当前位置:文档之家› 普通生态学重点整理

普通生态学重点整理

普通生态学重点整理
普通生态学重点整理

1绪论

【生态学的定义】

研究生物与生物\生物与环境相互作用规律的科学

【学科发展简史】

1869年德国生物学家E.Haeckel第一次提出。英文名Ecology起源于两个希腊字:Oikos(住所、家庭)和Logos(学科),即“生境的学科”

【分支学科】

按组织水平划分 按研究对象划分 按研究对象的

生境类型划分

按主要交叉学科 按应用领域划分

全球(生物圈)生态 植物生态学 陆地生态学 生理生态学 农业生态学 景观生态 动物生态学 海洋生态学 数学生态学 工业生态学 生态系统群落生态 微生物生态学 淡水生态学 化学生态学 城市生态学 种群生态 昆虫生态学 湿地生态学 物理生态学 环境生态学 个体生态 苔藓生态学 岛屿生态学 地理生态学 恢复生态学 细胞生态 荒漠生态学 进化生态学 污染生态学 分子生态 冻原生态学 遗传生态学 渔业生态学

湖泊生态学

2生命系统及其环境

【生态因子】

构成生态环境的各种因素称生态因子,是指环境中对生物生长、发育、生殖、行为和分布有直接或间接影响的环境要素(影响生物生长发育的环境变量)

生态因子的类型:

【限制因子】

生物的生存和繁殖依赖于各种生态因子的综合作用,其中限制生物生存和繁殖的关键性因子就是限制因子(各生态因子中对生物生长发育起限制作用的因子)

【生态幅(生态阈)】

生物正常生长发育的生态因子范围(生命系统在某一生态因子维度上分部的最低点和最高点间的跨度)

【生态位】

由各生态幅构成的某生物生存的生态定位or一个生命系统在某一个因子梯度上的生态幅,即系统在空间、食物以及环境条件等资源谱中的位置or在自然生态系统中一个种群在时空、空间上的位置及其与相关种群之间的功能关系

3 分子生态学

【分子生态定义】

是分子生物学与生态学融合而成的新的生物学分枝学科。是研究生物活性分子在其显示与生命关联的活动中所牵连到的分子环境问题。其定义有两层含义:1、运用现代分子生物学技术研究传统生态学问题;2、生物活性分子表现其生命活动时的分子生态条件的规律性

【理论基础】

一、分子进化的中性理论

1.理论核心:分子水平上的绝大多数突变是选择上中性的,因而他们在进化中的命

运是随机漂变的,而不是由自然选择决定的。

2.中性理论对种内遗传变异的解释:分子水平上的绝大部分种内遗传变异(即遗传

多态现象)是选择上中型的,突变速率和遗传漂变速率决定遗传多态性的变化速率。

3.中性突变与自然选择的辨证统一:少量突变的非中性。

4.中性理论在分子生态中的应用:排除假设的基础。种群遗传进化:选择、突变、

随机遗传漂变、迁移、自然灾害、社会结构等。

二、Hardy-Weinberg principle (哈德-温伯格原理)

1.内涵:在满足下列假设的条件下,生物种群的等位基因频率和基因型频率保持不

变(1)有性繁殖并随机交配;(2)等位基因在雌雄两性中随机交配;(3)种群足够大;

(4)世代不重叠;(5)没有自然选择、突变和迁移。

2.分子生态意义:作为基本判别假设和理论基础。

三、种群分化是生物进化的必要途径

1.种群分化的结果:新种形成、种群的杂合度降低

2.Wright’s F统计方法:

F近似地代表等位基因被固定的可能性,又称固定系数。

亚种群相对于整个种群的近交系数:F ST= (H T-H S)/H T

个体相对于所属亚种群的近交系数:F IS= (H S-H I)/H S

个体相对于整个种群的近交系数:F IT= (H T-H I)/H T

H I ,H S ,H T分别表示个体、亚种群和种群的平均杂合度;(1- F IS)(1- F ST)=(1- F IT)

四、随机遗传漂变是种群进化的重要动力

1.小种群比大种群发生漂变的速度快,所以等位基因在小种群中被固定的平均时间

比大种群短。2.一个等位基因被固定的概率等于其此时在种群中的频率,所以稀有基因更易被淘汰。3.随机遗传漂变降低种群的遗传多样性。4.因为新突变被固定的概率等于其此时在种群中的频率,所以,新突变在小种群中被固定的可能性大于在大种群中。5.

