当前位置:文档之家› PCB, 灌孔(Via), 屏蔽, 时钟讯号, 与接地对天线灵敏度之剖析与研究

PCB, 灌孔(Via), 屏蔽, 时钟讯号, 与接地对天线灵敏度之剖析与研究

PCB, 灌孔(Via), 屏蔽, 时钟讯号, 与接地对天线灵敏度之剖析与研究
PCB, 灌孔(Via), 屏蔽, 时钟讯号, 与接地对天线灵敏度之剖析与研究

Radiation from PCB and Via

由[1-3]可知,电流流经金属导体,便会产生寄生电感,而由于现今数字IC的切换速度越来越快,因此在电压切换瞬间所产生的瞬时电流,也越来越大,如下图:

这使得数字IC的切换噪声,也越来越大。虽然由天线理论可知,IC本体因为尺寸过小,所以其辐射效率很差[5],换言之,IC本体很难将其噪声有效辐射出去,但由下图可知,PCB本体可以充当天线,进而将数字IC的切换噪声,有效辐射出去,若干扰到天线本身,则灵敏度就会变差[6],因此需针对此议题,做一番研究与探讨。

下式是共模噪声的辐射场强[10-12] :

f是频率,L是其导体长度,r是辐射源与Receptor的距离,I C是电流强度。由上式可知,当频率越高,其辐射强度就越大,虽然前述已知,IC本体不会是个有效辐射体,但由于现今的PCB,几乎都是多层板,亦即层与层之间的距离越来越薄,因此层与层之间,会形成导波管结构,如此便构成了有效的辐射体,如下图

其等效电路如下[4] :

而我们由[4]可发现,若我们将PCB本体当天线来分析,会发现Decoupling电容的数量越多,其辐射效率越低,如下图:

而由辐射干扰的角度来看,也确实,Decoupling电容的数量越多,其辐射干扰越低,如下图:

因此我们得到一个结论,Decoupling电容确实可抑制PCB本体的辐射能力,数量越多,抑制能力越好。

而若以阻抗观点分析,发现主要是因为Decoupling电容,会使PCB整体阻抗的电容性增强,以至于阻抗下降,如下式:

而Decoupling电容数量越多,其阻抗就下降越多,由实际量测结果也证实这点,如下图[4] :

而我们由傅立叶变换可知,若频率越高,则电流变化越快。若依照电磁波理论,亦即越容易产生辐射,如下图[9] :

由[9]可知,Via也是个有效的辐射源,由前述已知,若整体阻抗越大,则辐射效率越好,因此倘若Via的孔径越细,或长度越长,那么辐射效率就越好。

而由仿真结果看来,发现其Via处的电流强度,也确实最强[9]。

因此一些高速数字讯号,尽可能不要打Via穿层。

而由天线互易定理可知,一个良好的发射天线,也会是一个良好的接收天线,换言之,Via会很容易接收外来辐射噪声。

所以讯号Via,除了周遭要用GND包好外,也必须要多打GND Via。

XTAL Oscillator

由[10-11]可知,CLK讯号,其倍频会干扰接收讯号,导致灵敏度下降,以MTK 平台为例,最常使用26 MHz的CLK,而在该案例中,一些Channel被干扰,其频率也确实是26 MHz的倍频,如下图:

因此我们在下图C607跟C608,摆放Bypass电容,以滤除噪声。

其量测结果如下:

由上图可发现,加了12 pF的落地电容,灵敏度反而比原来还差。但12 pF落地电容的频率响应如下图:

我们可以发现,12 pF落地电容,其实在上述这些Channel,都有抑制噪声的能力,但实际上量测结果却不如预期,这主要是因为,在做仿真时,固然可以将组件本身的寄生效应考虑进来,如下图:

但实际上PCB走线本身也会有寄生效应,但这部份仿真时无法考虑进来,如下图:

因此导致量测结果却不如预期,所以仍需依实测结果,对落地电容值做微调。

另外由(12 pF + 33pF)的量测结果发现,在DCS 1800的Ch716,其灵敏度特别差,比单一颗12 pF,单一颗33 pF,甚至是原本什么都不加的情况还差。这主要牵扯到反谐振[3-5],由12 pF 跟33 pF的落地电容频率响应可知,在1795 MHz

之处,会有其交叉点,因此(12 pF + 33pF) 的落地电容频率响应,在1795 MHz 会产生反谐振,而DCS 1800的Ch716,其频率为1846 MHz,正好很接近反谐振之处,因此若要同时使用二个甚至多个落地电容时,需考虑到反谐振的因素。

在[1-3]中,我们知道串联磁珠或电感,也是抑制噪声的方法之一,然而由量测结果发现,在R605跟R607摆放磁珠后,其灵敏度却反而变差,如下图:

由[1-3]可知,磁珠与电感抑制噪声的原理不同,电感是利用其高感抗,将噪声反射回去,而磁珠是利用其电阻性,将噪声转换成热能,如下图:

换言之,在抑制噪声的效能上,必须将磁珠以电阻看待。

同时由[1-3]可知,CLK讯号需以电阻做阻抗匹配,否则会因阻抗不匹配而使波形失真,以及产生辐射干扰,如下图:

因此终端电阻值,就显得很重要。因此R605跟R607之所以摆放磁珠后,其灵敏度却反而变差,有可能是因为该磁珠的电阻值,使CLK讯号的阻抗偏离,产生阻抗不匹配,以至噪声反而变大,因此如前述的落地电容一般,仍需依实测结果,对磁珠值做微调。

