当前位置:文档之家› 遥感影像亚像元定位研究_李晓冬

遥感影像亚像元定位研究_李晓冬

遥感影像亚像元定位研究_李晓冬

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

【CN110032965A】基于遥感图像的视觉定位方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910283770.4 (22)申请日 2019.04.10 (71)申请人 南京理工大学 地址 210094 江苏省南京市孝陵卫200号 (72)发明人 朱明清 陆建峰  (74)专利代理机构 南京理工大学专利中心 32203 代理人 陈鹏 (51)Int.Cl. G06K 9/00(2006.01) G06T 7/73(2017.01) G01C 21/20(2006.01) G01C 21/32(2006.01) (54)发明名称 基于遥感图像的视觉定位方法 (57)摘要 本发明公开了一种基于遥感图像的视觉定 位方法,包括以下步骤:根据遥感数据提取场景 道路网络和地物语义特征;从视觉传感器获取观 测值,对传感器数据进行特征提取和特征匹配, 实现定位和地图构建;根据定位地图优化定位与 地图;定位地图路网模块优化定位,实时估计当 前位姿在路网中的绝对位置,辅助于定位。本发 明在遥感卫星地图上提取道路网络以及语义信 息辅助视觉定位,可在未知环境下实现高精度视 觉定位。权利要求书2页 说明书5页 附图5页CN 110032965 A 2019.07.19 C N 110032965 A

1.一种基于遥感图像的视觉定位方法,其特征在于,包括以下步骤: 步骤1,根据遥感数据提取场景道路网络和地物语义特征; 步骤2,从视觉传感器获取观测值,对传感器数据进行特征提取和特征匹配; 步骤3,根据定位地图优化定位与地图; 步骤4,通过定位地图路网模块优化定位,实时估计当前位姿在路网中的绝对位置。 2.根据权利要求1所述的基于遥感图像的视觉定位方法,其特征在于,步骤1具体为:步骤1-1,构建端到端神经网络: (1)获取遥感图像,并标记道路,对训练集做数据增强操作; (2)根据上一步提供的数据对网络模型进行训练; (3)将定位场景遥感图输入网络,得到道路网提取结果; 步骤1-2,根据神经网络所提取道路像素值,建立道路网模型; 步骤1-3,根据路网图、结构拓扑图以及地物语义信息生成所需的定位地图。 3.根据权利要求1所述的基于遥感图像的视觉定位方法,其特征在于,步骤2具体为:步骤2-1,定位初始化,恢复相机的旋转矩阵R和平移向量t,F cr 表示基本矩阵,X r 、X c 表示两个像素点归一化平面上的坐标; 步骤2-2,提取ORB特征,计算帧之间的位姿变化,具体步骤如下: 首先利用运动模式预测当前状态,通过匹配投影验证,如若匹配少于25%的特征,进入关键帧模式,与最近关键帧匹配,得到初始位姿估计; 再通过局部地图跟踪优化相机位姿 x=[ε1,…,εm ,P 1,…,P n ]; 式中,ε表示单个位姿,P表示单个路标点,e表示观测误差;E、F是整体目标函数对路标点的偏导数和整体变量的导数,xc表示相机位姿变量,xp表示空间点变量; 步骤2-3,选择性插入关键帧,然后检查当前地图点云,剔除冗余点,三角化新地图点,s 1x 1=s 2Rx 2+t;x 1,x 2为两个特征点归一化坐标,s 1,s 2为两个特征点的深度,R旋转举证,t表示位移。 4.根据权利要求1所述的基于遥感图像的视觉定位方法,其特征在于,步骤3具体为:步骤3-1,变化点检测,根据定位地图中的变化点图模块,当当前状态与其所在路径变化点位置theta3范围之内触发变化点检测,在固定滑动窗口内计算其每个位置平面内偏航角变化(-theta,theta),计算窗口变化均值,根据下一个点变化点特征,在theta范围内,则认为当前位置变化点为候选点,记录下来,当到达极大值时, 则认为该点为变化点; |xi -pt|<θ;|i|<μ;f表示偏航角θy , pt表示距离变化点,θ预设置的检测范围,μ表示预设置F的计算范围; R表示旋转矩阵; θx =tan -1(R32,R33);θz =tan -1(R21,R11),θx 、θy 、θz 分别表示欧拉角的各个方向; 权 利 要 求 书1/2页2CN 110032965 A

