当前位置:文档之家› 压电式加速度传感器在振动测量系统的应用研究

压电式加速度传感器在振动测量系统的应用研究

压电式加速度传感器在振动测量系统的应用研究
压电式加速度传感器在振动测量系统的应用研究

压电式传感器习题

第6章 压电式传感器 1、为什么压电式传感器不能用于静态测量,只能用于动态测量中?而且是频率越高越好? 2、什么是压电效应?试比较石英晶体和压电陶瓷的压电效应 3、设计压电式传感器检测电路的基本考虑点是什么,为什么? 4、有一压电晶体,其面积为20mm 2,厚度为10mm ,当受到压力P=10MPa 作用时,求产生的电荷量及输出电压: (1)零度X 切的纵向石英晶体; (2)利用纵向效应的BaTiO 3。 解:由题意知,压电晶体受力为 F=PS=10×106×20×10-6=200(N) (1)0°X 切割石英晶体,εr =4.5,d 11=2.31×10-12C/N 等效电容 36120101010205.41085.8---?????==d S C r a εε =7.97×10-14 (F) 受力F 产生电荷 Q=d 11F=2.31×10-12×200=462×10-2(C)=462pC 输出电压 ()V C Q U a a 3141210796.51097.710462?=??==-- (2)利用纵向效应的BaTiO 3,εr =1900,d 33=191×10-12C/N 等效电容 361201010102019001085.8---?????==d S C r a εε =33.6×10-12(F)=33.6(pF) 受力F 产生电荷 Q=d 33F=191×10-12×200=38200×10-12 (C)=3.82×10-8C 输出电压 ()V C Q U a a 312810137.1106.331082.3?=??==-- 5、某压电晶体的电容为1000pF ,k q =2.5C/cm ,电缆电容C C =3000pF ,示波器的输入阻

传感器实验报告

传感器实验报告(二) 自动化1204班蔡华轩 U2 吴昊 U5 实验七: 一、实验目的:了解电容式传感器结构及其特点。 二、基本原理:利用平板电容C=εA/d 和其它结构的关系式通过相应的结 构和测量电路可以选择ε、A、d 中三个参数中,保持二个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)测微小位移(变d)和测量液位(变A)等多种电容传感器。 三、需用器件与单元:电容传感器、电容传感器实验模板、测微头、相敏 检波、滤波模板、数显单元、直流稳压源。 四、实验步骤: 1、按图6-4 安装示意图将电容传感器装于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图7-1。图 7-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01 与数显表单元Vi 相接(插入主控 箱Vi 孔),Rw 调节到中间位置。 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每间隔 记下位移X 与输出电压值,填入表7-1。

5、根据表7-1 数据计算电容传感器的系统灵敏度S 和非线性误差δf。 图(7-1) 五、思考题: 试设计利用ε的变化测谷物湿度的传感器原理及结构,并叙述一 下在此设计中应考虑哪些因素 答:原理:通过湿度对介电常数的影响从而影响电容的大小通过电压表现出来,建立起电压变化与湿度的关系从而起到湿度传感器的作用;结构:与电容传感器的结构答大体相同不同之处在于电容面板的面积应适当增大使测量灵敏度更好;设计时应考虑的因素还应包括测量误差,温度对测量的影响等

六:实验数据处理 由excle处理后得图线可知:系统灵敏度S= 非线性误差δf=353=% 实验八直流激励时霍尔式传感器位移特性实验 一、实验目的:了解霍尔式传感器原理与应用。 二、基本原理:霍尔式传感器是一种磁敏传感器,基于霍尔效应原理工作。 它将被测量的磁场变化(或以磁场为媒体)转换成电动势输出。 根据霍尔效应,霍尔电势UH=KHIB,当霍尔元件处在梯度磁场中 运动时,它就可以进行位移测量。图8-1 霍尔效应原理