在种群中,局部种群越小其遗传多样性丧失的越快,局部种群间的遗传分化就越大。6.

对所有中性等位基因的作用一致,因此,在没有其它进化动力的条件下,不同的中性位

点揭示的进化(演化)规律应相同。

五、朔祖理论

假定种群在个世代保持数目恒定,即每个等位基因有N个拷贝,则种群中任一对基因a在t时代以前的概率为:

p=(1-1/N)t-1/N 单倍体朔祖时间N ,二倍体为2N

六、分子系统发生分析

分子系统发生(异中求同)分析的基本原则:

(1)分子标记的中性原则;(2)进化速率恒定原则,符合“分子钟”假设;

(3)分子标记在研究类群中直向同源;(4)分子标记具有适当的遗传变异度。

1.距离法:依据每对单元间的进化距离建立进化树。

2.简约法-最大简约法:对于分子数据,该方法计算在最少的碱基替换条件下能够

解释整个进化过程的拓扑结构(系统进化树)。

3.最大似然法:对观察数据符合每种拓扑结构的可能性进行最大化计算,可能性最

大的拓扑结构被选为终解进化树。

4.贝斯法:检验观测数据与理论假设的偏离是否大到否定假设的程度,或者现有数

据是否足以支持作出有关结论。

【研究方法:微卫星】

微卫星和小卫星DNA标记:

微卫星DNA:重复单位1~6个核苷酸;如:(GT)n

优点:主要表现为拷贝数n的变化,便于分析,应用日广。

小卫星DNA:重复单位>6个核苷酸,通常10~30核苷酸;

标记长度大,基因型自动分析不方便,使用频率在下降。

1、多位点微卫星指纹分析法:

缺点:

1、对DNA的质量和数量要求

较高;

2、难以对数据进行深度进化

遗传学分析。

2、基于PCR的多位点微卫星分析法:

优点:简单易行;

缺点:隐含不确定性,不宜用

于种群遗传进化研究:

(1)PCR重复不稳定性;

(2)带型有效性;

(3)条带同源性。

3、位点特异性微卫星分析法:

4 个体生态学

【胁迫和适应】

胁迫:生命系统在耐受区遭受一定程度的限制,是一种偏离生命系统适宜生活需求的环境条件。会造成生命系统的结构损伤。胁迫超限时会造成不可逆损伤。

(1).胁迫的生态效应

预警阶段、抗性阶段、补偿阶段、耗尽阶段

(2).自然环境中的胁迫

高温、低温、冰冻、强光、UVB辐射、干旱、盐碱

(3).胁迫适应

驯化(短期适应,长期驯化)、补偿效应、休眠

【能源类型】

光能自养:

C3植物(戊糖磷酸途径):最基本的光合方式

C4植物(初产物草酰乙酸):能吸收低浓度CO2,耐高温、干旱,对寒冷敏感。

CAM植物(景天酸途径):多汁,多见于周期性干旱环境,夜间以酸的形式存储CO2供白天使用

细菌…

化能自养:细菌…

异养:吞噬营养、腐食营养

【光适应】

根据植物对光强适应的生态类型可分为阳性植物、阴性植物和中性植物(耐阴植物)。在一定范围内,光合作用效率与光强成正比,达到一定强度后实现饱和,再增加光强,光合效率也不会提高,这时的光强称为光饱和点。当光合作用合成的有机物刚好与呼吸作用的消耗相等时的光照强度称为光补偿点。阳性植物对光要求比较迫切,只有在足够光照条件下才能正常生长,其光饱和点、光补偿点都较高。阴性植物对光的需求远较阳性植物低,光饱和点和光补偿点都较低。中性植物对光照具有较广的适应能力,对光的需要介于上述两者之间,但最适在完全的光照下生长。