Shielding and GNDing

另外由[13]可知,IC本体因为尺寸过小,所以其辐射效率很差,换言之,IC本体很难将其噪声有效辐射出去,但由下图可知,PCB本体可以充当天线,进而将噪声有效辐射出去,若干扰到天线本身,则灵敏度就会变差,如下图:

更何况由下图可知,其DDR与CPU的IC本体都不算小,换言之,其IC本体与周遭的PCB,都有将高速噪声辐射出去的能力。

甚至由[13]可知,倘若有高速数字讯号的灌孔,这些灌孔也会产生辐射干扰。

因此在Shielding Cover开孔处,贴上导电泡绵,

或是贴上铜箔

甚至直接将Shielding Cover开孔处改为闭合,都有助于屏蔽噪声,避免产生辐射干扰,使灵敏度下降。

而SD Card也是高速噪声来源,因此倘若Shielding Frame吃锡不良,同样会使其高速讯号泄漏辐射出去,干扰天线造成灵敏度下降。

此时可能需透过微调工厂SMT制程的方式,来加强Shielding Frame的吃锡。

而LCM的FPC Connector,也是常见噪声来源之一。当灵敏度劣化时,可仿照[10]的实验手法,先导电贴布贴在FPC Connector,除了屏蔽作用外,也可使其辐射噪声都透过导电贴布流到GND,而不会去干扰天线的接收讯号,使其灵敏度下降。如果该实验手法能使灵敏度有所改善,那证明噪声来源是来自FPC Connector,再针对该处及相关电路,导入解决方案即可。

当然PCI-E的Connector,也是常见噪声来源之一,因此用铜箔加以屏蔽,并使其辐射噪声都透过铜箔流到GND,也有助于避免辐射干扰使灵敏度下降。

而以导电贴布,加强FPC的接地,也有助于辐射干扰的抑制。

或是LCM上黏贴两片双面导电胶,加强接地,也能改善灵敏度。

简易数字钟设计(已仿真)

简易数字钟设计 摘 要 本文针对简易数字钟的设计要求,提出了两种整体设计方案,在比较两个方案的优缺点后,选择了其中较优的一个方案,进行由上而下层次化的设计,先定义和规定各个模块的结构,再对模块内部进行详细设计。详细设计的时候又根据可采用的芯片,分析各芯片是否适合本次设计,选择较合适的芯片进行设计, 最后将设计好的模块组合调试,并最终在EWB 下仿真通过。 关键词 数字钟,EWB ,74LS160,总线,三态门,子电路 一、引言:所谓数字钟,是指利用电子电路构成的计时器。相对机械钟而言,数字钟能达到准确计时,并显示小时、分、秒,同时能对该钟进行调整。在此基础上,还能够实现整点报时,定时报闹等功能。 设计过程采用系统设计的方法,先分析任务,得到系统要求,然后进行总体设计,划分子系统,然后进行详细设计,决定各个功能子系统中的内部电路,最后进行测试。 二、任务分析:能按时钟功能进行小时、分钟、秒计时,并显示时间及调整时间,能整点报时,定点报时,使用4个数码管,能切换显示。 总体设计 本阶段的任务是根据任务要求进行模块划分,提出方案,并进行比较分析,最终找到较优的方案。 方案一、采用异步电路,数据选择器 将时钟信号输给秒模块,秒模块的进位输给分模块,分模块进位输入给时模块,切换的时候使用2选1数据选择器进行切换,电路框图如下: 该方案的优点是模块内部简单,基本不需要额外的电路,但缺点也很明显,该方案结构不清晰,模块间关系混乱,模块外还需使用较多门电路,不利于功能扩充,且使用了异步电路,计数在59的时候,高一级马上进位,故本次设计不采用此方案。 方案二、采用同步电路,总线结构 时钟信号分别加到各个模块,各个模块功能相对独立,框图如下: 显示 切换 秒钟 分钟 小时 控制 1Hz 脉冲信号 闹钟