传感器实验报告

33传感器原理及应用实验报告 实验人:程昌 09327100 合作人:雷泽雨 09327104 理工学院光信息科学与技术 实验时间:2011年5月20日,5月27日 实验地点:1号台 【实验目的】 1.了解传感器的工作原理。 2,掌握声音、电压等传感器的使用方法。 3.用基于传感器的计算机数据采集系统研究电热丝的加热效率。 【实验仪器】 PASCO公司750传感器接口1台,温度传感器1只,电流传感器1只,电压传感器1只,声音传感器1只,功率放大器1台,电阻1只(1k),电容1只(非电解电容,参数不限),二极管1只(非稳压二极管,参数不限),导线若干。 【安全注意事项】 1、插拔传感器的时候需沿轴向平稳插拔,禁止上下或左右摇动插头,否则易损坏750接口。 2、严禁将电流传感器(Current sensor)两端口直接接到750接口或功率放大器的信号输出 端,使用时必须串联300欧姆以上的电阻。由于电流传感器的内阻很小,直接接信号输出端则电流很大,极易损坏。 3、测量二极管特性时必须串联电阻,因为二极管的正向导通电压小于1V,不串联电阻则电 流很大,容易烧毁,也易损坏电流传感器。 【原理概述】 传感器(sensor或transducer)有时亦被称为换能器、变换器、变送器或探测器,是指那些对被测的某一物理量、化学量或生物量的信息具有感受与检出功能,并使之按照一定规律转换成与之对应的有用输出信号的元器件或装置。为了与现代电子技术结合在一起,通常都转换为电信号,特别是电压信号,从而将各种理化量的测量简化为统一的电压测量,易于进一步利用计算机实现各种理化量的自动测量、处理和自动控制。现在,传感技术已成为衡量一个国家科学技术发展水平的重要标志之一,与信息技术、计算机技术并称为支撑整个现代信息产业的三大支柱。有关传感器的研究也得到深入而广泛的关注,在中国期刊全文数据库中可检索到超过2万篇题目中包含“传感器”三字的论文。因此,了解并掌握一些有关传感器的基本结构、工作原理及特性的知识是非常重要的。

传感器原理与应用实验报告

传感器原理与应用 实验报告 分校: 班级: 姓名: 学号:

实验一 电阻应变式传感器实验 实验成绩 批阅教师 一. 实验目的 1.熟悉电阻应变式传感器在位移测量中的应用 2.比较单臂电桥、双臂电桥和双差动全桥式电阻应变式传感器的灵敏度 3.比较半导体应变式传感器和金属电阻应变式传感器的灵敏度 4.通过实验熟悉和了解电阻应变式传感器测量电路的组成及工作原理 二.实验内容 1.单臂电桥、双臂电桥和双差动全桥组成的位移测量电路, 2.半导体应变式传感器位移测量电路。 三.实验步骤 1.调零。开启仪器电源,差动放大器增益置100倍(顺时针方向旋到底),“+、-”输入端用实验线对地短路。输出端接数字电压表,用“调零”电位器调整差动放大器输出电压为零,然后拔掉实验线。调零后电位器位置不要变化。 如需使用毫伏表,则将毫伏表输入端对地短路,调整“调零”电位器,使指针居“零”位。拔掉短路线,指针有偏转是有源指针式电压表输入端悬空时的正常情况。调零后关闭仪器电源。 2.按图(1)将实验部件用实验线连接成测试桥路。桥路中R 1、R 2、R 3、和W D 为电桥中的固定电阻和直流调平衡电位器,R 为应变片(可任选上、下梁中的一片工作片)。直流激励电源为±4V 。 图(1) 测微头装于悬臂梁前端的永久磁钢上,并调节使应变梁处于基本水平状态。 3.接线无误后开启仪器电源,预热数分钟。调整电桥W D 电位器,使测试系统输出为零。 1. 旋动测微头,带动悬臂梁分别作向上和向下的运动,以悬臂梁水平状态下电路输出电压为零起点,向上和向下移动各6mm ,测微头每移动1mm 记录一 +

个差动放大器输出电压值,并列表。2.计算各种情况下测量电路的灵敏度S。S=△U/△x 表1 金属箔式电阻式应变片单臂电桥 表2 金属箔式电阻式应变片双臂电桥 表3 半导体应变片双臂电桥