遥感变化监测 流程

多时相土地利用/覆盖变化监测研究 方法及数据选取 土地是一个综合的自然地理概念,它处于地圈-生物圈-大气圈相互作用的界面,是各种自然过程和人类活动最为活跃的场所。地球表层系统最突出的景观标志就是土地利用和土地覆盖( Land Use and Land Cover)。由于土地利用和土地覆盖与人类的生活、生产息息相关,而人类活动正以空前的速度、幅度和空前规模改变着陆地环境。人类对土地资源的利用引起的土地利用和土地覆盖的变化是全球环境变化的重要因素之一,也是地球表面科学研究领域中的一个重要分支。因此,土地利用和土地覆盖的动态监测(Land Use and Land Cover Monitoring)是国内外研究的热点,也是当前全球变化研究计划的重要组成部分。 由多时相遥感数据分析地表变化过程需要进行一系列图像处理工作,大致包括:一、数据源选择,二、几何配准处理,三、辐射处理与归一化,四、变化监测算法及应用等。 一、遥感数据源的选取 不同遥感系统的时间分辨率、空间分辨率、光谱分辨率和辐射分辨率不同,选择合适的遥感数据是变化监测能否成功的前提。因此,在变化监测之前需要对监测区域内的主要问题进行调查,分析监测对象的空间分布特点、光谱特性及时相变化的情况,目的是为分析任务选择合适的遥感数据。同时,考虑到环境因素的影响,用于变化监测的图像最好是由同一个遥感系统获得,如果由于某种原因无法获得同一种遥感系统在不同时段的数据,则需要选择俯视角与光谱波段相近的遥感系统数据。 1时间分辨率 这里需要根据监测对象的时相变化特点来确定遥感监测的频率,如需要一年一次、一季度一次还是一月一次等。同时,在选择多时相遥感数据进行变化监测时需要考虑两个时间条件。首先,应当尽可能选择用每天同一时刻或者相近时间的遥感图像,以消除因太阳高度角不同引起的图像反射特性差异;其次,应尽可能选用年间同一季节,甚至同一日期的遥感数据,以消除因季节性太阳高度角不同和植物物候差异的影响。 2空间分辨率 首先要考虑监测对象的空间尺度及空间变异的情况,以确定其对于遥感数据的空间分辨率的要求。变化监测还要求保证不同时段遥感图像之间的精确配准。因此,最好是采用具有相同瞬时视场(IFOV)的遥感数据,如具有同样空间分辨率的TM图像之间就比较容易配准在一起。当然也可以使用不同瞬时视场遥感系统获取的数据,如某一日期的TM图像(30m ×30m)与另一日期的SPOT图像(20m×20m),来进行变化监测,在这种情况下需要确定一个最小制图单元20m×20m,并对这两个图像数据重采样使之具有一致的像元大小。 一些遥感系统按不同的视场角拍摄地面图像,如SPOT的视场角能达到±27°,在变化监测中如果简单采用俯视角明显不同的两幅遥感图像,就有可能导致错误的分析结果。例如,对一个林区,不均匀地分布着一些大树,以观测天顶角0°拍摄的SPOT图像是直接从上向下观测到树冠顶,而对于一幅以20°观测角拍摄的SPOT图像所记录的是树冠侧面的光谱反射信息。因此,在变化监测分析中必须考虑到所用遥感图像观测角度的影响,而且应当尽可能采用具有相同或相近的俯视角的数据。 3光谱分辨率 应当根据监测对象的类型与相应的光谱特性选择合适的遥感数据类型及相应波段。变化监测分析的一个基本假设是,如果在两个不同时段之间瞬时视场内地面物质发生了变化,则不同时段图像对应像元的光谱响应也就会存在差别。所选择的遥感系统的光谱分辨率应当足