植物的光合作用不能利用光谱中所有波长的光,只是可见光区(400-760nm),这部分辐射通常称为生理有效辐射,约占总辐射的40-50%。可见光中红、橙光是被叶绿素吸收最多的成分,其次是蓝、紫光,绿光很少被吸收,因此又称绿光为生理无效光。

此外,长波光(红光)有促进延长生长的作用,短波光(蓝紫光、紫外线)有利于花青

素的形成,并抑制茎的伸长。

光周期现象:分布在地球各个地区的生物长期适应于特定的昼夜长度变化格局,形成了以年为周期的、由特定日长启动的繁殖行为的现象。按日照长度分为长日照植物(光照大于14小时才开花)、短日照植物(黑暗大于14小时才开花)、中日照植物(昼夜各半)和中间型植物(任何日照均可)。

【水分关系】书上P77-P81

[生物的水分平衡]

[植物水生态类型]

[动物缺水适应]

5 种群结构

【种群定义】

在一定空间中生活、相互影响、彼此能交配繁殖的同种个体的集合。种群是物种在自然界中存在的基本单位。从生态学观点看,种群又是生物群落的基本组成单位。

【生态型】

不同地方种群中的个体长期生活在各自的环境中,不同个体群之间的差异就会越来越大,并且是定向分离,形成一些有稳定的生态差异、并可遗传的个体群,即生态型。

【年龄结构及其意义】

年龄结构:指不同年龄租的个体在种群内的比例或配置情况。

年龄椎体:纵向表示不同年龄组,横向表示各年龄组个体数或百分比。

三种基本类型:

6 种群过程

【种群增长:指数,Logistic密度依赖】

a.与密度无关的种群增长模型(指数增长)

种群在“无限”的环境中,即假定环境中空间,食物等资源是无限的,因而其增长率不随种群本身的密度而变化,这类增长通常呈指数式增长,可称为密度无关的增长。

1)种群离散增长模型:N t+1=λN t 或 N t =N o λt

式中: N ——种群大小 t ——时间 λ——种群的周限增长率 将方程式N t =N o λt 两侧取对数lgN t =lgN o +tlg λ

λ>1种群上升,λ=1种群稳定,0<λ<1种群下降,λ=0无繁殖,种群在下代中灭亡。

2)种群连续增长模型:dN/dt=rt r ——每员增长率 其积分式为:N t =N o e rt r>0种群上升,r=0种群稳定,r<0种群下降。 b.与密度有关的种群增长模型(逻辑斯蒂增长)

比无密度效应的模型增加了两点假设:

①有一个环境容纳量(通常以K 表示),当N t =k 时,种群为零增长,即dN/dt=0;②增长率随密度上升而降低的变化,是按比例的。

呈“S

Logistic 方程,其积分式为:rt

a e

K

Nt ?+=

1 式中:a ——参数,其值决定于N 0,是表示曲对原点的相对位置的。 Logistic 曲线常分为5个时期:

①开始期,也可称为潜伏期,由于种群个体数很少,密度增长缓慢; ②加速期,随个体数增加,密度增长逐渐加快; ③转折期,当个体数达到饱和密度一半(即K/2时),密度增长最快; ④减速期,个体数超过K/2以后,密度增长逐渐变漫; ⑤饱和期,种群个体数达到K 值而饱和。 r ——表示物种的潜在增殖能力。r 增长型物种:高繁殖率、高死亡率,低哺育投入; K ——表示环境容纳量。K 增长型物种:低出生率、低死亡率,高哺育投入;

Logistic 方程的重要意义:

①它是许多两个相互作用种群模型的基础;

②它是渔捞、林业、农业等实践领域中,确定最大持续产量的主要模型; ③模型中两个参数r 、K ,已成为生物进化对策理论中的重要概念。

【存活曲线】

描述同期出生的生物种群个体存活过程与其年龄关系的曲线。

以存活数量的对数值为纵坐标,以年龄为横坐标作图,从而把每一个种群的死亡——存活情况绘成一条曲线。

存活曲线的基本类型:

凹型:生命早期有极高的死亡率,但是一旦活到某一年龄,死亡率就变得很低而且稳定,如鱼类、很多无脊椎动物等。

直线型:种群各年龄的死亡基本相同,如水螅。小型哺乳动物、鸟类的成年阶段等。

凸型:绝大多数个体都能活到生理年龄,早期死亡率极低,但一旦达到一定生理年龄时,短期内几乎全部死亡,如人类、盘羊和其他一些哺乳动物等。

【种群调节:自疏法则,恒定终产量】

自疏法则:自疏指同种植物因种群密度过高而引起种群个体死亡而密度减少的过程,其密度(d)与重量(W)的关系模型为W=Cdα,两边取对数:lgW=αlgd+lgC,其中C 为总产量,α为密度调控指数。以lg(d)为横坐标,lg(W)为纵坐标作图,取直线回归线的斜率,即得到密度调控指数α。大部分植物种类的自疏线斜率(即α)为-3/2,称为“-3/2”自疏法则。

生物量:在一定时间内,生态系统中某些特定组分在单位面积上所产生物质的总量。

最终产量恒定定律(产量恒值法则):在相同的生境条件下,不论最初的密度大小,经过充分时间的生长,单位面积的同龄植物种群的生物量是恒定的。

产量恒值法则可表示为:Y=W×d=Ki

W——植物个体平均重量d——密度Y——单位面积产量Ki ——常数

7 种群系统的功能和进化

【种间相互作用,动态波动】

种间相互作用:主要有9种

种间相互作用 种群1 种群2 特点

1.偏利作用 + 0 种群1偏利者,种群2无影响

2.原始合作 + + 对两物种都有利,但非必然

3.互利共生 + + 对两物种必然有利

4.中性作用 0 0 两物种彼此无影响

5.直接干涉型竞争 - - 一物种直接抑制另一种

6.资源利用型竞争 - - 资源缺乏时的间接抑制

7.偏害作用 - 0 种群1受抑制,种群2无影响

8.寄生作用 + - 种群1寄生者,通常较宿主2的个体小

9.捕食作用 + - 种群1捕食者,通常较猎物2的个体大

动态波动:

一个种群从进入新的栖息地,经过种群增长,建立起种群以后,一般有以下几种可能:种群平衡;规则的或不规则的波动,包括季节变动和年际变动;种群衰落

和种群灭亡;种群暴发;种群崩溃。另外,还有生态入侵,它指的是物种进入新的

栖息地之后的建群过程。

1.种群平衡:指种群数量较长时间地维持在同一水平上。通常是一种动态平衡。

2.季节消长:具有生殖季节的种类,在一年中最后一次繁殖之末数量最高,繁殖停

止后,种群因只有死亡而数量下降,直到下一年繁殖开始,这时是数量最低的时期。

3.规则或不规则性波动

4.种群衰落:种群长久处于不利环境,种群数量出现持久的下降。

原因:(1).种群密度过低导致繁殖机率降低;近亲繁殖使后代体质变弱;(2).栖息环

境的改变;(3).植物的减少和消失易导致动物种群衰落和灭亡。

5.生态入侵:某些生物由于人类活动而被带入某一适宜于其生存和繁衍的地区,种

群数量不断增加,分布区逐步扩展。

【物种共存的定量判据】

在稳定和均匀分布条件下,两个符合逻辑斯蒂增长规律的物种共存的定量判别条件:共存前提是两物种至少有一部分生态位不重叠,即各自至少有一部分生态位是对方没有的。因而据下图:

资源供应点的位置可能有六种,当供应点落在各区域时,有:

①:A、B都不能存活

②:只有A能存活

③:A排斥B

④:A、B能够平衡稳定地共存

⑤:B排斥A

⑥:只有B能存活

因此当资源供应点在两物种生态位交叠区域的中心时两物种能够较为平衡稳定地共存,但共存时两物种密度都小于单独存活时的密度。

【竞争、互惠】

①一个稳定的群落中占据了相同生态位的两个物种,其中一个物种终究要灭亡;