压电式传感器的发展与应用

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师***** 完成时间 2011-11-28

前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变 时,电荷的极性也随之改变;晶体受力所产生的电荷量 与外力的大小成正比。压电式传感器大多是利用正压电 效应制成的。逆压电效应是指对晶体施加交变电场引起 晶体机械变形的现象,又称电致伸缩效应。用逆压电效 应制造的变送器可用于电声和超声工程。压电敏感元件 的受力变形有厚度变形型、长度变形型、体积变形型、 厚度切变型、平面切变型5种基本形式(见图)。压电 晶体是各向异性的,并非所有晶体都能在这5种状态下产生压电效应。例如石英晶体就没有体积变形压电效应,但具有良好的厚度变形和长度变形压电效应。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。

压电式传感器测量加速度

压 电 式 加 速 度 测 试 系 统 姓名:张书峰 学号:201003140125 学院:机电学院 班级:机自101 指导教师:王玮

一设计概论 压电传感器是一种可逆性传感器,既可以将机械能转换为电能,又可以将机械能转换为电能。它是利用某些物质(如石英、钛酸钡或压电陶瓷、高分子材料等)的压电效应来工作的。在外力作用下,在电介质表面产生电荷,从而实现非电量测量的目的。因此是一种典型的自发电式传感器。压电传感器是力敏感元件,它可以测量最终能变换为力的那些非电物理量,例如,动态力、动态压力、振动加速度等 现有测试系统的各个组成部分常常以信息流的过程来划分。一般可以分为:信息的获得,信息的转换,信息的显示、信息的处理。作为一个完整的非电量电测系统,也包括了信息的获得、转换、显示和处理等几个部分。因为它首先要获得被测量的信息,把它变换成电量,然后通过信息的转换,把获得的信息变换、放大,再用指示仪或记录仪将信息显示出来,有的还需要把信息加以处理。因此非电量电测系统,具体来说,一般包括传感器(信息的获得)、测量电路(信息的转换)、放大器、指示器、记录仪(信息的显示)等几部分有时还有数据处理仪器(信息的处理)。它们间的 关系可 用右框 图来表 示。 其中传感器是一个把被测的非电物理变换成电量的装置,因此是一种获得信息的手段,它在非电量电测系统中占有重要的位 置。它获得信息 的正确与否,直 接影响到整个 测量系统的测 量效果。测量电 路的作用是把 传感器的输出

变量变成易于处理的电压或电流信号,使信号能在指示仪上显示或在记录仪中记录。测量电路的种类由传感器的类型而定。压电加速度传感器常用的测量电路是电荷放大器。常用的压电加速度传感器的动态测量系统如图1.2 二整体设计方案 1、测量的示意图 2、设计的原理 压电式加速度传感器属于惯性式传感器,工作原理是以某些物质的压电效应为基础,在加速度计受振时,加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比,可以把被测的非电物理量加速度转化为电量。由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。为此,通常器信号选用电荷放大器作为电信号的测量电路。 3、方框图

超声波传感器

超声波传感器的实验报告 一、超声波传感器的定义: 超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。超声波是振动频率高于20KHz的机械波。它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。超声波传感器广泛应用在工业、国防、生物医学等方面。 超声波传感器的原理: 二、超声波传感器按其工作原理,可分为 1、压电式 2、磁致伸缩式 3、电磁式 压电式超声波传感器 压电式超声波传感器是利用压电材料的压电效应原理来工作的。常用的敏感元件材料主要有压电晶体和压电陶瓷。 根据正、逆压电效应的不同,压电式超声波传感器分为发生器(发射探头)和接收器(接收探头)两种,根据结构和使用的波型不同可分为直探头、表面波探头、兰姆波探头、可变角探头、双晶探头、聚焦探头、水浸探头、喷水探头和专用探头等。 压电式超声波发生器是利用逆压电效应的原理将高频电振动转换成高频机械振动,从而产生超声波。当外加交变电压的频率等于压电材料的固有频率时会产生共振,此时产生的超声波最强。压电式超声波传感器可以产生几十千赫到几十兆赫的高频超声波,其声强可达几十瓦每平方厘米。 压电式超声波接收器是利用正压电效应原理进行工作的。当超声波作用到压电晶片上引起晶片伸缩,在晶片的两个表面上便产生极性相反的电荷,这些电荷被转换成电压经放大后送到测量电路,最后记录或显示出来。压电式超声波接收器的结构和超声波发生器基本相同,有时就用同一个传感器兼作发生器和接收器两种用途。 典型的压电式超声波传感器结构主要由压电晶片、吸收块(阻尼块)、保护膜等组成。压电晶片多为圆板形,超声波频率与其厚度成反比。压电晶片的两面镀有银层,作为导电的极板,底面接地,上面接至引出线。为了避免传感器与被测件直接接触而磨损压电晶片,在压电晶片下粘合一层保护膜。吸收块的作用是降低压电晶片的机械品质,吸收超声波的能量。

压电式传感器测振动实验.

