当前位置:文档之家› 钕铁硼粉体粒度大小分布的定量测定方法研究

钕铁硼粉体粒度大小分布的定量测定方法研究

钕铁硼粉体粒度大小分布的定量测定方法研究
钕铁硼粉体粒度大小分布的定量测定方法研究

钕铁硼粉体粒度大小分布的定量测定方法研究

摘要本项目研究了磁性钕铁硼粉体的分散技术及测定方法,开发了一种定量检测磁性钕铁硼粉体粒度及分布状态的检测方法。通过考察磁性钕铁硼粉体的各种分散技术,实验对比、优化分散技术及装备,最终确定适合于钕铁硼粉体的最佳分散技术和装备;在对分散开的磁性钕铁硼粉体进行光学显微镜观察研究的基础上,利用图像仪对钕铁硼磁性粉体的粒度大小,形状及分布进行定量分析,并做出粒度分布直方图;本项目开发的检测技术与国外测试方法进行对比,其准确度高于国外分散检测技术。

关键词磁性钕铁硼粉体;分散技术;光学显微镜;图像分析仪;定量分析

钕铁硼粉体材料在以计算机为代表的高科技领域中具有十分广阔的应用前景。同时,随着钕铁硼永磁材料的研究、开发和应用工作的不断深入,对该材料生产工艺和性能也提出了越来越高的要求,进而推动了对钕铁硼永磁材料及相关技术的研究和开发工作。由于高质量钕铁硼永磁材料不仅要求粉体粒度极细,而且要求粒径分布范围极窄。因此,为优化钕铁硼永磁材料的生产工艺,提高产品最终性能,开发对钕铁硼粉体材料的粒度大小,形状及分布的测定方法显得越来越重要。但由于钕铁硼粉体具有很高的磁性,互相粘连在一起,很难分开,影响了测量结果的准确性。为此,在通过大量文献查阅和各种分散技术研究的基础上,开展本项目的研究,通过对粉体材料的分散和利用光学显微镜对粉体粒度、大小及分布进行测量、自动控制统计、和分析,对材料的质量做出及时、准确的评价,并为生产工艺的优化提出建议。对提高我国钕铁硼永磁材料产品质量和尽快占领国际高档产品市场具有十分重要的意义。

1. 钕铁硼粉体的分散技术研究

1.1 造成钕铁硼粉体颗粒间发生团聚的原因分析

分析磁性钕铁硼粉体产生聚集的原因,主要是由于以下四个方面造成:

1.当粉体暴露在大气环境中时,因其表面力场的不平衡而强烈吸附水份,由于水分子间存在氢键缔合力,粉体粘结成团球,而且粉体颗粒越细,吸附的水和空气就越多。

2.因范德华斯力造成的颗粒分子团间长程引力,这种力与颗粒直径成正比,而与颗粒间的距离的平方成反比。

3.钕铁硼属于铁磁性材料,铁磁性材料有自发磁化现象,这造成颗粒间的静磁引力,因而颗粒间存在势能,它与颗粒直径的三次方成正比,与颗粒之间距离的三次方成反比。

热运动能阻止静磁引力。动能阻止静磁引力。

4.在液体介质中,液体与颗粒之间存在密度差异时的有效重力而引起的沉降,其沉降力与颗粒直径的三次方成正比。

所以要想使钕铁硼粉体在油介质中充分分散,必须克服上述四种力。

1.2 本课题所采用分散技术原理及试验方法

为了克服造成钕铁硼粉体颗粒间发生团聚的四种力,我们应用过去对纳米级铁粉分散的成功经验,又查阅了相关资料,分别采取以下四个措施来解决钕铁硼粉体的分散问题。

1.2.1 粉体颗粒的表面改性

钕铁硼粉体在制造过程中不可避免的要接触大气,由于颗粒表面引力场的不平衡,使它很容易吸附一薄层肉眼看不见的水分和空气,这造成粉体粘成小团,形成亲水憎油性表面,为了使它改变成我们希望的亲油性表面,我们使用“脱水防锈油”(简称“分散液A”)浸泡试样,粉体颗粒表面吸附的水份和空气就能被油膜置换掉。转变成亲油表面,这是个润湿过程。通过玻璃试管能看到粉体在分散液A介质中得到了初步分散,粉团消失,出现许多小黑点。但分散液A属轻质油,粘度小,沸点低,不适合作分散介质,随后再用重质基础油置换。

1.2.2 粉体的热退磁

钕铁硼粉体的自发磁化使它们处于磁团聚状态,为了消除自发磁化产生的静磁引力就必须对粉体进行热退磁处理。铁磁性材料的热磁曲线见图1。纵坐标M为磁化强度,横坐标T为加热温度。当温度逐渐升高时,M随之逐渐下降,直到Tc(居里点)时,磁化强度为零,这是一个不可逆的退磁过程。钕铁硼块体材料的Tc点约为310℃(其粉体的Tc点略低一些),为了能经受310℃的热退磁温度冲击,我们选用高沸点、高粘度的基础油(粘度为500SN)来置换“脱水防锈油”。先把已萃取了粉体表面水份的分散液A倒出,再倒入基础油。在加热到310℃的过程中,残存的分散液A自然挥发,从而完成了两种油的互相置换,也达到了退磁目的。

图1.铁磁性材料的热磁曲线

3 粉体的热分散

经过上述处理的粉体在基础油中得到了初步分散,通过玻璃试管用玻璃棒搅拌能看到粉体在油中成悬浮的小黑点,这些小黑点是还未完全分散的团聚颗粒(称为二次颗粒),这是范德华斯引力造成的,热处理不能消除范氏力。为了打碎这种微小聚团,需用分散剂(又称表面活性剂)来克服范氏力,要选择具有油溶性的,又能在钕铁硼颗粒表面发生强烈吸附的表面活性剂,形象的说是要给每个原始颗粒表面包覆一层表面活性剂分子,这层分子与基础油组成了富有弹性的溶剂化外壳层(厚约5nm),这就阻挡了因范氏力引起的颗粒聚结,见图2。我们设计的分散液B是由多种表面活性剂组成的复合型分散剂,这些极性表面活性剂分子均能在钕铁硼颗粒表面发生强烈化学吸附,并且互相增效,产生综合分散效应。为了产生强烈的化学吸附效果,还需在180℃的热环境中,通过不停搅拌,用机械力来碎解硬聚团,一旦聚团发生崩解,表面活性剂分子就乘虚而入,把原始颗粒团团包覆起来。这就是热分散过程。在搅拌时,我们能看到小黑点聚团已“溶入”热油中。因原始颗粒粒径仅几个微米,肉眼是看不到的,只能看到变黑了的油溶液。但加入基础油,马上加入B型分散液,升温到310℃退磁,分散效果不太理想,原因是B 型分散液在300℃~310℃时,部分分解,使分散效果降低,如图8。B型分散液在180℃时分散效果最好,所以当温度升到300--310℃时,停止加热,然后冷却,加入 B型分散液,当温度降到180℃时,保温,并不断搅拌,使粉体充分分散,效果最佳,粉体形态如图11、图14、图17等。

本分散液也适宜于其它金属粉末的分散(本分散液适合于180℃左右的热分散,温度过低会降低分散效果,而更高温度会使分散剂分解失效)。

图2 颗粒的表面活性分子溶剂化层

1.2.4 不稳定悬浮液

钕铁硼粉体在油介质中得到充分分散之后,构成了不稳定的悬浮液,这种悬浮液的不稳定性来自两方面:

1.由于钕铁硼粉体的原始颗粒为几个微米,它的密度又与油介质密度相差甚大,在重力作用下,它必然会发生自由沉降,据测算,只有当原始颗粒粒径小于0.1μm时,颗粒才会受到布朗运动的明显作用悬浮在油介质中。

2.在原始颗粒的沉降过程中,颗粒处于不停运动状态,当几个颗粒间距离小于50nm 时,因范德华斯引力,几个颗粒又会吸引在一起,从而加速沉降。当然由于颗粒表面已包覆了一层由表面活性剂分子构成的溶剂化膜,颗粒之间形成松散的软团聚,容易再分散。

当粉体充分分散“溶入”油介质时,我们看到的是黑色的油溶液,静置两小时后,我们看到的是上部为清澈的红棕色的油液,下部为黑色的沉淀。人眼的分辨率是0.2 mm (200μm),沉降过程中能够看到≥0.2 mm的小黑点(原始颗粒的软团聚体)。

克服上述两种不稳定因素的办法是不停地搅拌,但搅拌对第二个不稳定因素只能起到部分作用,所以当要进行光学显微镜观察时,掌握好取样时间特别关键。制成的样品静置一会儿,究竟多长时间合适,应根据显微镜观察情况来决定。

1.3仪器和试剂

温度计(0~500℃,最好用数显的铂电阻温度计):1支

试管夹支架:1个

铝试管架:1个

玻璃试管(最好带刻度):若干支

玻璃搅棒:若干支

酒精灯:1个

镊子:1把

专用分散剂:A型,B型(本课题所开发)

溶剂煤油棉球(擦洗用)

不同粒度的钕铁硼粉末及普通金属材料粉末

2. 用光学显微镜及图像分析软件观察测试钕铁硼粉体的技术研究

2.1 用光学显微镜观察钕铁硼粉体

我们把显微镜的反射光,改装成透射光,然后把分散开的钕铁硼粉体油溶液涂在薄玻片上,用透射光观察。可以清楚的看到分散开的钕铁硼粉体,钕铁硼粉体的原始颗粒呈不规则片状,颗粒大小不均匀。

2.2 用图像仪分析钕铁硼粉体的研究

我们用我院研究开发的LIM—2000型图像分析仪分析钕铁硼粉体。此软件在不改变钕铁硼粉体原始形态、大小的情况下,对图像的对比度、饱和度、色度、伪彩色处理等,提高照片的质量。并给出照片的放大倍数及标尺长度,用面积法分析,计算出特征物的个数,颗粒面积、水平方向最大弦长、垂直方向最大弦长、相当直径、颗粒的周长、长宽比、形状因子等。

2.3 仪器和试剂

光学显微镜:1架(配玻璃载片)

图像分析仪:1架(LIM—2000型)

数码照相机:1架

2.4 实验操作

用玻璃棒沾取表层油液一滴作涂片,尽量使涂层薄一点,在载片下放一张白纸,涂层中不应有可见物,放入显微镜中观察,采集钕铁硼粉体图像,通过图像分析仪,确定图像尺寸,并对极少数量粘连在一起的颗粒用细线隔开,然后对图像进行二值化处理、与原图对比、去掉多余的颗粒,用面积法分析出钕铁硼粉体个数,颗粒面积、水平方向最大弦长、垂直方向最大弦长、相当直径、颗粒的周长、长宽比、形状因子等。

2.5 实验测试结果

2.5.1普通金属粉体的粒度测试结果

本实验首先研究分析了普通金属非晶粉体的分散及定量分析,分析结果见表1~表2,每个颗粒的详细参数见附表1。颗粒个数为376个,最小颗粒面积为

6.9444e-007(mm*mm) ,最大颗粒面积为8.6667e-005(mm*mm) 。颗粒面积分布概率图如图3,颗粒相当直径的分布直方图如图5,颗粒形态如图4。

表1.普通金属非晶粉体的颗粒参数(平均值)

表2.普通金属非晶粉体的颗粒面积分布概率(步长SP:10)

图3. 普通金属非晶粉体的颗粒面积分布概率图

图4. 普通金属非晶粉体的颗粒形态

20

40

60

80

颗粒数(个)

粒径(mm )

图5. 普通金属非晶粉体的颗粒相当直径分布直方图

2.5.2 钕铁硼粉体的粒度测试结果

我们以普通金属粉末的分散及定量分析为基础,研究开发了钕铁硼粉体的分散及定量分析方法。首先我们采用了方法(1)加入基础油后,马上加入B 型分散液,升温到310℃的退磁的分散工艺。采用此分散工艺分散的1#钕铁硼粉末的定量分析结果见表3~表4,每个颗粒的详细参数见附表2。所分析的钕铁硼颗粒个数为264个,最小颗粒面积为6.9444e-007(mm*mm) ,最大颗粒面积为8.0278e-005(mm*mm)。其颗粒面积分布概率图如图6,颗粒相当直径的直方图如图7。钕铁硼粉体颗粒形态如图8,分散效果不太理想。(2)我们采用加入基础油后温度升到300--310℃时,停止加热,然后冷却,当温度降到200℃时,加入 B 型分散液,温度降到180℃时,并不断搅拌,保温10分钟的分散工艺,

可使粉体充分分散,采用此分散工艺的分散的1#钕铁硼粉末的定量分析结果见表5~表6,每个颗粒的详细参数见附表3。所分析的钕铁硼颗粒个数为264个,最小颗粒面积为6.9444e-007(mm*mm) ,最大颗粒面积为8.0278e-005(mm*mm),颗粒面积分布概率图如图9,颗粒相当直径的直方图如图10,钕铁硼粉体颗粒形态如图11,分散效果很好。我们采用此分散工艺又做了2#和3#钕铁硼粉体分散及定量分析。分析结果见表7~表10,每个颗粒的详细参数见附表4~附表5。所分析的2#钕铁硼颗粒个数为292个,最小颗粒面积为6.9444e-007(mm*mm) ,最大颗粒面积为3.9306e-005(mm*mm),颗粒面积分布概率图如图12,颗粒相当直径的直方图如图13,钕铁硼粉体颗粒形态如图14。所分析的3#钕铁硼颗粒个数为301个,最小颗粒面积为 6.9444e-007(mm*mm),最大颗粒面积为2.1389e-005(mm*mm) ,颗粒面积分布概率图如图15,颗粒相当直径的直方图如图16,钕铁硼粉体颗粒形态如图17。

表3未完全分散开的1#钕铁硼粉体的颗粒参数(平均值)

图6. 未完全分散开的1#钕铁硼粉体的颗粒面积分布概率图

20

40

粒径(mm )

颗粒数(个)

图7. 未完全分散开的1#钕铁硼粉体的颗粒相当直径分布直方图

图8. 未完全分散开的1#钕铁硼粉体的的颗粒形态

表5. 1#钕铁硼粉体的颗粒参数(平均值)

表6. 1#钕铁硼粉体的颗粒面积分布概率(步长SP:10)

图9. 1#钕铁硼粉体的颗粒面积分布概率图

20

40

60

颗粒数(个)

粒径(mm )