室内定位常用算法概述

室内定位常用算法概述 一.室内定位目的和意义 随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大,尤其在复杂的室内环境,如机场大厅、展厅、仓库、超市、图书馆、地下停车场、矿井等环境中,常常需要确定移动终端或其持有者、设施与物品在室内的位置信息。但是受定位时间、定位精度以及复杂室内环境等条件的限制,比较完善的定位技术目前还无法很好地利用。因此,专家学者提出了许多室内定位技术解决方案,如A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、射频识别技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等等。这些室内定位技术从总体上可归纳为几类,即GNSS 技术(如伪卫星等),无线定位技术(无线通信信号、射频无线标签、超声波、光跟踪、无线传感器定位技术等),其它定位技术(计算机视觉、航位推算等),以及GNSS和无线定位组合的定位技术(A-GPS或A-GNSS)。 由于在室内环境下对于不同的建筑物而言,室内布置,材料结构,建筑物尺度的不同导致了信号的路径损耗很大,与此同时,建筑物的内在结构会引起信号的反射,绕射,折射和散射,形成多径现象,使得接收信号的幅度,相位和到达时间发生变化,造成信号的损失,定位的难度大。虽然室内定位是定位技术的一种,和室外的无线定位技术相比有一定的共性,但是室内环境的复杂性和对定位精度和安全性的特殊要求,使得室内无线定位技术有着不同于普通定位系统的鲜明特点,而且这些特点是户外定位技术所不具备的。因此,两者区域的标识和划分标准是不同的。基于室内定位的诸多特点,室内定位技术和定位算法已成为各国科技工作者研究的热点。如何提高定位精度仍将是今后研究的重点。 二. 室内定位技术的国内外发展趋势 室内GPS定位技术 GPS是目前应用最为广泛的定位技术。当GPS接收机在室内工作时,由于信号受建筑物的影响而大大衰减,定位精度也很低,要想达到室外一样直接从卫星广播中提取导航数据和时