实验二十一压电式传感器测振动实验 一、实验目的:了解压电传感器的原理和测量振动的方法。 二、基本原理:压电式传感器是一和典型的发电型传感器,其传感元件是压电材料,它以压电材料的压电效应为转换机理实现力到电量的转换。压电式传感器可以对各种动态力、机械冲击和振动进行测量,在声学、医学、力学、导航方面都得到广泛的应用。 1、压电效应: 具有压电效应的材料称为压电材料,常见的压电材料有两类压电单晶体,如石英、酒石酸钾钠等;人工多晶体压电陶瓷,如钛酸钡、锆钛酸铅等。 压电材料受到外力作用时,在发生变形的同时内部产生极化现象,它表面会产生符号相反的电荷。当外力去掉时,又重新回复到原不带电状态,当作用力的方向改变后电荷的极性也随之改变,如图21—1 (a) 、(b) 、(c)所示。这种现象称为压电效应。 (a) (b) (c) 图21—1 压电效应 2、压电晶片及其等效电路 多晶体压电陶瓷的灵敏度比压电单晶体要高很多,压电传感器的压电元件是在两个工作面上蒸镀有金属膜的压电晶片,金属膜构成两个电极,如图21—2(a)所示。当压电晶片受到力的作用时,便有电荷聚集在两极上,一面为正电荷,一面为等量的负电荷。这种情况和电容器十分相似,所不同的是晶片表面上的电荷会随着时间的推移逐渐漏掉,因为压电晶片材料的绝缘电阻(也称漏电阻)虽然很大,但毕竟不是无穷大,从信号变换角度来看,压电元件相当于一个电荷发生器。从结构上看,它又是一个电容器。因此通常将压电元件等效为一个电荷源与电容相并联的电路如21—2(b)所示。其中e a=Q/C a。式中,e a为压电晶片受力后所呈现的电压,也称为极板上的开路电压;Q为压电晶片表面上的电荷;C a为压电晶片的电容。 实际的压电传感器中,往往用两片或两片以上的压电晶片进行并联或串联。压电晶片并联时如图21—2(c)所示,两晶片正极集中在中间极板上,负电极在两侧的电极上,因而电容

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加 速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器 波形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

压电式传感器实验报告

压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理与方法。 二、基本原理:压电式传感器由惯性质量块与受压的压电片等组成。(观察实验用压电加速 度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感 器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端V o1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。

3、合上主控箱电源开关,调节低频振荡器的频率与幅度旋钮使振动台振动,观察示波器波 形。 4、改变低频振荡器的频率,观察输出波形变化。

光纤式传感器测量振动实验 一、实训目的: 了解光纤传感器动态位移性能。 二、实训仪器: 光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件) 。 三、相关原理:利用光纤位移传感器的位移特性与其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。

压电式传感器的发展与应用

压电式传感器的发展与 应用 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

HEFEI UNIVERSITY 自动检测技术报告 题目压电式传感器的应用与发展 系别 ***级自动化 班级 **班 姓名 ********************** 指导老师 ***** 完成时间 2011-11-28 前言:压电式传感器是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现非电量测量。压电传感元件是力敏感元件,所以它能测量最终能变换为力的那些物理量,例如力、压力、加速度等。压电式传感器具有响应频带宽、灵敏度高、信噪比大、结构简单、工作可靠、重量轻等优点。近年来,由于电子技术的飞速发展,随着与之配套的二次仪表以及低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。因此,在工程力学、生物医学、石油勘探、声波测井、电声学等许多技术领域中获得了广泛的应用。本文重点介绍压电式传感器的工作原理,在航空发动机中的应用及发展趋势。 关键字:传感器压电效应测振 正文:压电式传感器的发展及应用 压电式传感器是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点