接地线的安装要求

采用保护接地时,接地装置的接地电阻不应大于4Ω。人工接地体可采用水平敷设的圆钢、扁钢、垂直敷设的钢管角钢、圆钢,敷设人工接地体不应少于二根,采用垂直敷设时,入地深度不应小于2.5m,二根接地体之间的垂直距离不应小于5m。接地体顶面埋深当无设计要求时,深度不宜小于0.6m。 保护线和接地体最小尺寸:一般人工接地体接地装置应采用热镀锌钢材,都采用型钢,钢管直径40-50毫米,壁厚至少3.5毫米,角钢厚度至少4毫米,圆钢直径至少10毫米,扁钢截面至少100平方毫米,厚度至少4毫米;保护线采用绝缘导线时,铜芯不小于2.5平方毫米。保护线采用与相线同质时,相线截面小于等于16平方毫米保护线截面不小于相线截面。 保护线与接地装置连接:采用压接和焊接的可靠方法。采用焊接时,扁钢搭焊长度不小于2倍扁钢宽度,至少焊牢三个棱边;圆钢搭焊长度不小于6倍圆钢直径,至少焊牢两个棱边。采用螺钉压接时,要采用防松措施。保护线不宜采用铝芯线,裸铝线材严禁直接埋地敷设。保护线应经常检查,发现破损、断线、松动、脱落、腐蚀等应及时排除。埋接地体时,周围的土壤要撒上一定量的盐,然后浇上水以保证能有良好的导电性。另外保用中每年要测一次接地电阻,以防接地电阻过大而失效。 一、接地电阻的要求:1、电阻要小于4。接地电阻的大小可以定义接地电流的大小,接地电阻值越小,接地装置的接地电压值也就越小。这就是说接地电阻值的大小,标志着设备接地性能的好与坏。2、电阻的测量接地电阻一般可用电流表电压表、电桥法、接地电阻测量仪等来测量,目前都采用接地电阻测量仪来进行测量,此方法即简单又方便。常用的接地电阻测量仪有ZC-8型和 ZC-29型两种。二、接地装置的安装一般来讲,接地线埋入地下深度不应小于2m。在特殊场所安装接地极时,如果深度达不到2m时应在接地极周围放置食盐8kg、木碳约30kg并加入水,用以降低接地电阻。如果用2根及2根以上的接地极时,各极之间的嗬氩挥∮?.5m,以减少大地的流散电阻。在有强烈腐蚀性的土壤中,应使用镀铜或镀锌的接地极。同时接地极不得埋设在垃圾层及灰渣层区,敷设在地中的接地极不应涂漆,以免接地电阻过大..另外: 方案一:打地桩1、在机房附近把4根或更多2.5m的角钢(45mm*45mm)沿直线打入地下离地面80cm处、每根角钢相距2m。2、用扁钢(30mm*3mm)将4根角钢串联焊接在一起。3、用镀锌扁钢(30mm*3mm)焊接有角钢的任意角作为地线引线引上墙面2m处。4、电阻测试仪测量地网阻值小于等于4,否则,加桩或用田字格加以解决。5、用25mm平方的铜芯线与地网引线通过铜线鼻接牢引入室内。6、接入信号避雷器地线和静电地线。方案二:埋紫铜板1、机房附近挖250cm*150cm*300cm的深坑,坑底洒一些氯化钠,埋入紫铜板 (1500mm*600mm*3mm)。坑深以见水为准,但至少大于200cm。2、把扁钢(30mm*3mm)和紫铜板用铜焊锡焊接在一起,引出地面作引线。3、把镀锌扁钢和扁钢引线焊接在一起,引出墙面2m处。4、测试仪测量地网阻值小于等于4欧姆。5、用25mm平方的铜芯线与地网引线通过铜线鼻接牢引入室内。 6、接入信号避雷器地线和静电地线。

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

用DSP实现时钟复位功能

第二章CPU基本功能实现 2.1电源模块的设计 TMS320F2812芯片采用双供电模式,1.8V(主频135MHz)内核电压和3.3V 外围接口电压。芯片的上电顺序是:先加载外围接口电压3.3V,当外围接口电压升至2.5V时开始加载芯片核电压1.8V,电压爬升小于10ms。芯片下电的顺序是:先断掉外围接口电压3.3V,复位信号始终低有效,保持8us,接着使芯片核电压1.8V降为0。 实际系统的外接电源采用的是+5V开关电源,所以硬件电路中必须采用电源转换芯片组。市场上电源转换芯片的种类丰富、厂家繁多,结果认真分析和比较,本系统中采用的电源转换芯片与DSP芯片为同一家厂家TI公司,芯片之间的兼容性好,可靠性高,性能参数指标具有一致性。电源芯片TPS767D301为+5V外接电压转换+3.3V提供可能,采用可调电源芯片TPS767D301为F2812提供1.8V (主频135MHz)或1.9V(主频150MHz)的核电压。TMS320F2812典型的上电掉电次序图如下图所示: 图2-1TMS320F2812典型的上电掉电次序图如下图所示:在使用TPS767D301芯片时要注意上电次序的问题,要求对3.3V先上电,1.8V 后上电,最好使1、8V的上电时间晚一点,利用电阻电容做到一些延迟。 当TMS320F2812芯片在主频135MHz情况下工作时,芯片功耗为565mW,电

流消耗仅在0.2A左右,存储器需要0.2A的电流,CPLD需要0.1A,可调电源转换芯片TPS767D301的最大输出电流为1A,完全可以满足模块需要。 由于TPS767D301芯片自身能够产生复位信号,此复位信号可直接供DSP芯片使用,从芯片的22引脚直接输出复位信号。 图2-2TPS767D3xx结构图 此电源转化芯片组既可以满足系统工作时的电流要求,又可以解决DSP芯片上、下电顺序问题。DSP芯片的电源部分设计如图所示。

基于labVIEW的任意波形发生器设计余洪伟详解

沈阳航空航天大学 课程设计 (论文) 题目基于labVIEW的任意波形发生器设计 班级 34070102 学号 2013040701060 学生姓名余洪伟 指导教师于明月

沈阳航空航天大学 课程设计任务书 课程名称虚拟仪器课程设计 院(系)自动化学院专业测控技术与仪器 班级34070102 学号2013040701060 姓名余洪伟 课程设计题目基于LabVIEW的任意波形发生器设计 课程设计时间: 2016 年7 月4 日至2016 年7 月15 日课程设计的内容及要求: 1. 内容 任意波形发生器是仿真实验的最佳仪器,任意波形发生器是信号源的一种,它具有信号源所有的特点。基于此,利用LabVIEW 设计一个任意波形发生器。 2. 要求 (1)可以产生三种以上波形(如正弦、锯齿、方波、三角波等),波形的幅值及频率可以调节; (2)可以实现不同波形的转换并显示; (3)可以实现波形数据的存储及回放; (4)虚拟仪器前面板的设计美观大方、操作方便。 指导教师年月日 负责教师年月日 学生签字年月日