工程测绘中遥感影像定位测绘技术的应用

工程测绘中遥感影像定位测绘技术的应用 发表时间:2019-08-15T10:31:38.173Z 来源:《建筑模拟》2019年第27期作者:周宗祥 [导读] 地质测绘是工程建设中一项非常重要的工作,主要为工程建设施工服务,测绘结果会直接影响工程项目开发的最终效果。 周宗祥 身份证号:4525231978****0054 摘要:地质测绘是工程建设中一项非常重要的工作,主要为工程建设施工服务,测绘结果会直接影响工程项目开发的最终效果。最近几年,测绘项目在不断地增加,各种新技术和新方法已被广泛应用于工程地质测绘,这在很大程度上提升了测绘质量。本文主要分析了遥感影像定位测绘技术在工程测绘中的应用。 关键词:工程测绘;遥感影像定位;测绘技术;应用 1.遥感影像定位测绘技术概述分析 遥感影像定位测绘技术是一种探测技术,遥感探测方法一般是远距离非接触的。根据被探测物体的电磁波反射特点及辐射,通过传感器或遥感器进行发射、接收信号,分析了物体形态、特性的原理以及应用方法。现阶段,遥感影像定位测绘技术被广泛应用于多个领域(如:水文、建筑、矿业、军事、农业、气象、环保等),可通过对全球范围多个领域、视角、层次的观测,获取特定环境的资源信息。 遥感影像是利用遥感技术获得地物电磁波胶片。它可以实现大面积同时观测、实效性比较强、数据具有可比性,同时还可以提高社会、经济效益。例如:使用影像定位技术时,不会存在空间制约,假如所获得的卫星图像和航拍图像可以覆盖30,000平方公里的区域,它们可以包含大量信息和不同方法的特征,针对不同的任务,通过调整遥感设备、波段获取所需信息。目前的主要探测技术包含:微波探测、紫外线探测、红外线探测以及可见光物体探测。 1.1遥感影像定位测绘技术的应用 遥感技术是利用安装在遥感平台上的传感器在距离较远,并不与探测物体接触的前提下,接收目标反射线或发射的各种波段电磁波传输的信息,并对所获取的信息进行处理、诠释,以探测、识别远距离目标。通过所获取的信息资料,可以清楚了解工程的实时动态以及综合信息,监测工程实际环境。 1.2遥感影像特征 首先,遥感影像中的像素值会随着传感器的变化而发生变化,传感器不同,最终获得的波段数就会不一样,并且该值由不同波段的对应位置点的值共同显现;其次,所获取的遥感影像通常是不可以进行有损压缩的,若进行有损压缩,可能会造成图像信息损坏或者丢失,而针对常规图像,则会进行有损压缩,以节省空间;最后,使用不同类型的传感器,最终产生的文件组织方法也会不同。目前,市场上有许多遥感软件制造商,不同制造商生产的遥感软件最终组织的影响数据的格式也是不同的,很难通过一种方法读取和诠释所获取的影响信息。 1.3遥感图像三维可视化及影像动态在工程测绘中的应用 在工程测绘过程中,使用遥感图像三维可视化及影响动态分析方法,可以在短时间内获得完整、准确的测绘信息,节省测绘时间的同时,还节省了大量的人力、物力、财力。基于图像遥感技术开发了三维可视化技术,三维可视化技术可以选择、设置测绘路线,可以全面掌控工程项目区域内的地质条件分布和相应的构造空间,并清楚区分工程项目区域内的地质条件及其地貌特征,并进一步分析地质条件、地貌特征,以促使工程测绘的可视化得到全面提高。与此同时,借助三维技术,可准确的将地质条件较好的区域及岩石集中区域区分开,以全面了解、掌握该工程施工区域的地质条件。使用三维可视化技术时,必须确保地质观测路线及其探测物区域内的施工线之间相互垂直,同时将垂直方向的穿越丝作为主线,根据该主线设置对应的测绘点位。 2.影像定位技术在工程测绘中的应用分析 目前,影像定位技术在各个领域已得到了广泛应用,对人们的生活、生产有很大的影响,不管是煤矿、医院还是建筑、汽车等多个行业都会使用该技术。 影像定位技术是工程测绘过程中经常会使用的基础技术,使用影像定位技术可以探测、分析、研究工程施工区域的地质情况,以了解该区域的地质结构及其岩石等的具体分布位置,以了解、掌握施工区域的地质特征,确保工程施工质量和测绘工作的顺利开展。 通常情况下,工程测绘过程中使用最多的是遥感影像定位测绘技术,使用该技术可以获得全面、准确的测绘信息,具体包括对施工区域的地质条件,地形、地貌特征以及地形空间结构分布规则等进行初步探测,同时,将建立一个完整的探测控制区域,用于探测施工现场的地形,以分析工程施工区域的地质结构和地形构造以及地质体的性质及其地势的高低程度,通过所获取的图像施工人员可以进一步了解施工现场的具体特征,以方便后期施工。 在工程测绘过程中使用遥感影像定位技术,不论在勘探路线、还是探测方向以及所获得的图像上,传统的探测方法跟其没有可比性,使用遥感影像定位技术所获得的图像不仅分辨率高,同时,获得的信息也比较全面、准确,保证了测绘质量。 3.遥感影像在水文地质勘查中的应用 可以使用影像定位技术进行水文地质学探测,通过卫星遥感图像、遥感航空照片和其他信息反馈通道,清楚地了解水文地质条件。在特定的水文地质测绘过程中,影像技术可用于获取水文地质规则反馈的信息,以确保所获取的水文地质测绘结果准确无误。此外,在地下水调查过程中使用影响定位技术时,可以通过图片清楚掌握地下水含水层的具体分布情况,并且相应的含水层结构边界也会清晰地反映在图像中,这样人们可以清楚掌握地下水量的多少及其分布规律。 3.1水文地质测绘工作 水文地质测绘是一种较为复杂的工作,通过遥感影像定位技术可以清楚掌控工程施工区域的地形、地貌、水体以及含水的岩体的特征,相关工作人员通过这些信息可以快速概括该区域的水文地质特征。 3.2地下水资源的调查工作 通过使用遥感影像定位技术搜寻地下水和评估地下水资源,使用遥感图像获得的含水层和含水层之间的界限准确度比较高,通过遥感技术搜寻地下水资源将会有很大收获。