②一个稳定的群落中,由于各种群在群落中具有各自的生态位,种群间能避免直接

的竞争,从而保证了群落的稳定。

③一个相互起作用的、生态位分化的种群系统,各种群在它们对群落的时间、空间

和资源的利用方面,以及相互作用的可能类型方面,都趋向于互相补充而不是直接竞争。

互利共生:两物种长期共同生活在一起,彼此相互依赖,双方获利且达到了彼此不能离开独立生存之程度的一种共生现象。如:豆科植物和根瘤菌、人和人体肠道的正常菌群。

8 生态系统结构

【生物群落定义】

群落:一定空间和时间内,所有生物种群构成的具有内在联系的有机整体。

生物群落:在特定空间或特定生境下,具有一定的生物种类组成,它们之间及其与环境之间彼此影响、相互作用,具有一定的外貌及结构,包括形态结构与营养结构,并具特定功能的生物集合体。也可以说,一个生态系统中具生命的部分即生物群落。

【物种数量指标、生活型】

1.种的个体数量指标:

多度(丰富度):国内采用的Drude的7级制标准:

1极多, 2很多,3多,4尚多,5不多,6少,7单独

密度:个体数/面积

相对密度:某物种密度/所有种总密度×100%

密度比:某物种密度/优势种密度

盖度:地上部投影覆盖样地面积的百分比

相对盖度:某个种的盖度占全部种类盖度之和的百分比。 盖度比:某种群的盖度/样方中最大盖度种群的盖度。 频度:物种在样方中出现的频率 高度\自然高度\绝对高度:…

重量:… 体积:…

2.种的综合数量指标:

优势度:表示一个种在群落中的地位和作用的综合指标; 常用重要值衡量。

计算方法为:重要值(I.V .)=相对密度+频度+相对基盖度 综合优势比:

SDR 2=(密度比+盖度比)/2*100

SDR 3=(密度比+盖度比+重量比)/3*100

3.物种多样性及其测度:

物种多样性:群落内物种数量及其分布的综合指标。通常由丰富度、均匀度和物种间差异度定量表示。

丰富度(richness)指数: (下述各式中,A 为面积,N i 为每一种的个体数,N 为个体总数,s 为物种数,P i =N i /N)

Gleason 指数:D=S/lnA

Margalef 指数:D=(S-1)/lnN

丰富度和均匀度综合指数:∑∑==?=?

=s

i i s

i i N N P

D 121

2

)/(11

Shannon-weiner 指数(信息量指数):i s

i i P P H 2

1

log

×?

=∑=

物种均匀度(Evenness):E=H/H max 生活型:

概念:生活型是植物对一定的生活环境长期适应的外部表现形式。同一生活型的植物不但在体态上是相似的,而且在形态结构、形成条件和某些生理过程也具相似性。

注意:生活型主要是依据生态划分的,生长型则或多或少主要是依据形态划分的;是生态学的分类单位,是不同种植物对于相同环境条件趋同适应的结果,是生态适应的完整系统。

生活型的划分系统:植物划分为五类生活型:高位芽(h>25cm)、地上芽(0

另,动物生活型研究得较晚,没有比较一致的看法。

【多样性与稳定性】

多样性:一定时间一定空间中全部生物或某一生物类群的物种数目与各个物种的个体分布特点。一般是指物种丰富度和物种均匀度。

稳定性:一个系统受到环境扰动后,能够回复到原来的状态。

多样性与稳定性的学术争论:

一方:多样性导致稳定性

在自然生态系统内,多样性高的系统往往稳定性也好。随着生态系统的退化和稳定性降低,物种多样性往往同时降低

另一方:多样性不一定导致稳定性

多样性是以生态位的分化为前提的.如果在系统内随意引入一些物种,尽管多样性增加了,但其稳定性反而会降低,例如:入侵种。

多样性与稳定性关系:

1.多样性一般与稳定性呈正比,认为多样性=稳定性。

2.多样性不等于稳定性,因为有时,在干扰或生物入侵条件下,物种多样性增

加反而会导致群落(生态系统)的稳定性下降。

生态系统(群落)稳定可来自:

1.缺少干扰

2.群落对干扰具有较高的抗性或弹性

中度干扰理论:

在中等程度干扰的条件下,群落的物种多样性最丰富

如:在中度放牧的条件下,草原的生产力(单位面积产草量最大

10 生态系统的能量流动

【如何维持系统有序性】

序(有序),指事物的一种有规则的状态。由热力学第二定律可知,世界上一切有序的结构、格局、安排都会自然地走向于无序。要维持有序状态,必须使系统获得更多的潜能支做功,以消除不断产生的无序,重新建立有序。