是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。 压电效应可分为正压电效应和逆压电效应。正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。压电式传感器大多是利用正压电效应制成的。逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应。用逆压电效应制造的变送器可用于电声和超声工程。压电敏感元件的受力变形有厚度变形型、长度变形型、体积变形型、厚度切变型、平面切变型 5种基本形式(见图)。压电晶体是各向异性的,并非所有晶体都 能在这 5种状态下产生压电效应。例如石英晶体就没 有体积变形压电效应,但具有良好的厚度变形和长度 变形压电效应。 压电效应是压电传感器的主要工作原理,压电传 感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮

【实验报告】压电式传感器测振动实验报告

压电式传感器测振动实验报告 篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端 Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验

一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤 1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。

振动传感器

振动传感器 振动传感器分为压电式,磁电式,微型振动传感器。 常用振动传感器有以下几种: 1.压电片谐振式:使用压电片接收振动信号,压电片的谐振频率较高,为了降低谐振频率,使用加大压电片振动体的质量来实现,并使用弹簧球代替附加物,降低两谐振频率,增强了振动效果。其优点是灵敏度较高,结构简单。但是需要信号放大后送到TTL电路或者单片机电路中,不过使用一个三极管单级放大即可 2.机械振动式:传统的振动检测方式,受到振动以后,弹簧球在较长的时间内进行减幅振动,这种振动便于被检测电路检测到。振动输出开关信号,输出阻抗与配合输出的电阻阻值所决定,根据检测电路的输入阻抗,可以做成高阻抗输出方式。 3.微型振动传感器:将机械式振动传感器微型化,将振动体碳化并进行密封处理,其工作性能更可靠。输出开关信号直接与TTL电路和或者单片机输入电路相连接,电路结构简单。输出阻抗高,静态工作电流小。 振动传感器按其功能可有以下几种分类方法: 按机械接收原理分:相对式、惯性式;按机电变换原理分:电动式、压电式、电涡流式、电感式、电容式、电阻式、光电式; 按所测机械量分:位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 以上分类法中的传感器是相容的。

1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器

传感器实验报告

实验目录 学号:153921011 姓名:龙艳梅班级:物联网工程 实验一:传感器和技术实验台的使用 实验二:金属箔式应变片——单臂电桥性能实验 实验三:直流全桥的应用——电子秤实验 实验四:差动变压器的性能实验 实验五:电容式传感器的位移特性实验 实验六:电涡流传器的位移特性实验 实验七:被测体材质对电涡流传感器的特性影响实验 实验一:传感器和技术实验台的使用 一、实验台的组成 CSY2000系列传感器与检测技术实验台由主控台、三源板(温度源、转动源、振动源)、传感器(基本型18个、增强型23个)、相应的实验模板、数据采集卡及处理软件、实验台桌等六部分组成。 (1)主控台部分,提供高稳定的±15V、+5V、±2V±4V±6V±8V±10V、及+2V~+24V可调四种直流稳压电源;主控台面板上还装有电压、气压、频率、转速的3位半数显表及计时表。音频信号源(音频振荡器)1KHZ~10KHZ(可调);低频信号源(低频振荡器)1HZ~30HZ(可调);气压源0~20kpa可调;高精度温度转速两用仪表;RS232计算机串行接口;流量计;漏电保护器;其中电源、音频、低频均具有断路保护功能。±2V~±10V电源与其他电源、信号Fin、Vin

