当前位置:文档之家› 深层气探井井底压力准确测量的新方法

深层气探井井底压力准确测量的新方法

深层气探井井底压力准确测量的新方法
深层气探井井底压力准确测量的新方法

第二章服装设计中的人体体型测量

第一节人体形态与尺寸测量 人体形态与尺寸测量是服装人体工程学的重要内容,出自服装舒适、合身、提高人体机能的工学要求,需要有确切的人体参量来为服装创造作保证,否则不可能使人体与服装合理 地匹配。 一、人体测量要求 人体尺寸有两类,一类是静态尺寸,也称人体结构尺寸;另一类称动态尺寸,又称功 能尺寸。对于服装的人体测量尺寸,一般以静态尺寸为主,有以下一些测量要求。 1、基本姿态:被测者采用立姿或坐姿。 (1) 立姿:被测者挺胸直立,平视前方,肩部松弛,上肢自然下垂,手伸直并轻贴躯干, 左、右足跟并拢而前端分开,呈45°夹角。 (2) 坐姿:被测者挺胸坐在被调节到腓骨头高度的座椅平面上,平视前方,左、右大腿基本平行,膝弯成直角,足平放在地面上,手轻放在大腿上。 二、测量特征点 特征点的确定对测量尺寸的准确性起着至关重要的作用。需要的测量特征点如图所示。 测量特征点的定义如下: 肩颈点:位于颈侧根部,从人体侧面观察,位于颈根部宽度的中心点偏后的位置。 第7 颈椎点:第7 颈椎棘突尖端的点。 颈窝点:第一胸椎的上缘点。 肩端点:锁骨与肩胛岗相连接部位向上的最高点。 肩峰点:肩胛骨外缘的最外侧点。 胸宽点:肩峰点与前腋点连线的中点。 前腋点:人体正面中,手臂与躯干的分界点。 乳点:乳头的中心点。 肩胛突点:人体肩胛部位最突出的点。 背宽点:肩峰点与后腋点连线的中点。 后腋点:人体背面中,手臂与躯干的分界点。 桡骨头点:桡骨小头上缘的最高点。

最低肋骨点:身体肋骨的最低点。 髂嵴点:髂嵴向外最突出点。 髂前上棘点:髂前上棘向前下方最突出点。 桡骨茎突点:桡骨茎突的下端点。 大转子点:股骨大转子的最高点。 腰点:第五腰椎棘突尖端的点。 胫骨点:胫骨上端内侧,踝内侧缘上最高的点。 腓骨头点:腓骨头向外最突出的点。 外踝点:腓骨外踝的下端点。 (a)正面特征点 (b)背面特征点 测量特征点 三、测量项目 1、国家标准规定的测量项目

触摸屏种类与原理、结构

触摸屏种类与原理、结构 触摸屏的几个概念: 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。人人都会使用,也就标志着计算机应用普及时代的真正到来。这也是我们发展触摸屏,发展KIOSK,发展KIOSK网络,努力形成中国触摸产业的原因。 从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要光标,有光标反倒影响用户的注意力,因为光标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不至于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 触摸屏的第一个特性: 透明,它直接影响到触摸屏的视觉效果。透明有透明的程度问题,红外线技术触摸屏和表面声波触摸屏只隔了一层纯玻璃,透明可算佼佼者,其它触摸屏这点就要好好推敲一番,“透明”,在触摸屏行业里,只是个非常泛泛的概念,我们知道,很多触摸屏是多层的复合薄膜,仅用透明一点来概括它的视觉效果是不够的,它应该至少包括四个特性:透明度、色彩失真度、反光性和清晰度,还能再分,比如反光程度包括镜面反光程度和衍射反光程度,只不过我们的触摸屏表面衍射反光还没到达CD 盘的程度,对用户而言,这四个度量已经基本够了。今天我尽量不结合具体的触摸屏去“排队”,技术是在前进的,今天也许是声波屏最理想,明天也许又是另一种,我们通过触摸屏的技术本质引申出一些触摸屏的概念,目的是让用户自己学会思考、学会判断,选购适用的触摸屏。 先说透明度和色彩失真度,首先提醒大家,我们看到的彩色世界包含了可见光波段中的各种波长色,在没有完全解决透明材料科技之前,或者说还没有低成本的很好解决透明材料科技之前,多层复合薄膜的触摸屏在各波长下的透光性还不能达到理想的一致状态,下面是一个示意图:

触摸屏结构原理

触摸屏种类与原理、结构 一、 触摸屏的几个概念: 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。人人都会使用,也就标志着计算机应用普及时代的真正到来。这也是我们发展触摸屏,发展KIOSK,发展KIOSK网络,努力形成中国触摸产业的原因。 从技术原理角度来讲,触摸屏是一套透明的绝对定位系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要光标,有光标反倒影响用户的注意力,因为光标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不至于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 二、 触摸屏分类 (一)红外线式触摸屏

红外线式触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。红外触摸屏不受电流、电压和静电干扰,适宜某些恶劣的环境条件。其主要优点是价格低廉、安装方便、不需要卡或其它任何控制器,可以在各档次的计算机上应用。 (二)电阻式触摸屏 电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,在强化玻璃表面分别涂上两层OTI透明氧化金属导电层。利用压力感应进行控制。当手指触摸屏幕时。两层导电层在触摸点位置就有了接触,电阻发生变化。在X和Y两个方向上产生信号,然后传送到触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。电阻式触摸屏不怕尘埃、水及污垢影响,能在恶劣环境下工作。但由于复合薄膜的外层采用塑胶材料,抗爆性较差,使用寿命受到一定影响。 (三)表面声波式触摸屏 表素影响,分辨率极高,有极好的防刮性,寿命长,透光率高,能保持清晰透亮的图像质量,最适合公共场所使用。但尘埃、水及污垢会严重影响其性能,需要经常维护,保持屏面的光洁。

孔隙压力有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

触摸屏的种类及工作原理

触摸屏种类及原理 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型

孔隙水压力监测

孔隙水压力监测 一、监测内容 用于量测基坑工程坑外不同深度土的孔隙水压力。由于饱和土受荷载后首先产生的是孔隙水压力的变化,随后才是颗粒的固结变形,孔隙水压力的变化是土体运动的前兆。静态孔隙水压力监测相当于水位监测。潜水层的静态孔隙水压力测出的是孔隙水压力计上方的水头压力,可以通过换算计算出水位高度。在微承压水和承压水层,孔隙水压力计可以直接测出水的压力。结合土压力监测,可以进行土体有效应力分析,作为土体稳定计算的依据。不同深度孔隙水压力监测可以为围护墙后水、土压力分算提供设计依据。孔隙水压力监测为重力式围护体系一、二级监测等级、板式围护体系一级监测等级选测项目。 二、仪器、设备简介 1 孔隙水压力计目前孔隙水压力计有钢弦式、气压式等几种形式,基坑工程中常用的是钢弦式孔隙水压力计,属钢弦式传感器中的一种。孔隙水压力计由两部分组成,第一部分为滤头,由透水石、开孔钢管组成,主要起隔断土压的作用;第二部分为传感部分,其基本要素同钢筋计。 2 测试仪器、设备 数显频率仪。 三、孔隙水压力计安装 1 安装前的准备将孔隙水压力计前端的透水石和开孔钢管卸下,放入盛水容器中热泡,以快速排除透水石中的气泡,然后浸泡透水石至饱和,安装前透水石应始终浸泡在水中,严禁与空气接触。 2 钻孔埋设孔隙水压力计钻孔埋设有二种方法,一种方法为一孔埋设多个孔隙水压力计,孔隙水压力计间距大于 1.0m,以免水压力贯通。此种方法的优点是钻孔数量少,比较适合于提供监测场地不大的工程,缺点是孔隙水压力计之间封孔难度很大,封孔质量直接影响孔隙水压力计埋设质量,成为孔隙水压力计埋设好坏的关键工序,封孔材料一般采用膨润土泥球。埋设顺序为①钻孔到设计深度;②放入第一个孔隙水压力计,可采用压入法至要求深度;③回填膨润土泥球至第二个孔隙水压力计位置以上0.5m;④放入第二个孔隙水压力计,并压入至要求深度;⑤回填膨润土泥球…,以此反复,直到最后一个。第