熵——无序性的量度。熵增是自发过程。

生命个体和生态系统均需要不断地摄入能量维持自身的有序状态,并向环境耗散热能(无序)。

普里高津的耗散结构理论:

一个远离平衡状态的开放系统,通过与外界环境进行物质和能量的不断交换,就能克服混乱状态,维持稳定状态并且还有可能不断提高系统的有序性,使系统的熵减少。

(耗散结构,是指开放系统在远离平衡态的非平衡状态下,系统可能出现的一种稳定的有序结构。)

【初级生产力的水、温和营养依赖】

初级生产力:生态系统中植物群落在单位时间、单位面积上所产生有机物质的总量。

初级生产力的制约和改善方向:

提高生态系统的初级生产力非常重要,提高植物的光能利用率,可以从解除植物遗传性决定的内部制约和生态环境决定的外部限制两个方面入手。

①因地制宜,增加绿色植被覆盖,充分利用太阳辐射能,增加系统的生物量通

量或能通量,增强系统的稳定性。

②适当增加投入,保护和改善生态环境,消除或减缓限制因子的制约。

③改善植物品质特点,选育高光效的抗逆性强的优良品种。

④加强生态系统内部物质循环,减少养分水分制约。

⑤改进耕作制度,提高复种指数,合理密植,实行间套种,提高栽培管理技术。

净初级生产力=总初级生产力-自养呼吸消耗

【营养链假说】

沿食物链从高到低影响初级生产力。

如,营养链假说预测:调节食鱼动物(piscivore)将影响植食性鱼类、小型植食动物和植物的数量变化。

11 生态系统的物质循环

【C循环,温室效应】

1.自然界的碳循环:

来源:二氧化碳

生物圈的碳循环主要是指植物通过光合作用将CO2转变成机物(糖类、蛋白质及类脂化合物等),并通过食物链在生态系统中传递,被植物和动物所消耗,最终通过呼吸作用、发酵作用和燃烧又使碳以CO2形式返回大气中。

碳的生物小循环有三个层次或途径:

1.在光合作用和呼吸作用之间的细胞水平上循环;

2.大气CO2和植物体之间的个体水平上的循环;

3.大气CO2—植物—动物—微生物之间的食物链水平上的循环。

三个重要的C循环过程:

1 光合作用和呼吸作用

2 海洋-大气交换:

3 碳酸盐的沉积和溶解:

CaCO3(不可溶)+H2O+CO2?Ca2++2HCO3(可溶)

2.人类活动对碳循环的干扰

二氧化碳、甲烷等急剧增加,引起全球气候变暖,降水量增加、海平面上升,并由此而产生一系列生态和环境变化(即温室效应)

原因:砍伐森林、燃烧矿物

【N】

大气中氮不能被大多数植物直接利用,只有通过固氮菌和蓝绿藻等生物固氮,闪电和宇宙线的固氮,以及工业固氮的途径,形成硝酸盐或氨的化合物形态,才能为多数植物和微生物吸收利用。

三个重要过程

(1)氨化作用:由氨化细菌和真菌的作用将有机氮分解成氨和氨化合物,氨溶与

水即成为NH4+,可为植物所直接利用。

(2)硝化和反硝化作用:

硝化作用:在通气情况良好的土壤中,氨化合物被亚硝酸盐细菌和硝酸盐细菌氧化为亚硝酸盐,供植物吸收利用。

反硝化作用:也称脱氮作用,反硝化细菌将亚硝酸盐转变成大气氮,回到大气库中。

(3)固氮作用:闪电和宇宙线的固氮(少量)、工业固氮、生物固氮(主要)

【P,S】

1.自然界中的磷循环

磷溶于水而不挥发,在生态系统中属于典型的沉积型循环,以地壳作为主要贮藏库。

含磷的有机物沿两条循环支路循环:

沿生物链传递,并以粪便、残体的形式归还土壤;