部分,不共地。如果与其他电源同时使用时应将其共地。因断路无输出重新开机即可回复正常。调节仪置内为温度调节、置外为转速调节。 (2)三源板:装有振动台1HZ~30HZ(可调);旋转源0~2400转/分(可调);加热源常温~150℃(可调)。 (3)传感器:基本型传感器包括:电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式传感器、霍尔式传感器、霍尔式转速传感器、磁电式传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器、集成温度传感器、 100铂电阻、Cu铜电阻、湿敏传感器、气敏传感器K型热电偶、E型热电偶、P t 共十八个。 (4)实验模块部分:普通型有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/滤波十个模块。 二、电路原理 传感器模块电路原理图见模块正面。 三、使用方法 (1)开机前将转速调节旋钮调到中间位置,显示选择旋钮打到2V档,电压选择旋钮打到±2V档,其余旋钮均打到中间位置,计时复位按钮在松开状态。 (2)将220V的电源线插头插入市电插座,接通开关,电源指示灯亮,计时器指示为4个零,数字表显示0.000或-0.000,电压指示灯亮,表示实验台电源工作正常。 (3)每个实验前先阅读实验指导书,每个实验均应在断开电源的状态下按实验线路接好连接线,检查无误后方可接通主电源。 (4)打开调节仪电源开关,调节仪表头PV显示测量值,SV显示设置值。 四、注意事项 (1)在更换接线时,应断开电源,只有在确保接线无误后方可接通电源。 (2)严禁将电源、信号源输出插座和地短接,时间长易造成电路元件损坏。 (3)严禁将主控箱上±15V电源引入模块时接错。 (4)本实验台电源±2V~±10V与电源±15V不共地,所以在同时使用时应将共地。 (5)差动变压器的原边不能接直流电压。 (6)三源板上的电机电源不能超过12V。 (7)做振动实验时振动面板不要碰到传感器。 100做温度标准值与主控箱面板相连(见色标)。 (8)本实验台应采用P t (9)打开调节仪电源开关后等其完成自启动后再做按键操作。 (10)实验完毕后,请将传感器以及电路模块放回原位。 (11)本实验台的各个部分是相配套使用的,请勿调换。 (12)在做实验前务必详细阅读实验指导书。

压电式传感器测振动实验报告

压电式传感器测振动实验报告篇一:压电式传感器实验报告 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在晶片上,由于压电效应,压电晶片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双踪示波器。 四、实验步骤: 1、压电传感器装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的激励源插孔。 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,与传感器外壳相连的接线端接地,另一端接R1。将压电传感器实验模板电路输出端Vo1,接R6。将压电传感器实验模板电路输出端V02,接入低通滤波器输入端Vi,低通滤波器输出V0与示波器相连。 3、合上主控箱电源开关,调节低频振荡器的频率和幅度旋钮使振动台振动,观察示波器波形。 4、改变低频振荡器的频率,观察输出波形变化。 光纤式传感器测量振动实验 一、实训目的:了解光纤传感器动态位移性能。 二、实训仪器:光纤位移传感器、光纤位移传感器实验模块、振动源、低频振荡器、通信接口(含上位机软件)。 三、相关原理:利用光纤位移传感器的位移特性和其较高的频率响应,用合适的测量电路即可测量振动。 四、实训内容与操作步骤

1、光纤位移传感器安装如图所示,光纤探头对准振动平台的反射面,并避开振动平台中间孔。 2、根据“光纤传感器位移特性试验”的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。 3、参考“光纤传感器位移特性试验”的实验连线,Vo1与低通滤波器中的Vi 相接,低通输出Vo接到示波器。 4、将低频振荡器的幅度输出旋转到零,低频信号输入到振动模块中的低频输入。 5、将频率档选在6~10Hz左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。保持振动幅度不变,改变振动频率,观察示波器波形及锋-峰值。保持频率振动不变,改变振动幅度,观察示波器波形及锋-峰值。 篇二:实验六压电式传感器测振动实验 一、实验目的:了解压电传感器的测量振动的原理和方法。 二、基本原理:压电式传感器由惯性质量块和受压的压电陶瓷片等组成。(观察实验用压电加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在压电陶瓷片上,由于压电效应,压电陶瓷片上产生正比于运动加速度的表面电荷。 三、需用器件与单元:振动台、压电传感器、检波、移相、低通滤波器模板、压电式传感器实验模板。双线示波器。 四、实验步骤: 1、压电传感器已装在振动台面上。 2、将低频振荡器信号接入到台面三源板振动源的低频输入源插孔。 压电式传感器性能实验接线图 3、将压电传感器输出两端插入到压电传感器实验模板两输入端,见图7-1,屏蔽线接地。将压电传感器实验模板电路输出端V01(如增益不够大则V01接入IC2,V02接入低通滤波器)接入低通滤波器输入端VI,低通滤波器输出V0与示波器相连。 4、合上主控箱电源开关,调节低频振荡器的频率与幅度旋扭使振动台振动,观察示波器波形。 5、改变低频振荡器频率,观察输出波形变化。