第一节 人体体型与人体测量练习题

第一章服装结构制图依据 第一节人体体型与人体测量练习题 一、填空题 1.服装结构制图的主要依据是,制定服装放松量的主要依据之一是。 2.人体比例最简单的测量单位是头,正常的成年男性约头高,成年女性约为 头高。 3.决定了衣领的基本结构。 4.由于颈部呈不规则的圆台状及向前倾斜的特点,所以领的造型基本上是, 。上衣前后领的弧线弯曲度一般是。 5.是前后衣片的分界线。 6.肩部前倾使服装的大于,肩的弓形形状,使服装略长于。 7.胸与背的特征,决定了男性大于。 8.女性乳胸隆起,使女装通过、及达到合体的目的。 9.由于腰部的凹陷状,在服装结构上表现为上装的造型。 10.背部肩胛骨凸起形成与不对称。 11.臀部的外凸,决定了西裤的大于。 12.西裤腰口收前裥和后省的原因是、、。13.是测量长裤中裆和裙长等下装长度的重要依据。 14.服装结构制图的直接依据是人体有关部位的、、等。 15.服装人体测量可分为、、3种。 二、解释术语 1.人体测量: 2.服装放松量: 三、判断题(在下列叙述中,你认为正确的在括号内画“"误的画“×”) 1.同一个人穿着西服和中山装其袖长应该相等。( ) 2.量体时一般不考虑被测量者所穿衣服的厚薄因素。( ) 3.人体手臂弯曲时,上臂与下臂呈一定角度,反映在衣袖上为后袖弯线外凸,前袖弯线内内凹。( ) 4.在测量人体尺寸时所使用的工具有软尺和腰节带。( )

5.服装的放松量主要取决于人体的运动,同时也要考虑季节和款式。( ) 6.女装吸腰量大于男装吸腰量。( ) 7.幼儿与老人的服装一般以曲腰身为好。( ) 8.袖口收细裥要比不收细裥的袖长要长。( ) 9.胸、腰、臀围的放松量会影响到服装穿着的合体性和外形的美观性。( ) 10.女装肩斜和前后肩斜度与男装是一致的。( ) 四、选择题(把你认为正确的答案填在括号内) 1.臀部的球面状使西裤的后裆缝( )前裆缝。 A.短于B.长于c.等于 2.幼儿与老人的服装一般以直腰身为主,这是由于其( )差小的缘故。A.胸臀围B.腰臀围C.胸腰围 3.后袖山弧线与前袖山弧线的不对称,其重要原因是由于( )突起形成的。A.胸部B.肩端部C.臂根底部D.肩胛骨 4.上裆长是由侧腰部髋骨向上( )量至凳面的距离。 A.3.5 cm B.4 cm C.3 cm D.4.5 cm 5.由于颈部呈不规则圆台状并向前倾斜的特点,因而形成领的造型基本上是( )。 A.后领脚宽、前领脚窄 B.前领脚宽、后领脚窄 C.前领脚宽等于后领脚宽 6.幼儿的背部特征使童装的后腰节长( )前腰节长。 A.小于B.长于C.等于或小于 五、简答题 1.简要回答颈部与衣领的关系。 2.什么是服装放松量?影响服装放松量的因素有哪些?

触摸屏的工作原理及常见问题解析

一、什么是触摸屏 所谓触摸屏,从市场概念来讲,就是一种人人都会使用的计算机输入设备,或者说是人人都会使用的与计算机沟通的设备。不用学习,人人都会使用,是触摸屏最大的魔力,这一点无论是键盘还是鼠标,都无法与其相比。 从技术原理角度讲,触摸屏是一套透明的绝对寻址系统,首先它必须保证是透明的,因此它必须通过材料科技来解决透明问题,像数字化仪、写字板、电梯开关,它们都不是触摸屏;其次它是绝对坐标,手指摸哪就是哪,不需要第二个动作,不像鼠标,是相对定位的一套系统,我们可以注意到,触摸屏软件都不需要游标,有游标反倒影响用户的注意力,因为游标是给相对定位的设备用的,相对定位的设备要移动到一个地方首先要知道现在在何处,往哪个方向去,每时每刻还需要不停的给用户反馈当前的位置才不致于出现偏差。这些对采取绝对坐标定位的触摸屏来说都不需要;再其次就是能检测手指的触摸动作并且判断手指位置,各类触摸屏技术就是围绕“检测手指触摸”而八仙过海各显神通的。 二、触摸屏的工作原理 触摸屏做为一种特殊的计算机外设,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。尤其是公共场合信息查询服务,它的使用与推广大大方便了人们查阅和获取各种信息。可你对触摸屏了解多少呢? 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触摸屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口)送到CPU,从而确定输入的信息。