目录 0. 前言 (1) 1. 总体方案设计 (1) 2.程序流程图 (2) 3. 程序框图设计 (3) 3.1波形的产生及参数的设计 (3) 3.1.1 正弦波 (3) 3.1.2方波 (4) 3.1.3锯齿波 (4) 3.1.4三角波 (5) 3.1.5公式波形 (6) 3.2波行转换设计 (6) 3.3噪声波形实现 (7) 3.4波形的存储与回放 (8) 4. 前面板的设计 (9) 5.调试过程与结果显示 (10) 5.1波形的调试 (10) 5.1.1 正弦波的工作过程及波形验证 (10) 5.1.2 方波的工作过程及波形验证 (11) 5.1.3 三角波的工作过程及波形验证 (12) 5.1.4 锯齿波的工作过程及波形验证 (12) 5.1.5 公式波形的工作过程及波形验证 (13) 5.2 波形的存储与回放 (14)

VHDL_电子时钟的设计

实验报告书 实验项目名称:数字电子钟的设计 实验项目性质:普通试验 所属课程名称:VHDL程序设计 实验计划学时:4学时 一、实验目的 掌握VHDL程序设计方法 二、实验内容和要求 能够实现小时(24进制)、分钟和秒钟(60进制)的计数功能 具有复位功能 功能扩展:具有复位、整点报时提示、定时闹钟等功能 在软件工具平台上,进行VHDL语言的各模块编程输入、编译实现和仿真验证。 三、实验主要仪器设备和材料 计算机 四、实验方法、步骤及结果测试 1、设计思路: 根据实验要求,将设计分为3个主要部分,时钟功能模块、整点报时模块和闹钟功能模块在时钟模块中,包括复位和预置数,分为时、分和秒三个进程,其主要思路如下: 秒钟的模块:设计一个60进制的计数器,以clk为其时钟信号,每60个clk后产生一个进位信号AOUT给分钟模块,作为分钟进程的响应信号。 分钟的模块:同理于秒钟的模块,设计一个60进制的计数器,以AOUT为其时钟信号,每60个AOUT后产生一个进位信号BOUT给小时模块,作为小时模块进程的响应信号。小时的模块:为24进制计数器,在分的进位信号BOUT的激发下计数,从0到23的时候产生一个信号COUT,全部清0,重新开始计时。

闹钟模块:同INPUT作为闹钟的设定,当时钟信号等于INPUT设定的时候,N为高电平,即是闹钟信号。 整点报时模块:用两个信号M,F,当M,F同时为0的时候,Z产生高电平,即是当做报时信号。 在时钟模块中,如有复位信号,则各小模块在复位信号的激励下进行各位置零; 共有5个进程。 2.程序代码: LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY lyk IS PORT(CLK,RST,EN,SET:IN STD_LOGIC; INPUT:IN STD_LOGIC_VECTOR(10 DOWNTO 0); HA,HB:OUT STD_LOGIC_VECTOR(5 DOWNTO 0); HC:OUT STD_LOGIC_VECTOR(4 DOWNTO 0); Z,N:OUT STD_LOGIC ); SIGNAL AOUT,BOUT,COUT :STD_LOGIC; END ENTITY lyk; ARCHITECTURE CLOCK OF lyk IS SIGNAL M,F:STD_LOGIC_VECTOR(5 DOWNTO 0); SIGNAL S:STD_LOGIC_VECTOR(4 DOWNTO 0); BEGIN PROCESS(CLK,RST,EN) ---------秒钟进程 V ARIABLE GOD:STD_LOGIC_VECTOR(5 DOWNTO 0); BEGIN IF RST='1' THEN GOD:=(OTHERS =>'0'); ELSIF CLK'EVENT AND CLK='0'

GB50169-92_接地装置施工及验收规范

附录C-4 GB50169-92 接地装置施工及验收规范 第二章电气装置的接地 第一节一般规定 第2.1.1条电气装置的下列金属部分,均应接地或接零: 一、电机、变压器、电器、携带式或移动式用电器具等的金属底座和外壳。 二、电气设备的传动装置。 三、屋内外配电装置的金属或钢筋混凝土构架以及靠近带电部分的金属遮栏和金属门。 四、配电、控制、保护用的屏(柜、箱)及操作台等的金属框架和底座。 五、交、直流电力电缆的接头盒、终端头和膨胀器的金属外壳和电缆的金属护层、可触及的电缆金属保护管和穿线的钢管。 六、电缆桥架、支架和井架。, 七、装有避雷线的电力线路杆塔。 八、装在配电线路杆上的电力设备。 九、在非沥青地面的居民区内,无避雷线的小接地电流架空电力线路的金属杆塔和钢筋混凝土杆塔。 十、电除尘器的构架。 十一、封闭母线的外壳及其他裸露的金属部分。 十二、六氟化硫封闭式组合电器和箱式变电站的金属箱体。 十三、电热设备的金属外壳。 十四、控制电缆的金属护层。· 第2.1.2条电气装置的下列金属部分可不接地或不接零:· 一、在木质、沥青等不良导电地面的干燥房间内,交流额定电压为380V及以下或直流额定电压为440V及以下的电气设备的外壳;但当有可能同时触及上述电气设备外壳和已接地的其他物体时,则仍应接地。. 二、在干燥场所,交流额定电压为127V及以下或直流额定电压为1iOV及以下的电气设备的外壳。 三、安装在配电屏、控制屏和配电装置上的电气测量仪表、继电器和其他低压电器等的外壳,以及当发生绝缘损坏时,在支持物上不会引起危险电压的绝缘子的金属底座等。 四、安装在已接地金属构架上的设备,如穿墙套管等。 五、额定电压为220V及以下的蓄电池室内的金属支架。 六、由发电厂、变电所和工业、企业区域内引出的铁路轨道。 七、与已接地的机床、机座之间有可靠电气接触的电动机和电器的外壳。 第2.1.3条需要接地的直流系统的接地装置应符合下列要求: 一、能与地构成闭合回路且经常流过电流的接地线应沿绝缘垫板敷设,不得与金属管道、建筑物和设备的构件有金属的连接。 二、在土壤中含有在电解时能产生腐蚀性物质的地方,不宜敷设接地装置,必要时可采取外引式接地装置或改良土壤的措施。 三、直流电力回路专用的中性线和直流两线制正极的接地体、接地线不得与自然接地体有金属连接;当无绝缘隔离装置时,相互间的距离不应小于lm。 四、三线制直流回路的中性线宜直接接地。 第2.1.4条接地线不应作其他用途。 第二节接地装置的选择 第2.2.1条交流电气设备的接地可以利用下列自然接地体。