ENVI遥感影像变化检测

1.森林开采监测 打开实习数据0-森林开采监测下的实习数据。 ?Compute Difference Map 选择basic tools/change detection/ Compute Difference Map,分别选择原始的影像july_06与july_00,在弹出的Compute Difference Map input parameters窗口下,查看define class thresholds,no change表示没有变化, change(-1)表示减少,change(+1)表示增加;其他默认选项不变, 勾选normalize data range[0-1],选择输出路径与文件名为com_diff。 选择classification/post classification/classification to vector,在输入图层中选择上一步生成的结果,弹出窗口中选择全部,保存路径生成结果, 转化为矢量。(由于耗时过多,故可以不做) ?Image Difference 打开ENVI Zoom 4.8,将原始的影像导入到其中,在ENVI Zoom窗口下的toolbox 中选择image change,弹出image change detection的对话框,将time 1classification image file选择为00年影像,点击OK,time2 classification image file中选择06年影像数据,点击OK,选择下一步,保持默认设置,选择下一步,选择image difference,选择下一步,选择difference of

一种基于TDOA与三角形加权质心定位的混合算法

邮局订阅号:82-946120元/年技术创新 软件时空 《PLC 技术应用200例》 您的论文得到两院院士关注 一种基于TDOA 与三角形加权质心定位的混合算法 A Hybrid Algorithm Based On TDOA And Triangle Weighted Centroid Localization (1.兰州大学;2.总参谋部通信训练基地) 傅涛 1,2 杨凌 1 李晓燕 1 闫胜武 1 FU Tao YANG Ling LI Xiao-yan YAN Sheng-wu 摘要:提出一种基于TDOA 与三角形加权质心定位的混合算法,该算法仅采用三个信标节点,充分利用节点的数据处理单元和通信单元,通过三角形加权质心定位算法得到一个定位信息,同时待定节点充分利用接收信号进行相关运算,求时差得到另一个定位信息。对两组定位信息比较、取均值,得到相对稳定的定位信息,实验证明该算法不仅减小了定位误差,提高了定位精度,而且解决了TDOA 的模糊定位问题。 关键词:TDOA;信标节点;三角形加权质心定位;混合定位 中图分类号:TP393 文献标识码:A Abstract:A hybrid algorithm based on TDOA and triangle weighted centroid localization was proposed.This algorithm only used three beacon nodes,make full use of the data processing unit and node communication unit,We can get a location information through the triangle weighted centroid localization algorithm,and at the same time,an Unknown node make full use of accept signal related calculation,for time to get another location information.For both groups positioning information comparison,Calculate average and get a relatively stable location information,the experiment shows that this algorithm not only improve location accuracy,reducing the positioning error,and solve the problem of the fuzzy TDOA localization. Key words:TDOA;Beacon nodes;Triangle weighted centroid localization;Hybrid localization 文章编号:1008-0570(2012)10-0395-02 1引言 在无线传感器网络(WSN)中,没有位置信息的监测消息是毫无意义的,因而节点定位技术成为无线传感器网络中的一项关键支撑技术。依据定位过程中是否需要测量实际节点间的距离,可将WSN 定位算法分为基于测距定位算法(Range-Based)和基于非测距定位算法(Range-Free)。前者包括:到达时间法 (TOA)、 到达时间差法(TDOA)、到达角度法(AOA)、信号强度法(RSSI)等。后者包括:质心算法、DV-HOP 算法、Amorphous 算法和APIT 算法等。事实上,每种定位算法都有其适用范围和局限性,因而本文提出一种基于TDOA 与三角形加权质心定位的混合算法。 2TDOA 双曲线定位算法 WSN 中传统的TDOA 测距技术是利用两种不同信号(一般是射频信号和超声波)到达同一节点所产生的时间差来确定节点间的距离,不仅增加了硬件成本和体积,而且应用规模受限,不符合本文要求,而移动通信系统中的TDOA 作为一种双曲线定位技术,可以很好的移植到WSN 当中,在不增加节点硬件成本的情况下完成节点定位功能。 2.1TDOA 定位算法原理如图1所示,假设A(x A ,y A )、B(x B ,y B )、C(x C ,y C )是三个信标节点,O(x,y)点是待定节点,T ij 表示信号从i 点到待定节点所用时间与信号从j 点到待定节点所用时间差,v 表示信号传播速度,d ij 表示待定节点到信标节点i 和j 点的距离差,解以下双曲线方程组即可得出未知节点的坐标,但此种方法存在模糊定位问题,可能存在双解两交点的情况,需要优化。 2.2TDOA 互相关方法数学模型 TDOA 算法关键在于得到两个信标节点到待定节点的时间差T 。直接计算TOA 需要节点达到严格同步,会大幅度增加节点的成本和能量消耗,实现起来困难,所以本文采用互相关技术求解时间差T,从而达到不增加节点硬件成本的效果。 如图1所示,当待定节点发起请求定位信号时,信标节点A 和B 发射的连续波信号为s(t),经传输后受到噪声干扰,待定节点O 接收到信号分别为x 1(t)、x 2(t): 由(2)式化简可得(3)式: 式中:T 是传输时延,T=d 1-d 2;A 为幅度比,A=A 1/A 2,则待定节点接收到信号的互相关函数为: 根据自相关函数的性质,,可以用互相关函数达到极大值来估计时延差T 。当取极大值时,τ就是我们需要测算的到达时间差T 的值,将T 代入公式,得解。 3基于RSSI 的定位算法 3.1基于RSSI 的三角形质心定位算法 傅涛:讲师硕士研究生 395--