图10. 1#钕铁硼粉体的颗粒相当直径分布直方图

图11. 1#钕铁硼粉体的的颗粒形态

表7. 2#钕铁硼粉末的颗粒参数(平均值)

表8. 2#钕铁硼粉体的颗粒面积分布概率(步长SP:10)

图12. 2#钕铁硼粉体的颗粒面积分布概率图

20

40

60

80

颗粒数(个)

粒径(mm)

图13. 2#钕铁硼粉体的颗粒相当直径分布直方图

图14. 2#钕铁硼粉体的的颗粒形态 表9. 3#钕铁硼粉体的颗粒参数(平均值)

图15. 3#钕铁硼粉体的颗粒面积分布概率图

20

40

60

颗粒数(个)

粒径(mm )

图16. 3#钕铁硼粉体的颗粒相当直径分布直方图

图17. 3#钕铁硼粉体的的颗粒形态

3 与国外进口设备检测结果对比分析

德国RODOST型分析仪和美国LS230型分析仪均为激光粒度分析仪。德国RODOST 型分析仪分散方法是用高压空气流分散;美国LS230型分析仪分散方法是用水溶性分散剂外加超声波分散。各种分散方法的分析结果见表17。

表17 钕铁硼粉体各种分散方法的粒度分析结果

从表17可以看出我们的分析结果接近于德国RODOST型分析仪分析结果。而与美国LS230型分析仪的分析粒度偏大,说明钕铁硼粉末没有分散开,互相粘连在一起,使分析结果偏高。所以钕铁硼粉末的分散是很重要的。它直接影响到分析结果的准确性。我们研究的分散剂及分散方法能使钕铁硼粉末充分分散开,而且我们的LIM—2000型图像分析仪能准确的分析出钕铁硼粉末的颗粒大小及分布图,还能通过显微镜观察其形貌,有利于钕铁硼粉末的开发研究。

4.结论

本项目针对钕铁硼粉体产生团聚,不易分散原因的分析,提出了有效可行的分散实验方案﹔通过实验确定了分散操作规程﹔结合金相显微镜观察和LIM2000图像分析仪对分散试样的粒度大小、分布及形貌进行观察和研究﹔并同国外进口测试设备进行对比检测﹔检测结果表明采用该定量检测方法,具有经济实用、操作简便、试样分散效果好、检测结果准确度高的优点。

附录KE粒度和粒度分布测定法

附录H E粒度和粒度分布测定法 率,以补偿供试品发生变化时的热效应,从而使供试品与参比 物之间的温度始终保持不变(么了=0)。由于A T-0,所以供 试品与参比物之间没有附加的热传导。热流型差示扫描量热 分析仪是在输给供试品与参比物相同的功率条件下,测定供 试品与参比物两者的温度差(4了),通过热流方程将温度差(A T)换算成热量差(dQ/dT)。热流型差示扫描量热分析仪应用较为广泛。差示扫描量热分析的定量测定准确度通常好于差热分析。 D T A曲线与D SC曲线的形状极为相似,横坐标均为温度TX或时间0,不同之处仅在于前者的纵坐标为而后者为dQ/d丁。在两者的曲线上,随样品不同而显示不同的吸热峰或放热峰。 在差热分析或差示扫描量热分析中,可使用《-氧化铝作为惰性参比物,通常可以采用氧化铝空坩埚或其他惰性空坩埚作为参比物应用。 仪器应根据操作规程,定期使用有证标准物质对温度(高 纯铟或锌等)进行校准,以保证检测结果的准确性。 差热分析与差示扫描量热分析可用于下列数据的测量。 1.转换温度 D T A或DSC两种实验方法均客观地记录了物质状态发生变化时的温度。例如熔融曲线可显示熔融发生时的温度(onset值)和峰值温度(peak值)。但这两种温度值与熔点值可能并不一致(由于升温速率等影响)。 2.转换热焓 吸热或放热峰的峰面积正比于相应的热焓变化,即: M-A H=K? A 式中M为物质的质量; 为单位质量物质的转换热焓; A为实测的峰茴积; K为仪器常数。 先用已知值的标准物质测定仪器常数K后,即可方 便地利用上式由实验求取样品的转换热焓。 当不同样品的化学成分相同,而差热分析或差示扫描量热分析获得的测量转换温度值或转换热焓值发生变化时,表 明不同样品的晶型固体物质状态存在差异。 3.纯度 理论上,化学固体纯物质均具有一定的熔点(T。)或无限 窄的熔距,并吸收一定的热量(熔融热焓任何熔距的展宽或熔点下降都意味着物质化学纯度的下降。杂质所引起 的熔点下降可由范特霍夫方程表示。 式中T为热力学温度,K; X2为杂质的浓度(摩尔分数 A H f为纯物质的摩尔熔融热焓; K为气体常数; ? 388 ? k为熔融时杂质在固相与液相中的分配系数。 假定熔融时无固溶体形成,即丨=0,此时可对式(1)积 分,得: v(T0— T m)A H f/0、 w n^⑵式中T0为纯物质的熔点,K; Tm为供试品的实测熔点,K。 由实验测得丁。和T m后,代入式(2)即可求得供试 品中杂质的含量。 无定型态固体物质(或非晶态物质)可能没有明确的熔点 (T。)或呈现宽熔距现象,其熔距宽度与物质的化学纯度或晶型 纯度无关。无定型固体物质状态亦不符合范特霍夫方程规律。 三、热载台显微镜 热载台显微镜可观测供试品的物相变化过程,通过光学 显微镜或偏光显微镜直接观测并记录程序温度控制下供试品 变化情况。 热载台显微镜的观察结果可对热重分析、差热分析、差示 扫描量热分析给予更直观的物相变化信息。热载台显微镜的 温度控制部分需要校准。 四、测定法 热重分析、差热分析、差示扫描量热分析、热载台显微镜分析的测定方法,应按各仪器说明书操作。为了尽可能得到 客观、准确、能够重现的热分析曲线或相变规律,首先应在室 温至比分解温度(或熔点)髙10?20°C的宽范围内做快速升温 或降温速率(每分钟10?20°C)的预试验,然后在较窄的温度范围内,以较低的升温或降温速率(必要时可降至每分钟r c)进行精密的重复试验,以获得准确的热分析结果。 热分析报告应附测定条件,包括仪器型号、温度的校正值、供试品的取用量和制备方法、环境气体、温度变化的方向 和速率,以及仪器的灵敏度等。 需要指出的是,利用范特霍夫方程测定纯度时,是建立在 杂质不形成固溶体的假设之上的,所以本法的应用具有一定的局限性,特别是当供试品为混晶物质(即不同晶型的混合物 熔点值无差异)或熔融时分解的物质,则难以准确地测定其化 学或晶型纯度。■[修订] 附录K E粒度和粒度分布测定法 本法用于测定原料药和药物制剂的粒子大小或粒度分布。其中第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法(显微镜法) 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定■照显微鉴别法(《中国药典》2010年版 一部附录n c)标定。■[修订] 测定法取供试品,用力摇匀,黏度较大者可按各品种项 下的规定加适量甘油溶液(1 — 2)稀释,照该剂型或各品种项