简易波形发生器的设计

目录 第一章单片机开发板 (1) 1.1 开发板制作 (1) 1.1.1 89S52单片机简介 (1) 1.1.2 开发板介绍 (2) 1.1.3 89S52的实验程序举例 (3) 1.2开发板焊接与应用 (4) 1.2.1开发板的焊接 (4) 1.2.2开发板的应用 (5) 第二章函数信号发生器 (7) 2.1电路设计 (7) 2.1.1电路原理介绍 (7) 2.1.2 DAC0832的工作方式 (9) 2.2 波形发生器电路图与程序 (10) 2.2.1应用电路图 (10) 2.2.2实验程序 (11) 2.2.3 调试结果 (15) 第三章参观体会 (16) 第四章实习体会 (17) 参考文献 (18)

第一章单片机开发板 1.1 开发板制作 1.1.1 89S52单片机简介 图1.1 89s52 引脚图 如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。 各功能部件的介绍: 1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。 2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。 3)中断系统:具有5个中断源,2级中断优先权。 4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。 5)串行口:1个全双工的串行口,具有四种工作方式。 6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。 7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。 8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。这四个端口的功能不完全相同。 A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用; B、P1口是一个准双向并行口,作通用并行I/O口使用; C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用; D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。 控制引脚介绍: 1)电源:单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。 2)时钟引脚XTAL1、XTAL2时钟引脚外接晶体与片内反相放大器构成了振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。 振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,

接地装置安装作业指导书

接地装置安装作业指导书 1适用范围、特点 本作业指导书只适用于地铁变电所接地装置的安装。 2适用标准、规范及工艺要求 2.1施工技术标准 2.2工艺要求 (1)干线接地扁钢沿墙敷设,距地面垂直高度约0.2m,距墙水平距离约0.02m,如设有离壁墙,扁钢通过L型卡子固定在地面上,非离壁墙段,扁钢通过S型卡子固定在侧墙上,相邻固定点间,水平段约1m,转弯处约0.3~0.5m。干线接地扁钢表面均匀间隔刷涂黄绿条纹,条纹宽度约0.1m。干线接地扁钢穿墙时,应加钢管保护。 (2)支线接地扁钢预埋于设备装修层内,一端连接设备基础预埋件,一端连接干线接地扁钢,连接方式为搭接焊。 (3)变电所接地母排固定在侧墙上,距地面垂直高度约0.3m,遵照86D563图集《接地装置安装》的要求进行,并符合《电气装置安装工程接地装置施工及验收规范》的规定。 (4)接地扁钢及其安装卡子热镀锌防腐,镀锌后表面光滑,锌层满足设计要求。接地扁钢现场焊接时,焊接部位进行防腐处理,先涂一遍防锈漆,再涂两层富锌漆。 (5)所需安装、坚固及连接等螺栓具有防松功能(设有弹簧垫圈等),材质为不锈钢。 (6)接地电缆、接地线、接地扁钢截面面积符合设计及规范要求。接地线及其连接牢固、可靠、安全、接触良好。接地装置安装与相关工程的施工密切配合,隐蔽部分必须在覆盖前请监理工程师签认,同时作好中间检查及验收记录。 (7)设备基础预埋件接地:

A、36kV GIS开关柜基础框架设两处接地。 B、钢轨电位限制装置和排流柜每面柜基础框架设接地两处。 C、每个动力变基础框架设两处接地。 D、每个整流变压器设两处接地。 E、低压盘的基础焊接成一体,设接地两处。 F、每处的接地扁钢与框架边均要牢固焊接。 G、设备连续布置时,基础预埋件应焊接成连续整体,整体框架两端各设置一处接地扁钢,扁钢与预埋件间应焊接牢固。 (8)设备框架接地: A、交流电气设备盘柜的金属外壳接地是由其柜的接地母排上接的接地电缆引至变电所设备接地铜母排上,同时柜内接地母排贯通连接。 B、直流电气设备的金属外壳不能直接接地,其设备的盘柜连成一体,统一通过框架汇漏保护装置经接地电缆引至变电所设备接地铜母排上。 C、变压器的外壳与变压器本体连接成一体,通过接地电缆与接地母排相连。 D、电缆头焊接的接地线,接在柜体的接地母排上;直流系统接地线、交流系统接地线和保护接地线必须分开,但可分别连接在同一个接地网上,其接地连接应牢固可靠。 3资源配置 ⑴劳动力组织:见下表。 ⑵施工机具准备:见下表。

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

简易信号发生器的设计实现

EDA课程设计简易信号发生器的设计实现 小组成员:XXXXXX XXXXX 专业:XXXXX 学院:机电与信息工程学院指导老师:XXXXXX 完成日期:XX年XX月XX日

