西)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点。(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)。 ①作∠DAC的平分线AM。②连接BE并延长交AM于点F。②连接BE并延长交A (2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由。 9、(2013?南京)如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.求证:PM=PN. P2

八年级几何证明题集锦及解答值得收藏

八年级几何全等证明题归纳 1.如图,梯形ABCD中,AD∥BC,∠DCB=45°,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF. 求证:CF=AB+AF. 证明:在线段CF上截取CH=BA,连接DH, ∵BD⊥CD,BE⊥CE, ∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°, ∵∠EFB=∠DFC, ∴∠EBF=∠DCF, ∵DB=CD,BA=CH, ∴△ABD≌△HCD, ∴AD=DH,∠ADB=∠HDC, ∵AD∥BC, ∴∠ADB=∠DBC=45°, ∴∠HDC=45°,∴∠HDB=∠BDC—∠HDC=45°, ∴∠ADB=∠HDB, ∵AD=HD,DF=DF, ∴△ADF≌△HDF, ∴AF=HF,

∴CF=CH+HF=AB+AF, ∴CF=AB+AF. 2.如图,ABCD为正方形,E为BC边上一点,且AE=DE,AE与对角线BD交于点F,连接CF,交ED于点G.判断CF与ED的位置关系,并说明理由. 解:垂直. 理由:∵四边形ABCD为正方形, ∴∠ABD=∠CBD,AB=BC, ∵BF=BF, ∴△ABF≌△CBF, ∴∠BAF=∠BCF, ∵在RT△ABE和△DCE中,AE=DE,AB=DC, ∴RT△ABE≌△DCE, ∴∠BAE=∠CDE, ∴∠BCF=∠CDE,∵∠CDE+∠DEC=90°, ∴∠BCF+∠DEC=90°, ∴DE⊥CF. 3.如图,在直角梯形ABCD中,AD∥BC,∠A=90o,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,连接EF.证明: CF=EF 解: A E D

初二上几何证明题 题专题训练 好题汇编

八年级上册几何题专题训练50题 1. 如图,已知△EAB ≌△DCE ,AB ,EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数. 2. 如图,点E 、A 、B 、F 在同一条直线上,AD 与BC 交于点O, 已知∠CAE=∠DBF,AC=BD.求证: ∠C=∠D 3.如图,OP 平分∠AOB ,且OA=OB . (1)写出图中三对你认为全等的三角形(注:不添加任何辅助线); (2)从(1)中任选一个结论进行证明. 4. 已知:如图,AB =AC ,DB =DC ,AD 的延长线交BC 于点E ,求证:BE =EC 。 5. 如图,在△ABC 中,AB=AD=DC ,∠BAD=28°,求∠B 和∠C 的度数。 7. 写出下列命题的逆命题, 并判断逆命题的真假.如果是真命题,请给予证明;?如果是假命题,请举反例说明. 命题:有两边上的高相等的三角形是等腰三角形. 8. 如图,在△ABC 中,∠ACB=90o , D 是AC 上的一点,且AD=BC ,DE AC 于D , ∠EAB=90o .求证:AB=AE . 9. 如图,等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形试证明你的结论. 10. 如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=13,AC=5,则△ACD 的周长为多少 11. 如图所示,AC ⊥BC ,AD ⊥BD ,AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E ,F ,求证:CE =DF. 12. 如图,已知△ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE ,垂足为E ,AD ⊥CE ,垂足为D. (1)判断直线BE 与AD 的位置关系是____;BE 与AD 之间的距离是线段____的长; (2)若AD =6 cm ,BE =2 cm ,求BE 与AD 之间的距离及AB 的长. 13. 如图,已知 △ABC 、△ADE 均为等边三角形,点D 是BC 延长线上一点,连结CE , 求证:BD=CE 14. 如图,△ABC 中,AB =AC ,∠BAC =120°,AD ⊥AC 交BC ?于点D ,求证:?BC =3AD . 15. 如图,四边形ABCD 中,∠DAB=∠BCD=90°,M 为BD 中点,N 为AC 中点,求证:MN ⊥AC . 16、已知:如图所示,在△ABC 中,∠ABC=45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF=A C ;? (2)求证:DG=DF . 6. 如图,B 、D 、C 、E 在同一直线上,AB=AC ,AD=AE ,求证:BD=CE 。 B A E D C