筛分粒径分布实验报告

筛分粒径分布实验报告 干筛法数据记录筛分分析结果可按下表的形式记录 数据处理 粉体的均匀度是表示粒度分布的参数,可由筛分结果按下式计算:仪器设备及原料:标准套筛一套,目数分别为:20,60,100,140;200g电子天平; 实验步骤及操作: 称取200g河沙; 在最下面垫一张报纸,对组合好的套筛进行人工的震荡,震荡的较为充分时,再进行逐级的筛分。最后,依次逐级由上到下取下筛子再震动,用手判断是否分筛干净。 筛完后,逐级称量并记录数据。 回收河沙,整理实验台。 三. 实验结果分析 实验结果记录表 粒度特性曲线 累积粒度特性曲线 从相应数据和图形可以得出如下结论: 1.实验称取200g河沙,但筛分完毕为194.9g。原因:逐级称取的时候洒落了一小部分,同时筛子上面残留有一部分,另外实验称取

的是每级筛子上面的沙子,还有比140目更小的则漏在报纸上没有称取算入计重。 2.筛分前式样重量与筛分后各粒级产物重量之和的差值为5.1g,为筛分样质量的2.55%,实验进行正确,无需重做。 3.从粒度特性曲线分析,可以得出其曲线近似呈正态分布。即两头少中间大的趋势,表明大颗粒和小颗粒的物料都相对较少。 4.从累积粒度特性曲线分析,可以得出目数小于60时图形比较平缓,表明粒径达的物料比较少;而在60-100目之间的图形斜率比较大,说明粒径在此、影响筛分效果的因素有哪些? 答:1.入筛原料性质的影响: (1)含水率:物料的含水率又称湿度或水分; (2)含泥量:如果物料含有易结团的混合物( 如粘土等); (3)粒度特性:影响筛分过程的粒度特性主要是指原料中含有对筛分过程有特定意义的各种粒级物料的含量。 (4)密度特性:当物料中所有颗粒都是同一密度时,一般对筛分没有影响。 2.筛子性能的影响: (1) 筛面运动形式; (2) 筛面结构参数;

筛分析法测试粉体粒度及粒度分布汇总

筛分析法测试粉体粒度及粒度分布 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1mm的筛子作为基筛,以优先系数及20/3为主序列,其筛孔为

筛分粒径分布实验报告

筛分粒径分布实验报告 篇一:筛分分析-实验指导书 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用粒度分布表格、粒度分布图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如.水泥的凝结时间、强度与其细度有关;陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能;磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法测粉体粒度分布。筛析法是最简单的也是用得最早和应用最厂泛的粒度测定方法、利用筛析方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。 一、实验目的意义 本实验的目的: ①了解筛析法测物体粒度分布的原理和方法; ②根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、实验原理 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若

干个粒级,分别称重,求得以质量百分数表示的粒度分布。筛析法适用约20μm~100㎜之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 筛孔的大小习惯上用“目”表示,其含义是每英寸(2.54cm)长度上筛孔的数目。也有用l㎝长度上的孔数或1㎝筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛分法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1㎜的筛子作为基筛,也可采用泰勒筛,筛孔尺寸为0.074mm作为基筛。 筛析法有干法与湿法两种,测定粒度分布时,一般用干法筛分;湿法可避免很细的颗粒附着在筛孔上面堵塞筛孔。若试样含水较多,特别是颗粒较细的物料,若允许与水混合,颗粒凝聚性较强时最好使用湿法。此外,湿法不受物料温度和大气湿度的影响,还可以改善操作条件,精度比干法筛分高。所以,湿法与干法均被列为国家标准方法,用于测定水泥及生料的细度等。 筛析法除了常用的手筛分、机械筛分、湿法筛分外,还用空气喷射筛分、声筛法、淘筛法和自组筛等,其筛析结果往往采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒百分含量(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系(积分型)。用表格或图形来直观表示颗粒粒径的频率分布和累积分布。 筛析法使用的设备简单,操作方便,但筛分结果受颗粒形状的影响较大,粒度分布的粒级较粗,测试下限超过38μm时,筛分时间长,

粉体粒度及其分布测定

粉体粒度及其分布测定 一.实验目的 1.掌握粉体粒度测试的原理及方法; 2.了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注意要点; 3.学会对粉体粒度测试结果数据处理及分析。 二.实验原理 图1:微纳激光粒度分析仪工作原理框图 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分法、显微镜法、沉降法和激光法等。 激光粒度测试是利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅立叶)透镜的聚焦作用,在透镜的焦平面上形成一中心圆斑和围绕圆斑的一系列同心圆环,圆环的直径随衍射角的大小即随颗粒的直径而变化,粒径越小,衍射角越大,圆环直径亦大;在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光--电转换信号再经模数转换,送至计算机处理,根据夫朗和费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 激光粒度测试法具有适应广、速度快、操作方便、重复性好的优点,测量范围为:0.1—几百微米。但当粒径与所用光的波长相当时,夫朗和费衍射理论的运用有较大误差,需应用米氏理论来修正。 三.仪器设备 济南微纳颗粒技术有限公司Winner2000Z智能型激光粒度分析仪、微型计算机、打印机。 四.实验步骤 4.1测试前的准备工作 1.开启激光粒度分析仪,预热10~15分钟。启动计算机,并运行相对应的软件。 2.清洗循环系统。首先,进入控制系统的人工模式,不选择自动进水点击排水, 把与被测样品相匹配的分散介质加入样品桶,待管路及样品窗中都充满介质后, 再点击排水,关闭排水。其次,按下冲洗,洗完后,自动排出。按以上步骤反

粒度和粒度分布的测量

粒度和粒度分布的测量 原料药的粒径及粒径分布对制剂的加工性能、稳定性和生物利用度等有重要影响。本文总结了粒径表征的基本概念,及常见测量手段(筛分、激光散射、图像法和沉降法)的原理、优劣和注意事项。 1、粒径的表征方式 对于球形物体,通过直径很容易确定其大小;但对于立方体,则需要更多的参数,如长宽高;而对于形状更为复杂的颗粒体,恐怕没有足够的参数准确描述其大小。但在实际应用中,只要能够描述其相对大小,指导意义就很大了。为了采用简单的参数直观描述颗粒的大小,往往采取等效球体的直径来描述颗粒的大小。这种等效的基础常常是表面积、体积或者投影面积,分别被称为表面积径、体积径或投影径等。此外,还可以等效为具有相同沉降速度的球形粒子,称为斯托克径。我们通过各种检测方法获得的测量值一般都是理论等效值。不同原理的粒度检测设备的使用的等效物理参量不同,在检测同一个不规则颗粒时,得到的测试结果是不相同的,因此将不同测试方法的结果进行比较,可能无法得出具有实际意义的结论。粉体作为一堆粒子的集合,不同的粒子颗粒大小可能不同,表示粉体粒径的大小可以采用平均粒径。计算每一个颗粒的某一等效粒径,然后采用粒子数目、长度、表面积或粒子体积等参数作为权重计算平均粒径,从而得到不同的平均等效粒径。其中在药学中较为重要的平均径包括表面积加权平均粒径(该值与表面积成负相关)和体积加权平均粒径。 平均粒径无法描述各个颗粒的粒径情况。当就某一粒径范围的粒子数或粒子重量对粒径范围或平均粒径作图,就得到所谓的频率分布曲线,其可以直观的表示粒径分布。另一种表示分布的方式是将超过或低于某一粒径的累积百分数对粒径作图,得到的曲线往往为S形。在实践中,粒径分布对API性质的影响可能超过平均粒径,应当给以充分的重视。 2、粒径及粒径分布的测量 粒径及其分布的测定基于不同的原理有多种测定方法。在中国药典和日本药典中描述了显微法(即本文的“图像法”)、筛分法和激光散射法。美国药典也对对筛分和激光散射法进行了描述。除上述三种药典方法外,沉降法也可用于粒径的表征。下面就对这些方法的特点和注意事项进行介绍。(1)筛分