遥感影像分类实验报告

面向对象分类实验报告 姓名: 学号: 指导老师: 地球科学与环境工程学院

一、实验目的 面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 二、实验意义 1、使用eCognition进行面向对象的影像分类的流程; 2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言; 三、实验内容 3.1、影像的预处理 利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。 图 1 图像融合步骤

图 2 融合后的图像 3.2、使用eCongition 创建工程 a、使用规则集模式创建工程 图 3 模式选择 b、file->new projection ,打开Create Project和Import Image Layers两个

对话框,将上面的实验数据导入。(注意,数据以及工程文件保存路径不要有中文) 图 4 导入数据 c、选择数据修改波段名称,并设置Nodata选项。

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感影像处理步骤

一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

遥感影像变化检测

遥感影像变化检测报告 学院: 专业: 指导老师: 小组成员: 2013年5月

1、遥感影像变化检测的概念 遥感影像变化检测指利用多时相获取的覆盖同一地表区域的遥感影像及其它辅助数据 来确定和分析地表变化。它利用计算机图像处理系统,对不同时段目标或现象状态的变化进行识别、分析;它能确定一定时间间隔内地物或现象的变化,并提供地物的空间分布及其变化的定性与定量信息。 由此可知,遥感影像变化检测是从不同时期的遥感图像中,定量地分析和确定地物变化的特征和过程。它涉及到变化的类型、分布状况及变化信息的描述,即需要确定变化前后的地物类型、界限和分析变化的属性。变化检测的研究对象为地物,包括自然地物和人造地物,其中人造地物在军事上常被称为目标。描述地物的特性包括:空间分布特性、波谱反射与辐射特性、时相变化特性。遥感影像的变化检测在土地覆盖变化监测、环境变迁动态监测、自然灾害监测、违章建筑物查处、军事目标打击效果分析以及国土资源调查等方面拥有广泛的应用价值和商业价值。 变化检测通常包括以下4个方面的内容: (1)判断是否发生了变化,即确定研究区域内地物是否发生了变化; (2)标定变化发生的区域,即确定在何处发生了变化,将变化像元与未变化像元区分开来; (3)鉴别变化的性质,给出在每个变化像元上所发生变化的类型,即确定变化前后该像元处的地物类型; (4)评估变化的时间和空间分布模式。 其中,前两个方面是变化检测所要解决的基本问题,而后两个方面则根据应用要求决定是否需要做。 2、遥感影像变化检测的三个层次 遥感图像分析过程中通常包括数据层处理、特征层处理和目标层处理三个过程。依据这三个层次划分,可将变化检测分为:像元级变化检测、特征级变化检测和目标级变化检测。 (1)像元级变化检测是指直接在采集的原始图像上进行变化检测。尽管基于像元的变化检测有它一定的局限性,但由于它是基于最原始的图像数据,能更多地保留图像原有的真实感,提供其它变化检测层次所不能提供的细微信息,因而目前绝大多数的变化检测方法都是像元级变化检测。 (2)特征级变化检测是采用一定的算法先从原始图像中提取特征信息,如边缘、形状、轮廓、纹理等,然后对这些特征信息进行综合分析与变化检测。由于特征级的变化检测对特征进行关联处理,把特征分类成有意义的组合,因而它对特征属性的判断具有更高的可信度和准确性。