目录 引言 (3) 一、课程设计内容及要求 (3) 1、设计内容 (3) 2、设计要求 (3) 二、设计方案及原理 (3) 1、设计原理 (3) 2、设计方案 (4) (1)设计思想 (4) (2)设计方案 (4) 3、系统设计 (5) (1)正弦波产生模块 (5) (2)三角波产生模块 (6) (3)锯齿波产生模块 (6) (4)方波产生模块 (6) (5)波形选择模块 (6) (6)频率控制模块 (6) (7)幅度控制模块 (6) (8)顶层设计模块 (7) 三、仿真结果分析 (7) 波形仿真结果 (7) 1、正弦波仿真结果 (7) 2、三角波仿真结果 (8) 3、锯齿波仿真结果 (8) 4、方波仿真结果 (8) 5、波形选择仿真结果 (9) 6、频率控制仿真结果 (9) 四、总结与体会 (10) 五、参考文献 (10) 六、附录 (11)

简易信号发生器 引言 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广范的应用。它能够产生多种波形,如正弦波、三角波、方波、锯齿波等,在电路实验和设备检验中有着十分广范的应用。 本次课程设计采用FPGA来设计多功能信号发生器。 一、课程设计内容及要求 1、设计内容 设计一个多功能简易信号发生器 2、设计要求 (1)完成电路板上DAC的匹配电阻选择、焊接与调试,确保其能够正常工作。 (2)根据直接数字频率合成(DDFS)原理设计正弦信号发生器,频率步进1Hz,最高输出频率不限,在波形不产生失真(从输出1KHz正弦转换为输出最高频率正弦时,幅度衰减不得大于10%)的情况下越高越好。频率字可以由串口设定,也可以由按键控制,数码管上显示频率傎。 (3)可以控制改变输出波形类型,在正弦波、三角波、锯齿波、方波之间切换。 (4)输出波形幅度可调,最小幅度步进为100mV。 二、设计方案及原理 1、设计原理 (1)简易信号发生器原理图如下

数字时钟的Multisim设计与仿真

电子电路Multisim设计和仿真 学院: 专业和班级: 姓名: 学号:

数字时钟的Multisim设计和仿真 一、设计和仿真要求 学习综合数字电子电路的设计、实现和调试 1.设计一个24或12小时制的数字时钟。 2. 要求:计时、显示精确到秒;有校时功能。采用中小规模集成电路设计。 3.发挥:增加闹钟功能。 二、总体设计和电路框图 1. 设计思路 1).由秒时钟信号发生器、计时电路和校时电路构成电路。 2).秒时钟信号发生器可由555定时器构成。 3).计时电路中采用两个60进制计数器分别完成秒计时和分计时;24进制计数器完成时计时;采用译码器将计数器的输出译码后送七段数码管显示。 4).校时电路采用开关控制时、分、秒计数器的时钟信号为校时脉冲以完成校时。 2. 电路框图 图1. 数字钟电路框图 三、子模块具体设计 1. 由555定时器构成的1Hz秒时钟信号发生器。 由下面的电路图产生1Hz的脉冲信号作为总电路的初输入时钟脉冲。

2. 分、秒计时电路及显示部分 在数字钟的控制电路中,分和秒的控制都是一样的,都是由一个十进制计数器和一个六进制计数器串联而成的,在电路的设计中我采用的是统一的器件74LS160D 的反馈置数法来实现十进制功能和六进制功能,根据74LS160D 的结构把输出端的0110(十进制为6)用一个与非门74LS00引到CLR 端便可置0,这样就实现了六进制计数。 由两片十进制同步加法计数器74LS160级联产生,采用的是异步清零法。 显示部分用的是七段数码管和两片译码器74LS48D 。 3. 时计时电路及显示部分 由两片十进制同步加法计数器74LS160级联产生,采用的是同步置数法,u1输出端为0011(十进制为3)与u2输出端0010(十进制为2)经过与非门接两片的置数端。 显示部分用的是七段数码管和两片译码器74LS48D 。 图2. 时钟信号发生电路 图3. 分秒计时电路

gb50169-电气装置安装工程接地装置施工及验收规范

1 总则 1.0.1 为保证接地装置安装工程的施工质量,促进工程施工技术水平的提高,确保接地装置安全运行,制定本规范。 1.0.2 本规范适用于电气装置的接地装置安装工程的施工及验收。 1.0.3 接地装置的安装应由工程施工单位按已批准的设计要求施工,工程建设管理单位和监理单位应有专人负责监督。 1.0.4 接地装置施工采用的器材应符合国家现行技术标准的规定,并应有合格证件。 1.0.5 施工中的安全技术措施应符合本规范和现行有关安全标准的规定。 1

1.0.6 接地装置的安装应配合建筑工程的施工;隐蔽部分必须在覆盖前会同有关单位作好中间检查及验收记录。 1.0.7 各种电气装置与主接地网的连接必须可靠,接地装置的焊接质量应符合本规范第3.4.2条的规定,接地电阻应符合设计规定,扩建接地网与原接地网应为多点连接。 1.0.8 接地装置验收测试应在土建完工后尽快安排进行;对高土壤电阻率地区的接地装置,在接地电阻难以满足要求时,应由设计确定采取相应措施,验收合格后方可投入运行。 1.0.9 接地装置的施工及验收,除应按本规范的规定执行外,尚应符合国家现行的有关标准规的规定。 2

2 术语和定义 2.0.1接地体(极)grounding conductor 埋入地中并直接与大地接触的金属导体,称为接地体(极)。接地体分为水平接地体和垂直接地体。 2.0.2自然接地体natural earthing electrode 可利用作为接地用的直接与大地接触的各种金属构件、金属井管、钢筋混凝土建筑物的基础、金属管道和设备等,称为自然接地体。 2.0.3接地线grounding conductor 电力设备、杆塔的接地螺栓与接地体或零线连接用的在正常情况下不载流的金属导体,称为接 3