显微镜法测试粉体粒度、粒度分布及形貌-(1)教学提纲

显微镜法测试粉体粒度、粒度分布及形貌- (1)

实验二显微镜法测试粉体粒度、粒度分布 及形貌 一、目的意义 显微镜是少数能对单个颗粒同时进行观测和测量的方法。除颗粒大小外,它还可以对颗粒的形状(球形、方形、条形、针形、不规则多边形等)、颗粒结构状况(实心、空心、疏松状、多孔状等)以及表面形貌等有一个认识和了解。因此显微镜法是一种最基本也是最实用的测量方法,常被用来作为对其他测量方法的一种校验甚至确定的方法。 本实验的目的: 通过使用生物显微镜观察粉末的形状和粒度掌握: 1、制样方法及计算方法 2、数据处理 3、粒度分布曲线的描绘 二、方法实质 生物显微镜是透光式光学显微镜的一种。用生物显微镜法检测粉末是一般材料实验室中通用的方法。虽然计算颗粒数目有限。粒度数据往往缺乏代表性,但它是唯一的对单个颗粒进行测量的粒度分析方法。此法还具有直观性可以研究颗粒外表形态。因此称为粒度分析的基本方法之一。 测试时首先将欲测粉末样品分散在载玻片上。并将载玻片置于显微镜载物台上。通过选择适当的物镜目镜放大倍数和配合调节焦距到粒子的轮廓清晰。粒径的大小用标定过的目镜测微尺度量,样品粒度的范围过宽时,可通过变换镜

头放大倍数或配合筛分法进行。观测若干视场,当计数粒子足够多时,测量结果可反映粉末的粒度组成,进而还可以计算粉末平均粒度。 三、仪器与原材料 物镜测微尺、标准测微尺、生物显微镜、分散剂(酒精、环乙醇等)、玻璃棒、吸管粉末试样(雾化粉、电解粉) 四、测试方法 1、显微镜使用前的准备 将目镜测微尺放入所选用的目镜中,并将目镜和物镜安装在显微镜上,将标准测微尺(每小格10微米)置于载物台上通过旋转公降螺钉(注意:不得使物镜接触载玻片1),调节焦距标定目镜测微尺一格比代表的长度(u)。 2、样品的制备 用显微镜测试的粉末应经过筛分,否则由于粉末粒度范围过宽,测试中需经常更换物镜或目镜,不仅造成测试工作的不便而且由于视场范围的变化引起测试的不准确。 粉末样品由于具有发达的表面积,因而有较高的表面能,使粉末颗粒产生聚集,形成团块,影响粉末粒度的测定,所以制样过程中应使颗粒聚集体分散成单个颗粒,一般是将少量粉末样品(0.01克左右)放置在干净的载玻片上,滴上数滴分散介质,用另一干净载玻片覆盖其上。进行对磨并观察情况然后平行对拉将两片玻璃载玻片分开,即得测试用样品,待分散介质挥发后放于显微镜载物台上进行观测。 对分散介质要求: (1)对粉末润湿性好且与所测粉末不起化学作用。

粒度方法验证

1粒度 1.1概述 ****** 是一种难溶性的药物,故对****** 的粒度进行研究。****** 粒度检测方法是采用中国药典2015年版四部通则0982中第三法光散射法测定****** 粒度。本方法经过方法验证,适用于****** 粒度的测定。 1.2粒度分析方法验证 1.2.1粒度方法的建立及验证 1仪器与试剂 激光散射粒度分布仪、自动循环进样系统、碳酸钙、纯化水。 2粒度仪的标定 用纯化水冲洗自动进样系统,取粒度工作标样(碳酸钙)适量,充分分散于水中,再加入自动进样系统,标定仪器,标定三次。结果见下图 图3.2.S.4 - 1第一次标定

图3.2.S.4 - 2第二次标定 图3.2.S.4 - 3第三次标定 3超声时间的考察 取****** 适量,充分分散于水中,加入自动进样系统,转速1600转,分别超声1分钟,2分钟,3分钟,4分钟,5分钟测定其粒度分布。结果见下表: 表3.2.S.4- 1超声时间考察

结论:由此可知超声1~5分钟d(0.1),d(0.5),d(0.9)的RSD分别为0.5%,0.7%,1.0%,表明超声1~5分钟样品粒度检测无明显变化,因此超声1~5分钟均可使样品充分分散,由于工作站中自动测定程序中的超声时间为2分钟,故选择超声时间为2分钟。 4转速考察 取****** 适量,充分分散于水中,加入自动进样系统,超声2分钟,分别考察转速为500转,800转,1200转,1600转,2000转,2500转测定其粒度分布。结果见下表: 表3.2.S.4- 2转速考察 结论:由此可知转速为1600~2500转的d(0.1),d(0.5),d(0.9)的RSD分别为0.5%,0.9%,1.1%,RSD无明显变化,而转速为500~2500转的d(0.1),d(0.5),d (0.9)的RSD分别为0.6%,4.3%,7.7%,对于d (0.5),d (0.9)的检测波动较大,说明500~1200转的转速不适宜,选择转速为1600~2500转对粒度分布无明显影响,因工作站中自动测定程序中转速为1600转,故选择转速为1600转。 5样品浓度考察(遮光率考察) 光散射法测定粒度时样品的浓度大小主要以遮光率的数值来体现,故对遮光率进行考察。取****** 适量,置于100ml的烧杯中,加水使样品充分分散后倒入自动进样系统中,考察不同遮光率下样品的粒度分布。结果见下表:

粉体材料粒度分布及颗粒形貌控制的实例分析

粉体材料粒度分布及颗粒形貌控制的实例分析

制备粒度均一分散的超细粉是粉末结构形貌控制的主要目标之一。调节体系过饱和度、添加晶种控制晶核数、促进或阻碍团聚的发生等,是粒度控制的主要策略。在体系溶解度较大的情况下,Ostwald陈化也可调节颗粒粒径及其单分散性。 在化学沉淀制粉过程中,微观均匀混合是体系粒度控制的最主要内容。 ?各个微小区域内过饱和度微小变化将导致晶核数目大量变化,从而使晶核大小不一。 ?强制混合是保证微观状态一致、制取粒度均一的超细粉末的有效措施。 ?由于超细粉体极大的表面能,粉末颗粒的形成除了经历了成核、生长等过程外,还可能发生聚结与团聚。 ?如何有效地控制粉体的团聚也是超细粉末尺寸分布控制研究的一个重要内容。 二、粉体形貌控制 粒子形貌包括形状、表面缺陷、粗糙度等,但主要指形状。 纳米粉体,尤其是超微颗粒往往表现出很多形状,除了与其晶型结构有关外,还取决于其合成方法及相应的操作条件。 如在湿化学法体系中,颗粒的形状对操作条件极其敏感,溶质浓度、反应体系中阴离子的种类、反应体系是否封闭等因素均可能影响颗粒的形状。 ?一般认为,液相中的超微颗粒可选择性吸附溶液中的简单离子、络离子及有机化合物分子,且不同晶面上被吸附物的种类和数量均有所不同。 ?而溶质浓度、阴离子种类、温度、pH值等操作条件的细微变化均可能影响晶面的吸附情况,这些吸附通过改变晶面的比表面能或生长速度常数而促进或抑制晶面的生长,进而影响超微颗粒的形状。 ?因此,不同操作条件下形成的超微粒子往往呈现多种形态。 此外,添加剂也可改变粉体的形貌。 比如,在超细粉体α-Fe2O3合成中,研究者发现陈化时添加柠檬酸、酒石酸,α-Fe2O3粉末呈短柱状、片状或层状,而添加有机磷酸可以得到轴比很大的适宜作磁记录介质的针状粉末。通过添加柠檬酸还可以制备得到阻燃材料用的等轴细棱形片铝钠石和细小片状Mg(OH)2。添加异种物质进行粉末形状控制应考虑以下几点: ?母晶的晶格结构、 ?剩余的原子价、 ?异种物质分子的极性基大小形状以及配位。 液相化学法制粉往往是在高温、强搅拌等条件下进行,由于粉末生长的物理化学条件要求苛刻,影响因素复杂,粉末结构形貌往往难以精确控制。虽然有关湿法化学制粉中粉末结构形貌控制研究已有不少报道,但主要是通过改变反应物浓度、溶液pH值、反应时间、反应温度和添加物种类及数量来实现。 总体来看,这项工作还处于研究起始阶段,有许多技术和理论问题有待于进一步探讨。对粉体材料而言,颗粒形貌与粒度,亦是决定其性能的重要因素。有关粉体结构形貌的控制研究已为其应用展现了诱人的前景,但目前粉末结构形貌控制研究还存在许多问题,还有待行业专家及科研院所深入的研究探索。 粉体圈作者:敬之

粒度方法验证

1粒度 概述 ****** 是一种难溶性的药物,故对****** 的粒度进行研究。****** 粒度检测方法是采用中国药典2015年版四部通则0982中第三法光散射法测定****** 粒度。本方法经过方法验证,适用于****** 粒度的测定。 粒度分析方法验证 粒度方法的建立及验证 1仪器与试剂 激光散射粒度分布仪、自动循环进样系统、碳酸钙、纯化水。 2粒度仪的标定 用纯化水冲洗自动进样系统,取粒度工作标样(碳酸钙)适量,充分分散于水中,再加入自动进样系统,标定仪器,标定三次。结果见下图 图 - 1 第一次标定

图 - 2 第二次标定 图 - 3第三次标定 3超声时间的考察 取****** 适量,充分分散于水中,加入自动进样系统,转速1600转,分别超声1分钟,2分钟,3分钟,4分钟,5分钟测定其粒度分布。结果见下表: 表 1超声时间考察 样品名称d(),μm d(),μm d(),μm 样品超声1分钟 样品超声2分钟 样品超声3分钟 样品超声4分钟

结论:由此可知超声1~5分钟 d(),d(),d()的RSD分别为%,%,%,表明超声1~5分钟样品粒度检测无明显变化,因此超声1~5分钟均可使样品充分分散,由于工作站中自动测定程序中的超声时间为2分钟,故选择超声时间为2分钟。 4转速考察 取****** 适量,充分分散于水中,加入自动进样系统,超声2分钟,分别考察转速为500转,800转,1200转,1600转,2000转,2500转测定其粒度分布。结果见下表: 表 2转速考察 结论:由此可知转速为1600~2500转的d(),d(),d()的RSD分别为%,%,%,RSD无明显变化,而转速为500~2500转的d(),d(),d()的RSD分别为%,%,%,对于d, d的检测波动较大,说明500~1200转的转速不适宜,选择转速为1600~2500转对粒度分布无明显影响,因工作站中自动测定程序中转速为1600转,故选择转速为1600转。 5样品浓度考察(遮光率考察) 光散射法测定粒度时样品的浓度大小主要以遮光率的数值来体现,故对遮光率进行

粉体粒度分布的测定激光法

复合材料科学与工程实验指导书

实验:复合材料结构微观观察 一、实验目的 1. 了解几种典型复合材料的显微组织形貌特征; 2. 学会用定量金相的方法来测定增强相或基体的体积分数; 3. 掌握颗粒增强复合材料的密度及弹性模量的评估方法。 二、实验原理 混合定理:根据混合定理可以计算复合材料的性能。对于标量性能,像密度、热熔,复合材料的性能是各向同性的并可以用最简单的混合定理来计算。如复合材料的密度ρc 可用公式(1)来计算。 ρc =V m ρm +V f ρf (1) 式中ρm 和ρf 分别为基体与增强相的密度,V m 和V f 分别为基体与增强相的体积分数。 对于矢量性能如弹性模量、导电率,复合材料的性能与增强相的形状与取向有关。如纤维增强复合材料弹性模量是各向异性的,在纤维方向的弹性模量E c 可用混合定理公式(2)来计算 E c =V m E m +V f E f (2) 式中E m 和E f 分别为基体与增强相的弹性模量。 如果增强体为颗粒状的复合材料,其弹性模量为各向同性,可用混合定理(3)来计算。 E c =V m E m +KV f E f (3) 式中K 为修正系数,与V f 和 E r /E m 的比值有关,其值通常在0.1 ~ 0.6。 体积分数:在计算复合材料性能时,要知道增强相和基体的体积分数。由于复合材料不透明,不能直接观察三维空间图像,只能在二维截面上得到有关几何参数,然后运用数理统计的方法推断三维空间的几何参数。如V f =L f (L f 为增强相的线长度分数 L f ),只要测出增强相的线长度分数 L f ,即可求得增强相的体积分数V f 。 用截线法测量增强相的线长度分数L f 如图1所示。测量时,在显微组织照片上作任意直线,把落在增强相上的线段相加(L α=L 1+L 2+L 3+….),得总长度L α,然后除以测试线总长度L T ,即可求得增强相体积分数: V f =L f = T L L α (4) 图1截线法测量L f 用截线法测量L f 与放大倍数无关。不过为提高测量精度,应考虑测量的截线数量,使用的截线总数越多,测量误差越小。 增强相尺寸:对于颗粒增强复合材料,一般用增强相直径大小表示增强相尺寸。对于形状不规则的增强相可用平均截线长度L ′来表示其尺寸。平均截线长度指在截面上任意测试直线穿过每个增强相颗粒的平均值。 L ′=P L α (5) 式中P 为测试线上增强相颗粒数。 三、仪器及材料 金相显微镜与数码图像处理系统;SiC 增强铝合金、Cu-W 合金、Al-Cu 复合材料、玻璃纤维增强聚酯树脂。 四、实验步骤 1. 观察并拍照复合材料试样 a) 利用显微镜观察一个复合材料试样,并用数码摄像仪进行拍照; b) 记录该试样中增强材料与基体材料; c) 按基体和增强材料对所观察试样进行复合材料分类。 2. 颗粒SiC 增强2024铝合金体积分数、密度和弹性模量计算 a) 用金相分析软件打开颗粒SiC 增强2024铝合金复合材料金相照片;用截线法测量照片中SiC 颗粒尺寸并 计算平均值L′;用截线法测量照片中SiC 颗粒的线长度分数 L f ; b) 计算该复合材料中SiC 的体分数V f ; c) 计算该复合材料的密度ρc 和弹性模量E c 。