渗流孔隙水压力的计算

顺流减压,逆流增压—扫地僧 最近大家问了很多渗流的问题,自己也好好总结了一下。岩土考试涉及到渗流情况的孔隙水压力计算时,基本都可归结为8个字:顺流减压,逆流增压。渗流可以理解为水流,流速很慢的水流,沿渗流方向移动,相当于顺流而下,受到的水压力减小,即为顺流减压。逆渗流方向移动,相当于逆流而上,压力增大,即为逆流增压。 任意点D 的孔隙水压力万能公式: 1、按顺流减压:(从总水头高处往低处计算是即为顺流向) 2D u H x i =-? , /i h L =? 2、按逆流增压: (从总水头低处往高处 计算是即为逆流向)112()()/D u H L x i H L x h L H x i =+-?=+-??=-?(注:式中H1、H2分别为逆流向和顺流向D 点的静水压力水头) 力学原理解释:x i ?为计算段总水头损 失1h ,总水头损失=压力水头损失+位置水 头损失,发生渗流的情况与无渗流时(静水)相比较,位置水头差不变,故总水头损失1h 等于相对于静水时的压力水头损失(水头损失全部由压力水头承担),此段话比较绕,理解不了也没关系,下面以顺流减压进行推导。 以黏土层底面为基准面,A 点总水头:2H H x =+ 计算段总水头损失:1h x i =? D 点总水头: 12H H h H x x i '=-=+-? D 点位置水头:x D 点压力水头:1D u H x H x i '=-=-? 实战中的运用: 此方法实际就是上述的顺流减压公式。

此方法实际就是上述的顺流减压公式。 若按逆流曾压则为:30+45/2=52.5 此题若按顺流减压则为: ()22sin 28 6sin 28666sin 286cos 28w i h i ==-??=-?=?

电阻式触摸屏种类介绍归纳

电阻式触摸屏种类介绍归纳 一、 电阻式触摸屏的工作原理: 电阻式触摸屏是一种传感器,它将矩形区域中触摸点(X,Y)的物理位置转换为代表X 坐标和Y 坐标的电压。很多LCD 模块都采用了电阻式触摸屏,这种屏幕可以用四线、五线、七线或八线来产生屏幕偏置电压,同时读回触摸点的电压。电阻式触摸屏基本上是薄膜加上玻 璃的结构,薄膜和玻璃相邻的一面上均涂有ITO (纳米铟锡金属氧化物)涂层,ITO 具有很好的导电性和透明性。当触摸操作时,薄膜下层的ITO 会接触到玻璃上层的ITO ,经由感应器传出相应的电信号,经过转换电路送到处理器,通过运算转化为屏幕上的X 、Y 值,而完成点选的动作,并呈现在屏幕上。 二、 电阻式触摸屏的种类: 电阻式触摸屏的基本结构和驱动原理.pdf 三、 各种类电阻式触摸屏的基本结构: 1.四线电阻式触摸屏 四线电阻式触摸屏的结构如上图,在玻璃或丙烯酸基板上覆盖有两层透平,均匀导电的ITO 层,分别做为X 电极和Y 电极,它们之间由均匀排列的透明格点分开绝缘。其中下层的ITO 四线触摸屏 五线触摸屏 六线触摸屏 七线触摸屏 八线触摸屏

与玻璃基板附着,上层的ITO附着在PET薄膜上。X电极和Y电极的正负端由“导电条”(图中黑色条形部分)分别从两端引出,且X电极和Y电极导电条的位置相互垂直。引出端X-,X+,Y-,Y+一共四条线,这就是四线电阻式触摸屏名称的由来。当有物体接触触摸屏表面并施以一定的压力时,上层的ITO导电层发生形变与下层ITO发生接触,该结构可以等效为相应的电路,如下图 2. 八线电阻式触摸屏 八线电阻式触摸屏的结构与四线类似,所区别的是除了引出X- drive,X+ drive,Y- drive,Y+ drive四个电极,还在每个导电条末端引出一条线:X- sense,X+ sense,Y- sense,Y+ sense,这样一共八条线。

孔隙压力,有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1) 其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图 6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3)

这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= (6.4) 当竖管中的水位低于地表面时(如图6.2(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图6.2(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图6.3说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一

四大触摸屏技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下: 1.电阻式触摸屏 电阻式触摸屏的工作原理 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