初二数学几何证明初步经典练习题(答案)

一、选择题(本大题共6小题,每小题2分,满分12分) 1.下列条件不能推出两个直角三角形全等的是--------------------------() (A)两条直角边对应相等(B)一个锐角和一条直角边对应相等 (C)一条直角边和斜边对应相等 (D)两个锐角对应相等 2.下列命题中, 逆命题正确的是--------------------------------------() (A)对顶角相等 (B)直角三角形两锐角互余 (C)全等三角形面积相等 (D)全等三角形对应角相等 3.如图,⊿ABC是等腰直角三角形,点D在边AC上,且2 =, BD AD 则CBD ∠是---------------------------------------------------- () (A)5(B)10(C)15(D)45 4.在直角三角形中,若有一个角等于45,那么三角形三边的比为------- () (A)1:2(B)1:2(C)3(D)1:1 5.下列各组数中不能作为直角三角形的三边长的是-------------------- () (A) 6、8、10(B)1、1、2(C)2、6D) 7、24、25 6.如图,AD是⊿ABC的中线,45 ∠=,将⊿ADC沿直线AD ADC

翻折,点C 落在点'C 的位置上,如果10BC =,求'BC 的长为---------( ) (A )10 (B )5( C )(D ) 二、填空题:(本大题共12小题,每小题3分,满分36分) 7.命题“等腰三角形两腰相等”的逆命题是____________ ___. 8.到定点A 的距离为9cm 的点的轨迹是____________ ____________. 9.如图,已知14AB BC cm ==, DE 是AB 的中垂线,则AE EC +是__________cm . 10.如图,已知点P 是ABC ∠的角平分线BD 上的点,PH BA ⊥,如果5PH cm =,那么点P 到BC 的距离是 cm . 11.若直角三角形的两个锐角的比是2:7,则这个直角三角形的较大的锐角是 ___________度. 12.若Rt ⊿ABC 的两条直角边分别为1和2,则斜边为___________. 13.在Rt ⊿ABC 中,90A ∠= ,30C ∠=,2AB cm =,则BC = cm . 14.已知点(3,4)P -,(3,4)Q -,则线段PQ 的长为_____________. 15.如果一个三角形的三条边长分别为5,12,13cm cm cm ,那么这个三角形的面积 为_____________2cm . D C B A 第3题图 C B A ' C 第6题图 E D C B A 第9题图 H P D C B A 第10题图

八年级数学几何证明题技巧(含答案)

几何证明题的技巧 1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。求证:DE =DF C F B A E D 图1 分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =, ∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD AC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??A D E CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的

几何证明举例学案

几何证明举例——有关全等三角形的证明 第一课时 教学目标: 1、会证明“AAS”定理,并会应用三角形全等的判定方法证明 三角形全等。 2、根据判定两个三角形是否全等,进而推证有关线段和角相等。 3、知道证明的过程有不同的表达形式,学会综合法证明的书写 格式。 4、在证明过程中体会数学的转化思想。 学习过程 一、复习引入 1、同学们还记得有关全等三角形的几个基本事实吗? 2、全等三角形的判定方法有哪些?它有什么性质? 其中哪些是基本事实? 3、几何证明的步骤是什么? 二、探究证明 1、求证:如果一个三角形的两角及其中一角的对边与另一个三角形的两角及其中一角的对边对应相等,那么这两个三角形全等。