显微镜法测试粉体粒度、粒度分布及形貌-(1)

实验二显微镜法测试粉体粒度、粒度分布 及形貌 一、目的意义 显微镜是少数能对单个颗粒同时进行观测和测量的方法。除颗粒大小外,它还可以对颗粒的形状(球形、方形、条形、针形、不规则多边形等)、颗粒结构状况(实心、空心、疏松状、多孔状等)以及表面形貌等有一个认识和了解。因此显微镜法是一种最基本也是最实用的测量方法,常被用来作为对其他测量方法的一种校验甚至确定的方法。 本实验的目的: 通过使用生物显微镜观察粉末的形状和粒度掌握: 1、制样方法及计算方法 2、数据处理 3、粒度分布曲线的描绘 二、方法实质 生物显微镜是透光式光学显微镜的一种。用生物显微镜法检测粉末是一般材料实验室中通用的方法。虽然计算颗粒数目有限。粒度数据往往缺乏代表性,但它是唯一的对单个颗粒进行测量的粒度分析方法。此法还具有直观性可以研究颗粒外表形态。因此称为粒度分析的基本方法之一。 测试时首先将欲测粉末样品分散在载玻片上。并将载玻片置于显微镜载物台上。通过选择适当的物镜目镜放大倍数和配合调节焦距到粒子的轮廓清晰。粒径的大小用标定过的目镜测微尺度量,样品粒度的范围过宽时,可通过变换镜头放大倍数或配合筛分法进行。观测若干视场,当计数粒子足够多时,测量结果可反映粉末的粒度组成,进而还可以计算粉末平均粒度。 三、仪器与原材料 物镜测微尺、标准测微尺、生物显微镜、分散剂(酒精、环乙醇等)、玻璃棒、吸管粉末试样(雾化粉、电解粉)

四、测试方法 1、显微镜使用前的准备 将目镜测微尺放入所选用的目镜中,并将目镜和物镜安装在显微镜上,将标准测微尺(每小格10微米)置于载物台上通过旋转公降螺钉(注意:不得使物镜接触载玻片1),调节焦距标定目镜测微尺一格比代表的长度(u)。 2、样品的制备 用显微镜测试的粉末应经过筛分,否则由于粉末粒度范围过宽,测试中需经常更换物镜或目镜,不仅造成测试工作的不便而且由于视场范围的变化引起测试的不准确。 粉末样品由于具有发达的表面积,因而有较高的表面能,使粉末颗粒产生聚集,形成团块,影响粉末粒度的测定,所以制样过程中应使颗粒聚集体分散成单个颗粒,一般是将少量粉末样品(0.01克左右)放置在干净的载玻片上,滴上数滴分散介质,用另一干净载玻片覆盖其上。进行对磨并观察情况然后平行对拉将两片玻璃载玻片分开,即得测试用样品,待分散介质挥发后放于显微镜载物台上进行观测。 对分散介质要求: (1)对粉末润湿性好且与所测粉末不起化学作用。 (2)介质应易挥发且挥发的蒸汽对显微镜镜头无腐蚀性。 对需长期保存的试样可采用有机玻璃或纤维素溶液进行覆盖,待覆盖膜干燥后颗粒即被固定。 3、观测方法 理想的试样片应便于观测计数,即一个视场内颗粒数不应过多。且各视场颗粒分布情况应尽量均匀。 实验采用垂直投影法,即所测颗粒在视场内同一个方向移动、顺序地、无选择地逐个进行测量。当颗粒形状不规则时测量这一方向上的最大尺寸如图1所示。颗粒在视场中作上下运动而且目镜测微尺处于水平位置,测试中注意不要对某一颗粒重复计数或漏掉某些颗粒。

筛分析法测试粉体粒度及粒度分布

筛分析法测试粉体粒度及粒度分布粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显着影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm

至20μm 之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm )长度上筛孔的数目,也有用1cm 长度上的孔数或1cm 2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO )推荐的筛孔为1mm 的筛子作为基筛,以优先系数及 20/3为主序列,其筛孔为()化整值) (40.110320≈,再以R20或R40/3作为辅助序列,其筛孔分别为()()4 340320219.11012.110≈≈≈,或。 筛析法有干法与施法两种,测定粒度分布时,一般用干法筛分,若试样含水较多,颗粒凝聚性较强时,则应当用湿法筛分(精度比干法筛分高),特别是颗粒较细的物料,若允许与水混合时,最好使用湿法。因为湿法可避免很细的颗粒附着在筛孔上面堵塞筛孔。另外,湿法可不受物料温度和大气湿度的影响,湿法还可以改善操作条件。所以,湿法与干法均已被列为国家标准方法并列使用,作为测定水泥及生料的细度。 筛析法除了常用的手筛、机械筛分、湿法筛分外,还用空气喷射筛分、省筛法、淘筛法和自组筛等,其筛析结果往往采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒质量分数(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的质量分数与该粒径的关系(积分型)。用表格或图形来直观表示颗粒粒径的频率分布和累积分布。 筛析法使用的设备简单,操作方便,但筛分结果受颗粒形状的影响较大,粒度分布的粒级较粗,测试下限超过38μm 时,筛分时间长,也容易

粒度检验的基本概念和基本知识

粒度测试的基本概念和基本知识 1.什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2.什么叫粒度? 颗粒的大小称为颗粒的粒度。 3.什么叫粒度分布? 不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 4.常见的粒度分布的表示方法? ?表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分 布和累计分布。 ?图形法:用直方图和曲线等图形方式表示粒度分布的方法。 5.什么是粒径? 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。 6.什么是等效粒径?

当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法, 等效粒径可具体分为下列几种: ?等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激 光法所测粒径一般认为是等效体积径。 ?等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直 径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes 径。 ?等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗 粒的直径。库尔特法所测的粒径就是等效电阻粒径。 ?等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直 径。图像法所测的粒径即为等效投影面积直径。 7.为什么要用等效粒径概念? 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来 表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采 用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们 知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如 多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。 但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的 一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗 粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这 个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中