但它不是基于原始数据而是特征,所以在特征提取过程中不可避免地会出现信息的部分丢失,难以提供细微信息。 (3)目标级变化检测主要检测某些特定对象(比如道路、房屋等具有明确含义的目标),是在图像理解和图像识别的基础上进行的变化检测,它是一种基于目标模型的高层分析方法。 变化检测的三个层次在实现上各有优缺点,在具体的变化检测中究竟检测到哪个层次是根据任务的需要确定的。像元级的变化检测保持了尽可能多的原始信息,具有特征级和目标级层次上所不具备的细节信息,但像元级变化检测仅考虑像素属性的变化,而未考虑其空间等特征属性的变化;特征级变化检测不仅考虑到空间形状的变化,而且还要考虑特征属性的变化,但特征级的变化检测依赖于特征提取的结果,但特征提取本身比较困难;目标级的变化检测最大的优点是它接近用户的需求,检测的结果可直接应用,但它的不足之处在于目标提取的困难性。

遥感定位

遥感、定位作业考试 班级姓名编号 答题卡:1--5 6--10 1.(高考安徽卷)在农业方面,运用遥感技术能够() ①监测耕地变化②调查作物分布③估测粮食产量④跟踪产品流向 A.①②③B.②③④C.①②④D.①③④ 下图是非洲第一高峰乞力马扎罗山,海拔5 895米,距离赤道仅300多千米,其峰顶雪冠正面临着在50年内消失的威胁。据此回答2~3题。 2.图中影像的获取主要采用的地理信息技术是( ) A.遥感(RS) B.全球定位系统(GPS) C.地理信息系统(GIS) D.数字地球 3.利用此项技术可直接( ) A.分析水灾损失B.获得矿床露头信息 C.分析矿产种类D.确定矿床露头位置 4.(2014·高考山东卷)下图为我国某区域冬季某日8时至次日8时的降雪量和积雪深度分布图,该时段该区域风向主要为偏东风,云量分布差异不明显。道路积雪会影响交通,应用GPS 技术可以()

A.获取道路积雪影像数据B.解译积雪遥感影像 C.分析道路积雪空间分布D.确定待救援车辆位置 5.(2016·杭州二模)利用卫星云图可以预报天气,获取卫星云图需用到的地理信息技术主要是()A.RS B.GPS C.GIS D.GPS和RIS 6.(2016·北京朝阳一模)2014年8月我国“高分二号”卫星成功发射,卫星对地观测分辨率首次精确到1米。该卫星采用的核心地理信息技术属于() A.GIS B.GPSC.RSD.BDS 7.对春涝灾情进行监测需要运用的主要技术是() A.GPS B.GIS C.RS D.3S 下图为卫星拍摄的冰山照片。图片中显示R冰山(69°24′S,100°12′E)已经从南极大陆边缘厚冰层中解体出来。目前,R冰山正在向该地区的东部海域缓缓移动。据此并读图完成7题。 8.监测R冰山移动方向和速度最好采用() A.飞机跟踪B.地理信息系统 C.遥感技术D.全球定位系统 (2013·江苏地理,3)2013年4月20日,四川雅安芦山县发生7.0级地震。在震后救灾中,北斗卫星导航系统(BDS)发挥了重要作用。BDS是我国自行研制的全球卫星定位与短文通信系统,是继美国全球定位系统(GPS)和俄罗斯格洛纳斯(GLONASS)之后的第三个成熟的卫星导航系统。据此回答下题。 9..BDS在抗震救灾中发挥的主要作用有() ①提供灾区的影像②统计灾区的经济损失③确定救灾人员的位置④提供短文联络 A.①② B.①③ C.②③ D.③④ (2016·安阳段考)2014年11月26日上午,中国3艘海警船进入钓鱼岛12海里巡航。读钓鱼岛三维效果图和航空遥感影像图,回答下题。 10.如果利用航空遥感技术对不同时期的钓鱼岛进行监测,通过分析多幅钓鱼岛图片,可以获得() ①钓鱼岛面积的变化②钓鱼岛上植被的变化 ③钓鱼岛的地理坐标④钓鱼岛地形的变化 A.①②③B.②③④ C.①③④D.①②④