触摸屏种类及说明

触摸屏种类及说明 触摸屏是一种可以根据显示屏表面接触(手指、笔)、依靠电脑识别其触摸的位置,做出相应的反映的一种电子设备.目前市面上的触摸屏大致可以分为电容式触摸屏,四线电阻式触摸屏,五线电阻式触摸屏,表面声波触摸屏、红外线式触摸屏及光学触摸屏五种类型。 电容屏 电容技术的触摸屏是一块四层复合玻璃屏,如下图所示。玻璃屏的内表面和夹层各涂有一层ITO导电层,最外层是只有0.0015毫米厚的矽土玻璃保护层。内层ITO作为屏蔽层,以保证良好的工作环境,夹层ITO涂层作为检测定位的工作层,在四个角或四条边上引出四个电极。 容屏基本工作原理的最初想法是:人是假象的接地物(零电势体),给工作面通上一个很低的电压,当用户触摸屏幕时,手指头吸收走一个很小的电流,这个电流分从触摸屏四个角或四条边上的电极中流出,并且理论上流经这四个电极的电流与手指到四角的距离成比例,控制器通过对这四个电流比例的精密计算,得出触摸点的位置。 这个想法本来是很好的。但是,按照这种思路进行下去,却碰到了难以逾越的障碍:目前的透明导电材料

ITO——氧化金属非常脆弱,触摸几下就会损坏,还不能直接用来作工作层。材料的问题一时还难以解决,只好委曲求全:在外部增加一层非常薄的坚硬玻璃。 这层玻璃显然是不导电的,直流导电是不行了,改用高频交流信号,靠人的手指头(隔着薄玻璃)与工作面形成的耦合电容来吸走一个交流电流,这就是电容屏“电容”名字的由来:靠耦合电容来工作。 问题解决了,但代价是很大的:首先是“漂移”,因为耦合电容的方式是不稳定的,它直接受温度、湿度、手指湿润程度、人体体重、地面干燥程度影响,受外界大面积物体的干扰也非常大,带来了不稳定的结果,这些都直接违背了作为触摸屏这种绝对坐标系统的基本要求,不可避免的要产生漂移,有的电容触摸屏欲求通过25点校准法甚至96点校准法来解决漂移问题,其实是不可能的,漂移是电容工作的这种方式决定的,即使是在控制器的单片机程序上利用动态计算和经验值查表,也只能是治标不治本。多点校准法最早是大屏幕投影触摸板使用的方法,目的是消除坐标对应的线性失真,电容触摸屏的线性失真也非常厉害,主要是因为电容屏的计算建立在四个电流量与触摸点到四电极的距离成比例的理想状态上,实际由于受环境电容、线路寄生电容和不同人使用的影响,这种比例关系不可能是完全线性的,多点校准法只能解决局域分配的线性问题,解决不了整体的漂移。 电容方式的另一个代价是:最外这层极薄的玻璃,正常情况下防刮擦性能非常好,但工艺上要求在真空下制造,因为它害怕氢,哪怕有一点氢也会结合成易脆碎的玻璃,使用中轻轻一敲就成个小破洞,这对电容触摸屏来说是要命的:破洞周围直径5cm大小的区域不能使用。实际的真空是不可能有的,这层极薄的玻璃有5%的概率碰上有破洞的产品。 电容触摸屏的透光率和清晰度优于四线电阻屏,尤其是一些新的产品。 四线电阻触摸屏 电阻触摸屏的屏体部分是一块与显示器表面非常配合的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。 当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y 轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,控制器侦测到这个接通后,进行A/D转换,并将得到的电压值与5V相比即可得触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。 电阻类触摸屏的关键在于材料科技。常用的透明导电涂层材料有: ①ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

孔隙压力、有效应力和排水

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1)

其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3/20m kN ≈γ,干土的3/16m kN ≈γ,水的3 /10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和

触摸屏工作原理

0 引言 随着信息技术的飞速发展,人们对电子产品智能化、便捷化、人性化要求也不断提高,触摸屏作为一种人性化的输入输出设备,在我国的应用范围非常广阔,是极富吸引力的多媒体交互没备。目前,触摸屏的需求动力主要来自于消费电子产品,如手机、PDA、便携导航设备等。随着触摸屏技术的不断发展,它在其他电子产品中的应用也会得到不断延伸。现在市面上已有的触摸屏控制器普遍价格比较高且性能相对比较固定,一些场合下无法满足用户的实际需求。本文基于上述考虑,根据电阻式触摸屏的工作原理,选用51系列单片机作为控制核心,设计一种实用且低成本的触摸屏控制系统。 1 触摸屏的工作原理 触摸屏由触摸检测部件和触摸屏控制器件组成(如图1所示);触摸检测部件用于检测用户触摸位置,接收后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息送给控制器,它同时能接收控制器发来的命令并加以执行。