波形发生器设计实验报告

一、实验目的 (1)熟悉555型集成时基电路结构、工作原理及其特点。 (2)掌握555型集成时基电路的基本应用。 (3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。 二、实验基本原理 555电路的工作原理 555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。 555芯片管脚介绍 555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。

用555定时器组成的多谐振荡器如图所示。接通电源后,电容C2被充电,当电容C2上端电压Vc 升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T 导通,此时电容C2通过R1放电,Vc 下降。当Vc 下降到Vcc/3时,V0翻转为高电平。电容器C2放电所需的时间为 2ln 12??=C R t pL ( 1-1) 当放电结束时,T 截止,Vcc 将通过R1,R2,R3向电容器C2充电,Vc 由Vcc/3 上升到2Vcc/3所需的时间为 22)321(7.02ln )321(C R R R C R R R t pH ++=++= (1-2) 当Vc 上升到2Vcc/3时,电路又翻转为低电平。如此周而复始,于是,在电路的输出端就得到一个周期性的矩形波。电路的工作波形如图4,其中的震荡频率为 : f=1/(tpL+tpH )=1.43/(2R1+R2+R3) C2 (1-3) 三、实验设计目标 波形发生器是建立在模拟电子技术基础上的一个设计性实验,它是借助综合测试板上的555芯片和一片通用四运放324芯片,以及各种电阻、电感、电容等基本元器件,从而设计制作一个频率可变的同时输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ的波形产生电路,其借助于计算机软件multisim 仿真以及电路板硬件调

PCB模块化布局---时钟电路设计

PCB模块化布局---时钟电路设计 在一个电路系统中,时钟是必不可少的一部分。时钟电路相当关键,在电路中的作用犹如人的心脏的作用,如果电路系统的时钟出错了,系统就会发生紊乱,因此在PCB中设计一个好的时钟电路是非常必要的。 我们常用的时钟电路有:晶体、晶振、时钟分配器。有些IC用的时钟可能是由主芯片产生的,但追根溯源,还是由上述三者之一产生的。接下来结合具体实例,说明时钟电路布局、布线的原则和注意事项。 晶体 PCB中常用的晶体封装有:2管脚的插件封装和SMD封装、4管脚的SMD封装,常见封装如下图: 2管脚PTH 2管脚SMD封装4管脚SMD封装 尽管晶体有不同的规格,但它们的基本电路设计是一致的,因此PCB的布局、布线规则也是通用的。基本的电路设计如下图: 从电路原理图中可以看出,电路由晶体+2个电容组成,这两个电容分别为增益电容和相位电容。

晶体电路布局时,两个电容靠近晶体放置,布局效果图如下: 布线时,晶体的一对线要走成类差分的形式,线尽量短、且要加粗并进行包地处理,效果如下图:

上述的是最基本和最常见的晶体电路设计,也有一些变形设计,如加串阻、测试点等,如下图,设计思路还是一致的: 结合上述,布局应注意: 1.和IC布在同一层面,这样可以少打孔; 2.布局要紧凑,电容位于晶体和IC之间,且靠近晶体放置,使时钟线到IC尽量 短; 3.对于有测试点的情况,尽量避免stub或者是使stub尽量短; 4.附近不要摆放大功率器件、如电源芯片、MOS管、电感等发热量大的器件; 布线应注意: 1.和IC同层布局,同层走线,尽量少打孔,如果打孔,需要在附近加回流地孔; 2.类差分走线; 3.走线要加粗,通常8~12mil;由于晶体时钟波形为正弦波,所以此处按模拟设计 思路处理; 4.信号线包地处理,且包地线或者铜皮要打屏蔽地孔; 5.晶体电路模块区域相当于模拟区域,尽量不要有其他信号穿过;

接地装置安装工艺标准

接地装置安装工艺标准 1 适用范围 本工艺适用于建筑物的防雷接地体及接地干线安装工程。 2 施工准备 2.1 材料要求: 2.1.1主材:钢材有扁钢、角钢、圆钢、钢管等,使用时应采用热镀锌。产品应有材质检验证明及产品出厂合格证。 2.1.2 辅材:有镀锌铅丝、螺栓、垫圈、支架,电焊条、氧气、乙炔、预埋铁件、塑料管、油漆(红与白)、防腐漆、银粉、黑色油漆等。 2.2 主要机具: 电锤、冲击钻、电焊机、气焊工具、手锤、钢锯、压力案、铁锹、铁镐、大锤、桶,线坠、卷尺、紧线器等。 2.3 作业条件: 2.3.1 接地体作业条件:按设计位置清理好场地;基础底板筋与柱筋连接处已绑扎完;桩基内钢筋与柱筋连接处已绑扎好。 2.3.2 接地干线作业条件:支架安装完;保护管已预埋;土建抹灰完毕。 3 操作工艺 3.1 工艺流程: 3.1.1人工接地体安装:接地体加工→挖沟→安装接地体→接地体间的扁钢敷设→核验接地体。 3.1.2自然基础接地体安装:基础或工程桩及承台自然接地体→接地体钢筋连接及色标→核验接地体。 3.1.3 接地干线安装: 1) 室外接地干线敷设:接地干线制作→挖沟、埋设。 2) 室内明敷:预留孔与埋设支持件→支持件固定→接地干线安装。 3.2 人工接地体安装 3.2.1 接地体加工:根据设计要求的数量、材料规格进行加工,材料一般采用钢管和角钢切割,长度不应小于2.5m。如采用钢管打入地下应根据土质加工成一定的形状,遇松软土壤时,可切成斜面形,为了避免打入时受力不均使管了歪斜,也可加工成扁尖形,遇土质很硬时,可加工工成锥形。如选用角钢时,应采用不小于40×40×4mm的角钢,切割长度不应小于2.5m, 角钢的一端应加工成尖头形状。 3.2.2 挖沟:根据设计图要求,对接地体(网)的线路进行测量弹线,在此线路上挖掘深为0.8~1m、宽为0.5m的沟,沟上部稍宽,底部渐窄,沟底如有石子应清除。