实验1 粉体的粒度及其分布的测定

实验1 粉体的粒度及其分布的测定 粒度分布的测量在实际应用中非常重要,在工农业生产和科学研究中的固体原料和制品,很多都是以粉体的形态存在的,粒度分布对这些产品的质量和性能起着重要的作用。例如催化剂的粒度对催化效果有着重要影响;水泥的粒度影响凝结时间及最终的强度;各种矿物填料的粒度影响制品的质量与性能;涂料的粒度影响涂饰效果和表面光泽;药物的粒度影响口感、吸收率和疗效等等。因此在粉体加工与应用的领域中,有效控制与测量粉体的粒度分布,对提高产品质量,降低能源消耗,控制环境污染,保护人类的健康具有重要意义。 一、实验目的 1、掌握粉体粒度测试的原理及方法。 2、了解影响粉体粒度测试结果的主要因素,掌握测试样品制备的步骤和注 意事项。 3、学会对粉体粒度测试结果数据处理及分析。 二、实验原理 粉体粒度及其分布是粉体的重要性能之一,对材料的制备工艺、结构、性能均产生重要的影响,凡采用粉体原料来制备材料者,必须对粉体粒度及其分布进行测定。粉体粒度的测试方法有许多种:筛分析、显微镜法、沉降法和激光法等。激光法是用途最广泛的一种方法。它具有测试速度快、操作方便、重复性好、测试范围宽等优点,是现代粒度测量的主要方法之一。 激光粒度测试时利用颗粒对激光产生衍射和散射的现象来测量颗粒群的粒度分布的,其基本原理为:激光经过透镜组扩束成具有一定直径的平行光,照射到测量样品池中的颗粒悬浮液时,产生衍射,经傅氏(傅里叶)透镜的聚焦作用,在透镜的后焦平面位置设有一多元光电探测器,能将颗粒群衍射的光通量接收下来,光-电转换信号再经模数转换,送至计算机处理,根据夫琅禾费衍射原理关于任意角度下衍射光强度与颗粒直径的公式,进行复杂的计算,并运用最小二乘法原理处理数据,最后得到颗粒群的粒度分布。 三、仪器设备 1、制样:超声清洗器、烧杯、玻璃棒、蒸馏水、六偏磷酸钠。 2、测量:Easysizer20激光粒度仪、微型计算机、打印机。 四、实验步骤 (一)测试准备 1、仪器及用品准备 (1)仔细检查粒度仪、电脑、打印机等,看它们是否连接好,放置仪器的工

粒度测定法

1、目的 建立粒度检验操作规程 2、范围 适用于预胶化淀粉粒度的检测 3、依据 《中国药典》2010版二部附录IX E 粒度和粒度分布测定法内容 粒度的检测 4、内容 本法用于测定原料药和药物制剂的粒子大小或粒度分布。其中,第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法(显微镜法) 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定用以确定使用同一显微镜及特定倍数的物镜、目镜和镜筒长度时,目镜测微尺上每一格所代表的长度。 将镜台测微尺置于显微镜台上,对光调焦,并移动测微尺于视野中央; 取下目镜,旋下接目镜的目镜盖,将目镜测微尺放入木镜筒中部的光栏上(正面向上),旋上目镜盖后反置镜筒上。此时在视野中可同时观察到镜台测微尺的像及目镜测微尺的分度小格,移动镜台测微尺和旋转目镜,使两种量尺的刻度平行,并令左边的“0”刻度重合;寻找第二条重合刻度,记录两条刻度的读数;并根据此值计算出目镜测微尺每小格在该物镜条件下所相当的长度(μm)。由于镜台测微尺每格相当于10μm,故目镜测微尺每一小格的长度为: 10 相重区间镜台测微尺的格数 相重区间目镜测微尺的格数

当测定时要使用不同的放大倍数时,应分别标定。 测定法取供试品,用力摇匀,黏度较大者可按各品种项下的规定加适量甘油溶液(1→2)稀释,照该剂型或各品种项下的规定,量取供试品,置载玻片上,覆以盖玻片,轻压使颗粒分布均匀,注意防止气泡混入,半固体可直接涂在载玻片上,立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或各品种项下规定的50μm及以上的粒子。再在200~500倍的显微镜下检视该剂型或各品项下规定的视野内得总粒数,并计算其所占比例(%)。 第二法(筛分法) 筛分法一般分为手动筛分法、机械筛分法与空气喷射筛分法。手动筛分法和机械筛分法适用于测定大部分粒径大于75μm的样品。对于粒径小于75μm的样品,则应采用空气喷射筛分法或其他适宜的方法。 机械筛分法系采用机械方法或电磁方法,产生垂直振动、水平圆周运动、拍打、拍打与水平圆周运动相结合等振动方式。空气喷射筛分法则采用流动的空气流带动颗粒运动。 筛分实验时需注意环境湿度,防止样品吸水或失水。对易产生静电的样品,可加入0.5%胶质二氧化硅(或)氧化铝等抗静电剂,以减小静电作用产生的影响。 1.手动筛分法 (1) 单筛分法称取各品种项下规定的供试品,置规定号的药筛中(筛下配有密合的接收容器),筛上加盖。按水平方向旋转振摇至少3分钟,并不时在垂直方向轻叩筛。取筛下的颗粒及粉末,称定重量,计算其所占比例(%)。 (2) 双筛分法取单剂量包装的5袋(瓶)或多剂量包装的1袋(瓶),称定重量,置该剂型或品种项下规定的上层(孔径大的)药筛中(下层的筛下配有密合的接收容器),保持水平状态过筛,左右往返,边筛动边拍打3分钟。取不能通过大孔径筛和能通过小孔径筛的颗粒及粉末,称定重量,计算其所占比例(%)。 2. 机械筛分法 除另有规定外,取直径为200mm规定号的药筛和接收容器,称定重量,根据供试品的容积密度,称取供试品25~100g,置最上层(孔径最大的)药筛中(最下层的筛下配有密合的接收容器),筛上加盖。设定振动方式和振动

实验四 粉体粒度分布的测定(筛析法)

实验四粉体粒度分布的测定(筛析法) 一、目的意义 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、实验原理 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛分法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛分法和沉积天平法测粉体粒度分布。 筛分法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛分法测粉体粒度分布。 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量百分数表示的粒度分布。筛析法适用约100mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 筛孔的大小习惯上用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛分法常使用标准套筛,泰勒标准筛制:泰勒筛制的分度是以200目筛孔尺寸0.074mm为基准,乘或除以主模数方根(1.141)的n次方(n =1,2,3……),就得到较200粗或细的筛孔尺寸,如果数2的四次方根(1.1892)的n次方去乘或除0.074mm,就可以得到分度更细的一系列的筛孔尺寸。目数,就是孔数,就是每平方英寸上的孔数目。目数越大,孔径越小。一般来说,目数×孔径(微米数)=15000。 筛析法有干法与湿法两种,测定粒度分布时,一般用干法筛分,若试样含水较多,颗粒凝聚性较强时则应当用湿法筛分(精度比干法筛分高),特别是颗粒较细的物料,若允许与水混合时,最好使用湿法。因为湿法可避免很细的颗粒附着在筛孔上面堵塞筛孔。另外,湿法可不受物料温度和大气湿度的影响,湿法还可以改善操作条件。所以,湿法与千法均己被列为国家标准方法并列作用,作为测定水泥及生料的细度。 筛析法除了常用的手筛、机械筛分、湿法筛分外,还用空气喷射筛分、声筛法、淘筛法 和自组筛等,其筛析结果往往采用频率分布和累积分布来表示颗粒的粒度分布。频率分布表示各个粒径相对应的颗粒百分含量(微分型);累积分布表示小于(或大于)某粒径的颗粒占全部颗粒的百分含量与该粒径的关系(积分型)。用表格或图形来直观表示颗粒粒径的频率分布和累积分布。 筛析法使用的设备简单,操作方便,但筛分结果受颗粒形状的影响较大,粒度分布的粒级较粗,测试下限超过38μm时,筛分时间长,也容易堵塞。 2、设备仪器工作原理; 干筛法:置于筛中一定重量的粉料试样,借助于机械振动或手工拍打使细粉通过筛网,直至筛分完全后,根据筛余物重量和试样重量求出粉料试料的筛余量。 湿筛法:置于筛中一定重量的粉料试样,经适宜的分散水流(可带有一定的水压)冲洗一定时间后,筛分完全。根据筛余物重量和试样重量求出粉料试样的筛余量。 三、仪器和试剂

相关主题
文本预览
相关文档 最新文档