触摸屏的主要3大种类是:电阻技术触摸屏、表面声波技术触摸屏、电容技术触摸屏。其中,电阻式触摸屏凭借低廉的价格以及对于手指及输入笔触摸的良好响应性,涵盖了100多家触摸屏元件制造商中的2/3,成为过去5年中销售量最高的触摸屏产品。在这里根据要设计应用的触摸屏控制器,重点介绍一下四线电阻式触摸屏。 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开绝缘。当手指触

摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5 V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5 V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是四线电阻式触摸屏基本原理,其原理如图2所示。 2 触摸屏控制系统硬件设计 根据四线电阻式触摸屏的工作原理可以看出,在硬件设计上的主要工作就在于将触摸点所在的X轴及Y轴坐标通过控制驱动模块加以精确识别。 2.1 总体结构设计 触摸屏控制器的设计关键在于对驱动模块的控制,本文采用AT89C2051作为驱动电路的控制核心,通过ADS7843模块接收触摸屏上得到的信号并控制驱动电

《体育测量与评价

体育测量与评价期末考核题 1、简述影响可靠性的因素 2、如何利用标准值百分数法确定肥胖标准 3、疲劳的一般表现有哪些 4、人体的体形中,中胚层型的特征是怎样的 5、简述影响有效性的因素 6、简述进步率的评定方法 1、简述影响可靠性的因素 答:影响可靠性的因素:1、受试者个体差异及能力水平;2、重复测量间隔时间; 3、受试者能力发挥的水平; 4、此外,测验的长度、频数, 测量条件的规范程度,测试人员的能力水平,测量手段的鉴别功能以及评分标准的适宜程度等,对测量的可靠性也有相当大的影响。 2、如何利用标准值百分数法确定肥胖标准 答:肥肥胖指数百分比计算法肥胖指数百分比计算法肥胖指数百分比=(实际体重-标准体重)÷标准体重×100% 指数百分比在±5%之内均为正常体重指数百分比在5%~10%之内为超重指数百分比在10%~25%之内为轻度肥胖指数百分比在25%~40%之内为中度肥胖指数百分比在40%以上为重度肥胖指数百分比在-5%~-20%之内为消瘦指数百分比在20%以下为重度消瘦肥胖指数百分比=(实际体重-标准体重)÷标准体重×100% 指数百分比在±5%之内均为正常体重指数百分比在5%~10%之内为超重指数百分比在10%~25%之内为轻度肥胖指数百分比在25%~40%之内为中度肥胖指数百分比在40%以上为重度肥胖指数百分比在-5%~-20%之内为消瘦指数百分比在20%以下为重度消瘦指数百分比在-5%~-20%之内为消瘦指数百分比在20%以下为重度消瘦肥胖指数百分比=(实际体重-标准体重)÷标准体重×100% 指数百分比在±5%之内均为正常体重指数百分比在5%~10%之内为超重指数百分比在10%~25%之内为轻度肥胖指数百分比在25%~40%之内为中度肥胖指数百分比在40%以上为重度肥胖指数百分比在-5%~-20%之内为消瘦指数百分比在20%以下为重度消瘦肥胖指数百分比=(实际体重-标准体重)÷标准体重×100% 指数百分比在±5%之内均为正常体重指数百分比在5%~10%之内为超重指数百分比在10%~25%之内为轻度肥胖指数百分比在25%~40%之内为中度肥胖指数百分比在40%以上为重度肥胖指数百分比在-5%~-20%之内为消瘦指数百分比在20%以下为重度消瘦