定位算法调研

定位算法调研 一、定位算法的研究意义 对于大多数应用,不知道传感器位置而感知的数据是没有意义的。传感器节点必须明确自身位置才能详细说明在什么位置或区域发生了特定事件,实现对外部目标的定位和追踪。用无线传感器网络进行目标的跟踪定位,就是综合传感器自身位置信息和网络节点与目标的关系信息,确定目标所处的地理位置。对于移动目标而言,连续不断的定位就是跟踪。传感器自身的位置信息,是实现目标定位跟踪的基础,而网络节点与目标的关系信息,则是实现目标定位跟踪的关键。另一方面,了解传感器节点位置信息还可以提高路由效率,可以为网络提供命名空间,向部署者报告网络的覆盖质量,实现网络的负载均衡以及网络拓扑的自配置等。b5E2RGbCAP 尽管现有的许多定位系统和算法能够较好的解决WSN自身定位问题。但依然存在如下一些问题: (1> 未知节点必须与锚点直接相邻,从而导致锚点密度过高。(2> 定位精度依赖于网络部署条件。 (3> 没有对距离/角度测量误差采取抑制措施,造成误差传播和误差积累,定位精度依赖于距离/角度测量的精度。(4> 依靠循环求精过程抑制测距误差和提高定位精度,虽然循环求精过程可以明显地减小测距误差的影响,但不仅产生了大量的通信和计算开销,而且因无法预估循环的次数而增加了算法的不确定性。(5> 算法收敛速度较慢。因此必须采用一定的机制改进或者避免以上问题,从而实现更高精度的WSN自身定位。p1EanqFDPw

二、定位算法的研究现状 从1992年AT&T Laboratories Cambridge开发出室内定位系统Active Badge至今,研究者们一直致力于这一领域的研究。事实上,每种定位系统和算法都用来解决不同的问题或支持不同的应用,它们在用于定位的物理现象、网络组成、能量需求、基础设施和时空的复杂性等许多方面有所不同。DXDiTa9E3d 根据定位算法中对节点位置的不同计算方式,可以分为集中式定位算法以及分布式定位算法。集中式定位算法把所需信息传送到某个中心节点,并在那里进行节点定位计算的方式。Doherty等[1]假定网络中存在一定比例的锚点,根据凸规划(convex optimization>来估计不确定节点的位置。MDS-MAP[2]则采用了多维定标的方法来提高定位精度。这两种算法都是典型的集中式定位算法,其后一系列的算法对该算法进行改进以提高节点定位精度。分布式定位算法是指依赖节点间的信息交换和协调,由节点自行进行定位计算的方式。质心算法中[3],每个节点通过计算它所侦听到的锚点的中心位置来确定自身位置,如果锚点布置的比较好,则定位误差能够得到很好的改善。APIT算法[4]中的节点侦听自己附近锚点的信号,根据这些信号,APIT算法把临近这个节点的区域划分为一个个相互重叠的三角形区域。然后采用划分网格的方法找出自己所在的区域,如果能够侦听到足够多的锚点信息,这个区域可以变得很小,从而提高算法的定位精度。RTCrpUDGiT

相关主题
文本预览
相关文档 最新文档