2、 例 已知:如图,AB =AC ,DB =DC . 求证:∠B =∠C . 3、变式1、 已知:如上图,AB =AC ,∠B =∠C . 求证: DB =DC . 练习、已知:如图,PB =PC ,CE 、BD 相交于点P ,∠BDA =∠CEA. 求证:AB =AC. A C B D

5、合作与探究 两个全等三角形的对应边上的高线、对应边上的中线、对应角的平分线有什么性质呢? 三、课堂小结 1、判定三角形全等的方法有:————————————————————————————。 2、证明全等的思路: 3、利用三角形全等可以得到线段相等或角相等. 4、证明两条线段(或角)相等的方法: C A B D P E

四、当堂达标 1、如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙 2.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是() A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN 3.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是() A.带①去B.带②去 c . 带③去 D.带①和②去 4:如图,AC和BD相交于点O,OA=OC,OB=OD

垂直平分线与角平分线(讲义及答案).

垂直平分线与角平分线(讲义) 知识点睛 1.垂直平分线相关定理: ①线段垂直平分线上的点到这条线段___________________; ②到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上. 2.角平分线相关定理: ①角平分线上的点到这个角的_____________________; ②在一个角的内部,到角的两边距离相等的点在这个角的平 分线上. 精讲精练 1.如图,在△ABC中,AB=AC,DE垂直平分AB,交AC于点 E,垂足为点D.若BE+CE=12,BC=8,则△ABC的周长为___________. 第1题图第2题图 2.如图,在Rt△ABC中,∠C=90°,∠A=30°,DE是线段AB 的垂直平分线,交AB于点D,交AC于点E.若DE=1,则线段AC的长为________. 3.如图,在△ABC中,DE,GF分别是AC,BC的垂直平分线, AD=8,BG=10.若AD⊥CD,则DG的长为_______.

4.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE. 求证:OE垂直平分BD. 5.如图,BD平分∠ABC,DE⊥AB于点E,AB=8,BC=6.若 S△ABC=14,则DE=__________. 第5题图第6题图 6.如图,PC⊥OA于点C,PD⊥OB于点D,且PC=PD,点E 在射线OA上,若∠AOB=60°,∠OPE=80°,则∠AEP的度数为_________. 7.如图,在△ABC中,∠ABC的平分线与∠ACB的平分线相交 于点O,OD⊥AB,OE⊥AC,垂足分别为点D,E. 求证:OD=OE.

8.已知:如图,△ABC的外角∠CBD和∠BCE的平分线相交于 点F,求证:点F在∠DAE的平分线上. 9.如图,直线y=x+4与x轴、y轴分别交于点A,B,点C在x 轴正半轴上,且OC=OB,点D位于x轴上点C的右侧,连接BC,∠BAO和∠BCD的平分线AP,CP相交于点P,连接BP,则∠PBC的度数为__________.

初二几何证明经典难题

初二几何证明经典难题 1、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形. 如下图做△DGC 使与△ADP 全等,可得△PDG 为等边△,从而可得 △DGC ≌△APD ≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG =150 所以∠DCP=300 ,从而得出△PBC 是正三角形 2、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。 A P C D B A N F E C D M B

P C G F B Q A D E 3 、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半. 3.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。可得PQ= 2 EG FH +。 由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△ CBI ,可得FH=BI 。 从而可得PQ= 2 AI BI += 2AB ,从而得证。

4 、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF . 顺时针旋转△ADE ,到△ABG ,连接CG . 由于∠ABG=∠ADE=900+450=1350 从而可得B ,G ,D 在一条直线上,可得△AGB ≌△CGB 。 推出AE=AG=AC=GC ,可得△AGC 为等边三角形。 ∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。 又∠EFC=∠DFA=450+300=750. 可证:CE=CF 。 5、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F . 求证:AE =AF . 连接BD 作CH ⊥DE ,可得四边形CGDH 是正方形。 由AC=CE=2GC=2CH , 可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150, 又∠FAE=900+450+150=1500, A F D E C B E D A C B F

相关主题
文本预览
相关文档 最新文档