红外触摸屏的原理简述

红外触摸屏的原理简述 红外触摸屏技术是在屏幕四周安装红外发射管和红外接收管,形成红外光矩阵,然后分别在横、竖两个方向上不断的扫描并探测,当触摸物阻挡红外光时进行位置判断的坐标定位技术。一般是在显示器的前而安装一个电路板框架,在电路板上四边安装对应红外发射管和红外接收管,如下图所示,白色的是红外发射管,黑色的是红外接收管,通过电路驱动红外发射管发出红外光,位置相对的接收管接收红外光信号。用户在触摸屏幕时,手指就会挡住经过该位置的横竖方向的外线,光信号的改变引起光电探测电路输出的电信号发生变化,通过对电信号处理可以对触摸点在屏幕的位置进行定位。任何对红外光不透明的触摸物体都可阻断红外线实现触摸定位。本文由红外线供应网提供 红外触摸屏的原理是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次接通红外发射管并检查相应的红外接收管,以形成横坚交叉的红外光阵列,得到定位的信息。本论文中以Philips公司的ARM7芯片LPC2132为微处理器,通过对移位锁存器74HC595的控制对红外发射管的逐个扫描,同时微处理器通过12C总线寻址每个相应的红外接收管,得到相应的光强值。微处理器根据接收到的被遮挡前后的光强信号得到触摸的位置信息,并通过串口将该信息传送给主机。控制方式如下图所示: 微处理器电路: 微处理器在红外触摸屏硬件系统中起着核心的作用: 1、完成对红外发射电路的驱动; 2、完成对红外接收电路的驱动; 3、完成对是否被触摸的判断以及触摸位置信息的计算; 4、将触摸位置信息通过中P1传送给主机; 5、调试整个程序的运行。 本论文中采用Philips公司的ARM7芯片LPC2132作为微处理器。该芯片是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI微控制器,并带有64kB的嵌入的高速Flash存储器。具有EmbeddedICE-RT和嵌入式跟踪接口,可实时调试;多个串行接口,包括2个16C550工业标准DART,2个高速I2C接口 SP1;多个32位定时器、1个10位8路ADC, 10位DAC,PWM通道和47个GP10以及多达9个边沿或电平触发的外部中断。 这部分电路中主要包括驱动红外发射部分,驱动红外接收部分,出口通信部分,JTAG调试部分。驱动红外发射部分是由芯片上的第4脚,第44脚,第48脚来完成的,它们分别用于控 制红外发射管亮暗状态的信号:DS、 SH -CP、ST - CP。电路原理理如下图所示:

服装设计中的人体体型测量

第二章服装设计中的人体体型测量 第一节人体形态与尺寸测量 人体形态与尺寸测量是服装人体工程学的重要内容,出自服装舒适、合身、提高人体机能的工学要求,需要有确切的人体参量来为服装创造作保证,否则不可能使人体与服装合理地匹配。 一、人体测量要求 人体尺寸有两类,一类是静态尺寸,也称人体结构尺寸;另一类称动态尺寸,又称功能尺寸。对于服装的人体测量尺寸,一般以静态尺寸为主,有以下一些测量要求。 1、基本姿态:被测者采用立姿或坐姿。 (1)立姿:被测者挺胸直立,平视前方,肩部松弛,上肢自然下垂,手伸直并轻贴躯干,左、右足跟并拢而前端分开,呈45°夹角。 (2)坐姿:被测者挺胸坐在被调节到腓骨头高度的座椅平面上,平视前方,左、右大腿基本平行,膝弯成直角,足平放在地面上,手轻放在大腿上。 二、测量特征点 特征点的确定对测量尺寸的准确性起着至关重要的作用。需要的测量特征点如图所示。 测量特征点的定义如下: 肩颈点:位于颈侧根部,从人体侧面观察,位于颈根部宽度的中心点偏后的位置。 第7颈椎点:第7颈椎棘突尖端的点。 颈窝点:第一胸椎的上缘点。 肩端点:锁骨与肩胛岗相连接部位向上的最高点。 肩峰点:肩胛骨外缘的最外侧点。 胸宽点:肩峰点与前腋点连线的中点。 前腋点:人体正面中,手臂与躯干的分界点。 乳点:乳头的中心点。 肩胛突点:人体肩胛部位最突出的点。 背宽点:肩峰点与后腋点连线的中点。 后腋点:人体背面中,手臂与躯干的分界点。 桡骨头点:桡骨小头上缘的最高点。 最低肋骨点:身体肋骨的最低点。 髂嵴点:髂嵴向外最突出点。 髂前上棘点:髂前上棘向前下方最突出点。 桡骨茎突点:桡骨茎突的下端点。 大转子点:股骨大转子的最高点。 腰点:第五腰椎棘突尖端的点。 胫骨点:胫骨上端内侧,踝内侧缘上最高的点。 腓骨头点:腓骨头向外最突出的点。 外踝点:腓骨外踝的下端点。