压电式传感器及其应用

摘要 随着汽车的普及,汽车行驶安全愈来愈受到重视,而轮胎压力异常是危及汽车行驶安全的重要因素之一。因此,实时监测汽车轮胎压力有着重要的意义。并通过无线数据传输方式将压力信息传输至监视终端,实现了实时监测汽车轮胎压力的功能,对汽车行驶安全起到了重要的作用。系统硬件由中央接收处理模块和胎压测量发射模块两部分组成。中央接收处理模块以ARM7微控制器LPC2103为核心,外扩无线接收电路,LCD显示屏和胎压测量模块由MPXY8300传感器及PCB 天线构成。软件设计了串口驱动、SPI驱动、定驱动和LCD驱动,实现了无线数据发送和数据接收的功能。在完成软、硬件设计的基础上,分别对微控制器模块、串口模块、显示模块和无线收发模块调试后,结果表明系统运行正常。 关键词:TPMS MPXY8300 MC33696 ARM PCB天线

前言 基于目前国内外TPMS的发展状况,本文设计一种直接式的汽车轮胎压力监测系统(简称胎压监测系统),主要从硬件和软件两部分进行设计,具体内容如下:硬件设计给出了汽车轮胎压力监测系统的硬件设计总体方案,包括胎压测量发射模块的设计和中央接收处理模块的设计。胎压测量发射模块采用胎压传感器来采集轮胎当前的压力、温度和加速度,在芯片内部编码和调制后,通过无线方式把压力温度等信息发送给中央接收处理模块。中央接收处理模块由微控制器模块、无线收发模块、显示屏模块以及PCB天线构成。其中,微控制器模块包括微控制器LPC2103、时钟电路、电源管理电路、复位电路、调试接口电路和RS-232串口电路。无线收发模块由无线收发器MC33696及外围电路、信号调理模块构成。中央接收处理模块通过天线,接收胎压测量发射模块发送的无线信号,无线信号经过信号调理模块后,由无线收发器对其解调解码后,送给微控制器进行处理,最终显示在显示屏上。在硬件设计过程中,对无线收发器模块中的信号调理电路进行仿真,为硬件设计提供依据。 软件设计在硬件设计的基础上,分别对胎压测量发射模块和中央接收处理模块进行程序编写。胎压测量发射模块调用MPXY8300芯片的固件函数来编写发送程序,程序实现每隔2s更新并发送~帧胎压信息数据;中央接收处理模块编写了串口、显示屏和SPI接口的初始化程序,MC33696的驱动程序,显示屏显示数据程序,在这些基础上设计了整体的接收显示程序。

传感器实验报告

第一次实验做实验一金属箔式应变计性能——应变电桥 实验二金属箔式应变计三种桥路性能比较 第二次实验做实验十四电感式传感器——差动变压器性能 实验十五差动变压器零残电压的补偿 第三次实验实验二十五电容式传感器性能 第四次实验实验二十二霍尔式传感器——直流激励特性 CSY2001型传感器系统综合实验台使用说明 实验台简介: CSY2001型实验台分主机与实验模块二部分。 主机: 传感器实验平台: 装有气敏、电容、PSD光电位置、热释电红外、光电(光断续器)、光电阻、集成温度、半导体热敏、铂热电阻、PN结温敏、热电偶、电涡流、磁电、压电加速度、霍尔、湿敏(RH、CH)、电感、双孔悬臂梁称重、半导体应变、金属箔式应变、MPX扩散硅压阻、光纤位移、光栅等二十余种经典和新型的传感器(传感器的种类可根据用户的需要增减)。以及进行实验所需的两副双平行悬臂梁和螺旋测微仪、位移平台、温控电加热炉、支架、平台、旋转测速电机等,传感器接口位于仪器面板下侧排列。 主机内装有: 直流稳压电源:+2V~+10V分五档输出,最大输出电流1.5A +15V 、+ 9V(12V)、激光电源,最大输出电流1.5A 音频信号源:0.4KHz-10KHz输出连续可调,最大Vp-p值20V 00、1800端口反相输出 00、L V端口功率输出,最大输出电流1.5A 1800端口电压输出,最大输出功率300mw