波形发生器设计

课程设计任务书 学生姓名:专业班级:自动化 指导教师:工作单位: 题目: 波形信号发生器 初始条件: 可选元件:运算放大器,三极管,电阻、开关、电容若干,等自选元器件。 可用仪器:示波器,万用表,频率计等 要求完成的主要任务: (1)设计任务 设计一台波形信号发生器。 (2)设计要求 1、输出波形:方波、三角波、锯齿波、正弦波、阶梯波。 2、频率范围:1Hz—10Hz,10Hz—100Hz,100Hz—1KHz,1KHz—10KHz等四个波 段。 3、频率控制:通过改变RC时间常数手控信号频率。 4、方波峰峰值0—20V之间可调,三角波峰峰值在0—5之间可调,正弦波峰峰 值大于1V。 5、用分立元件和运放设计一个波形发生器,要求用Multisim或Protel进行电路仿真。 时间安排: 1、2010 年6月7日至2010年6月28日,完成仿真设计、制作与调试;撰写课程设计报 告。 2、2010 年7月1日提交课程设计报告,进行课程设计验收和答辩。 设计的作用、目的 1、根据从稳定性、可靠性、实用性、经济性选择电子线路和电子器件,找到合 适的功能电路; 2、通过网络查阅和图书馆资料,培养独立分析问题和解决实际问题的能力; 3、掌握常用元器件的识别和测试 4、熟悉常用仪表,了解电路调试的基本方法 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 1 函数发生器的总方案及原理框图 (1) 1.1 电路设计原理框图 (1) 1.2 电路设计方案设计 (1) 2设计的目的及任务 (2) 2.1 课程设计的目的 (2) 2.2 课程设计的任务与要求 (2) 2.3 课程设计的技术指标 (2) 3 各部分电路设计 (3) 3.1 方波发生电路的工作原理 (3) 3.2 方波---三角波转换电路的工作原理 (3) 3.3 三角波---正弦波转换电路的工作原理 (6) 3.4电路的参数选择及计算 (8) 3.5 总电路图 (10) 4 电路仿真 (11) 4.1 方波---三角波发生电路的仿真 (11) 4.2 三角波---正弦波转换电路的仿真 (12) 4.3 仿真结果分析 (12) 5电路的安装与调试 (13) 5.1 方波---三角波发生电路的安装与调试 (13) 5.2 三角波---正弦波转换电路的安装与调试 (13) 5.3 总电路的安装与调试 (13) 5.4 电路安装与调试中遇到的问题及分析解决方法 (13) 6电路的实验结果 (15) 6.1 方波---三角波发生电路的实验结果 (15) 6.2 三角波---正弦波转换电路的实验结果 (15) 6.3 实测电路波形、误差分析及改进方法 (16) 7 实验总结 (17) 8 仪器仪表明细清单 (18) 9 参考文献 (19)

波形发生器设计实验报告

波形发生器设计实验报告 一、设计目的 掌握用99SE软件制作集成放大器构成方波,三角波函数发生器的设计方法。 二、设计原理 波形发生器:函数信号发生器是指产生所需参数的电测试信号的仪器。按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。而波形发生器是指能够输出方波、三角波、正弦波等多种电压波形的信号源。它可采用不同的电路形式和元器件来实现,具体可采用运算放大器和分立元件构成,也可用单片专用集成芯片设计。 设计原理图:

三、设计元件 电阻:R1 5.1K、R2 8.2K 、R3 680 、R4 3K 、R5 39K R6 1K 、R7 39K 、R8 39K 电容:C 1uF 运算放大器:U1A LM324 、U1B LM324 二极管:D1 3.3V 、D2 3.3V 滑动变阻器:RW1 10K 接口:CON3 地线、GND 四、设计步骤 大概流程图 1、打开99SE,建立Sch文件。绘制原理图。 绘制原理图时要注意放大器的引脚(注意引脚上所对应的数字)和二极管的引脚(注意原理图和PCB中的引脚参数是否一致)。 元件元件库代码

电阻:RES2 滑动变阻器:POT2 电容:CAP 放大器:OPAMP 二极管:ZENER3 元件封装代码 电阻:AXIAL0.4 滑动变阻器:VR5 放大器:DIP14 二极管:DIODE0.4 电容:RB.2/.4 2、生成网络表格 本步骤可完成建立材料清单(可执行report中的Bill of Material)、电器规则检查(Tools中ERC )、建立网络表(Design中Create Netlist,点击OK即可)3、PCB文件的设置 建立PCB文件 单双面板设置:Design中Options进行设置单双面板,及面板大小(8cm*7cm)建立原点(Edit中Origin中的set) 并在KeepOutLayer层中制板 4、引入网络表 执行Design中Load Nets载入网络表,屏幕弹出对话框,点击Browse按钮选择网络表文件(*net),载入网络表,单机Execute,便成功引入网络表。 5、修改封装与布局 按照原理图调试布局,美观整齐即可 6、设置PCB规则 Design中Rules即可设置规则例:设置地线,电源线等的粗细参数。双面布线及单面布线的设置等等。

相关主题
文本预览
相关文档 最新文档