基于水压率讨论土中孔隙水压力及有关问题

〔收稿日期〕 2006-12-07 基于水压率讨论土中孔隙水压力及有关问题 方玉树 (后勤工程学院,重庆) 摘 要 提出了水压率的概念,在此基础上修正了孔隙水压力、浮力、浮重度、渗透力、固结系数和贮水率 计算方法,分析了有效应力、有效自重应力和有效土压力变化规律,对渗流破坏、基坑底突和振动液化特征作出了解释。 关键词 水压率 孔隙水压力 浮力 土压力 渗透力 有效应力 岩土工程广泛涉及孔隙水压力或与孔隙水压力 有关的问题。目前,人们对一些与孔隙水压力相关的议题存在着争论或不完全清楚,如: 细粒土中水对结构物的浮力在按阿基米德定律计算后要不要折减?文献[1]规定:浮力“在原则上应按设计水位计算,对粘土当有经验或实测时可根据经验确定。”该文献的条文说明对此规定做了如下解释:“地下水对基础的浮力可用阿基米德原理计算。这一原理对渗透系数很低的粘土来说也应是适用的,但有实测资料表明,粘土中基础所受到的浮力往往小于水柱高度。由于折减缺乏必要的理论依据,很难确切定量,故规定只有在具有地方经验或实测数据时方可进行一定的折减。”文献[2]只要求对砂类土、碎石类土按计算水位的100%计算浮力,而对粉土和粘性土是否按计算水位的100%计算浮力未作要求。由此可见,当前的困惑在于折减符合实际,但不符合阿基米德定律或者说与现有孔隙水压力计算方法不协调,不折减符合阿基米德定律或者说与现有孔隙水压力计算方法协调,但不符合实际。 计算土的有效自重应力时水位以下土的重度是否一律取浮重度?通常的做法是一律取浮重度,也有意见认为,一般应取浮重度,但计算不透水层(例如只含结合水的坚硬粘土层)中某点的自重应力时,由于不透水层中不存在水的浮力,水位以下土的 重度应取饱和重度[3] 。根据目前普遍采用的土的浮重度和饱和重度的关系式,按浮重度计算和按饱和重度计算的结果有近一倍的差别。 土压力计算时是水土分算还是水土合算?第一种意见是水土分算(或水土分算,有经验时可水土 合算)[4] (据文献[1]之条文说明,上海、广州有关标 准也持这种意见)。第二种意见是水土合算[5,6] (据文献[1]之条文说明,深圳、湖北有关标准也持这种 意见),文献[5]之条文说明对此规定作了如下解 释:按有效应力原理应进行水土分算,这种方法概念比较明确,但粘性土孔隙水压力往往难以确定,故采用水土合算,这种方法低估了水压力的作用,对此应有足够认识。第三种意见是根据经验确定是水土分 算还是水土合算[7] ,这种意见对缺乏经验时如何计算没有说明。根据目前孔隙水压力和竖向有效自重应力(或浮重度)计算方法,水土分算的墙背土压力强度明显大于水土合算的墙背土压力强度。 动水头范围内是否一律考虑渗透力?文献[8]认为应一律考虑渗透力;文献[7]与[9]认为有渗流时应考虑渗透力;文献[10]认为对透水性较强的土体应考虑渗透力,对相对不透水的土体可不考虑渗 透力;文献[11]与[12]以1×10-7 m /s 的渗透系数为界,渗透系数超过此值时计算渗透力,不超过此值时不计算渗透力。 为什么细砂和粉砂最易发生流土和振动液化?为什么包括潜蚀和流土的渗流破坏会在水力坡度远远小于1的情况下发生,又会在水力坡度远远大于1的情况下也不发生? 因此有必要对孔隙水压力问题加以认真的考察。本文提出了水压率的概念,以此为基础对与孔隙水压力有关的问题作出了新的解答。 1 水压率与孔隙水压力 1.1 孔隙水压力的表达 为使土的力学问题能用连续体力学解决,必须把土看成连续体。因此,在研究地下水的运动时,某点的渗透速度是单位面积土截面的流量(而不是实际流速);在研究土体内力时,某点的应力是单位面积土截面上的压力。同样,与应力同量纲的孔隙水压力也应是单位面积土截面上的水压力。孔隙水压 1 2

相关主题
文本预览
相关文档 最新文档