低频信号源:1Hz~30Hz输出,连续可调,最大输出电流1.5A,最大Vp-p 值20V,激振I、II的信号频率源。 转换开关的作用:当倒向V0侧时,低频信号源正常使用,V0端输出低频信号,倒向V i侧时,断开低频信号电路,V i作为电流放大器输入端,输出端仍为 V0端。 电压/频率表:3 1/2位数字表、电压显示0~2V、0~20V两档,频率显示0~2KHz、0~20KHz两档,灵敏度≤50mv。 温控电加热器:由热电偶控温的300W电加热炉,最高炉温400℃,实验控温150℃。提供温度传感器热源及热电偶测温、标定及应变传感器加热等功能。 通信接口:标准RS232口,提供实验仪与计算机通信接口。 数据采集卡:12位A/D转换,信号输入端为电压/频率表的“IN”端。 气压源:电动气泵,气压输出≤20KP;气压表:满量程40KP。 实验模块电源统一为四芯标准接口 传感器性能、参数指标: 气敏传感器(MO3),对酒精敏感,测量范围10-2000ppm灵敏度R O/R>5 电容式传感器:平行变面积差动式电容,线性范围≥3mm。 热释电红外传感器:光谱范围7~15μm,光频响应0.5~10HZ。 光电传感器:红外发光管、光敏三极管及施密特整形电路组成的光断续器。 光电阻:半导体材料制成的光敏传感器,阻值范围10MΩ~nKΩ。 集成温度传感器:电流型集成温度传感器,测量范围-55-150℃。 热电偶:标准热电偶镍铬—镍硅(K分度),被校热电偶镍铬—铜镍(E分度)。 半导体热敏电阻:MF51,负温度系数,测温范围-50-300℃。 铂热电阻:Pt100 测温范围≤650℃。 PN结温敏二极管:测温范围-40-150℃,精度1%。 光纤位移传感器:导光型光纤传感器,线性范围1.5mm。 电涡流传感器:量程0-3mm,由扁平线圈和多种金属涡流片组成。 磁电传感器:灵敏度0.4V/m/S,动铁与线圈组成。 霍尔传感器:梯度磁场与锑化铟霍尔元件组成,测量范围+2.5mm。

传感器在振动测量中的分类

振动测试是机械测量中非常重要的一项测试。而测振仪器中测振传感器又是最为重要的感受振动传输振动的重要仪器。测振传感器也叫做加速度传感器,一般情况下,测振仪器由加速度传感器,信号放大器、显示记录装置及分析设备等几部分组成。 在测振仪器中,传感器十分关键。通过它将待分析的物理量(如压力、流量以及振动位移、速度、加速度等)转化为电信号(如电压、电流)。根据振动量测的不同要求,相应发展了多种测振传感器。按被测振动参数,可分为位移式、速度式、加速度式或应变式以及测其他各种动力参数的传感器。按所采用的测量坐标系可分为相对式和绝对式传感器两大类:相对式传感器测定的是被测对象相对某一参考坐标系的振动;绝对式(也称惯性式)则是用来测定被测对象相对于大地的振动。绝对式振动传感器必须与被测振动体接触安装,删相对式传感器可以是接触式,亦可以是非接触式的。 振动测量中常用的传感器一般有电动式速度传感器,压电加速度传感器,涡流式位移传感器,应变片,力传感器等。每一种传感器在测振系统中都非常重要。电动式速度传感器是一种磁电式传感器,通过感应电动势的量测即可确定结构的振动速度。 压电式加速度传感器简称压电加速度计,当它与结构一起振动时,传感器内质量块在加速度作用下将产生惯性力而使晶体片加压,由于晶体片的压电效应而产生电荷,在一定的压力范围内,输出电荷与加速度成正比。所以通过对压电加速度计输出电荷的量测即可确定加速度的大小。这里关于测振系统中的传感器详细知识介绍今后将继续发布,测振系统传感器中传感器可以说是核心技术,没有传感器振动测量是纸上谈兵。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/5b7991346.html,/

相关主题
文本预览
相关文档 最新文档