以枯枝落叶、秸秆归还土壤。

生物小循环:磷的有机化合物经过土壤微生物的分解,转变为可溶性的磷酸盐,再次供给植物吸收利用。

该过程中,一部分磷脱离生物小循环进入地质大循环:

动植物遗体在陆地表面的磷化矿化;

是磷受水的冲蚀进入江河,流入海洋。

2.人类活动对磷循环的影响

(1).人类对磷矿资源的开采与消耗

(2).磷肥的施用与流失

(3).家庭污水、工业废水、尤其是农业径流所携带的大量N、P等营养物质进入水体后,易造成水体的富营养化、赤潮等环境问题

3.自然界中的硫循环

硫在地壳中含量高,重要贮存库是岩石圈,来源为:沉积岩的风化、化石原料(煤、石油等)的燃烧、火山喷发和有机物的分解。

4.人类活动对硫平衡的影响

人类活动对硫平衡最突出的影响是酸性物质SO2的大量排放,途径:燃煤、燃油、矿冶、农业活动导致硫的挥发

酸雨:pH小于5.6的雨,主要由工业产生和燃料燃烧排放的二氧化硫和氮氧化物转化为硫酸和硝酸所致

酸雨产生的生态问题:

①盐基营养的淋失与贫脊;

②土壤S饱和,养分失调;

③铝胁迫与铝毒问题;

④有机质分解减弱;

⑤重金属积累;

⑥根圈土壤化学条件改变,根系分布型改变;

⑦污染物对叶子的直接效应;

⑧寄生虫活动的加强。

12 景观生态学

【景观生态学定义、对象】

定义:景观生态学

~有2个中心问题:1陆地表面格局;2 生物与环境间的相互作用;

~研究景观格局、功能和过程及其随时间的变化动态,并且研究其对生态环境系统的功能和人类活动的关系。

~是研究空间格局对生态过程影响的一们科学。

~是对不同尺度上景观空间变化的研究,包括对景观异质性、生物、地理及社会原因的分析。

~是研究景观单元的类型组成、空间配置及其与生态过程相互作用的一门学科。

景观生态学是以整个景观为对象,通过物质流、能量流、信息流与价值流在地球表层的传输和交换,通过生物与非生物以及与人类之间的相互作用与转化,运用生态系统原理和系统方法研究景观结构和功能、景观动态变化以及相互作用机理、研究景观的美化格局、优化结构、合理利用和保护的学科。

【景观结构】

1.斑块:

形状:

类型:环境资源斑块(如绿洲、湿地);干扰斑块(如由泥石流、雪崩形成的斑块)斑块的边缘效应:斑块的周边部分通常具有较高的物种丰富度和初级生产力;适应较稳定环境的物种往往分布在中心部分(内部种),适应多变环境的物种往往生活在斑块的边缘部分(边缘种)。

2.廊道:线形的景观单元

线状廊道

带状廊道

林带廊道:物质、能量流动和物种迁移的通道

道路廊道:物、能流动和物种迁移的障碍

河流廊道:不仅是物质、能量流动和物种迁移的通道,还是重要物种的栖息地

3.基质:面积最大、连通性最好、对景观总体动态支配作用最大的景观类型

空隙度:单位面积斑块的数目;空隙与边缘效应密切相关,对基质的生态功能有重要影响。

景观格局:景观斑块和廊道在基质上的配置。分点、线、网格局。

【生态规划】

景观生态规划:利用景观生态学原理,以区域景观生态系统整体化为基本目标,在景观生态分析、综合和评价的基础上,建立区域景观生态系统优化利用的空间结构和模

式。

前捷克斯洛伐克的景观生态规划:

德国的景观生态规划:

13 全球生态学

【全球生命系统及其调控】

全球生命系统的4个基本方面:

横向关系:全球生命系统各组分构成的生物多样性与复杂性

纵向关系:等级层次结构中各级系统的关系

生态时间尺度的关系:各组分及子系统间的生态作用和反作用

进化时间尺度的历史关系:系统的发育和演化

全球气候:全球大陆不同地区的气候类型也有该地区的生物群落型:

(9种陆生生物群落型)辐射、温度、水分和风…

生态系统分布的地带性:三向地带性

水平地带性:

纬度地带性:热量为主导因子

经度地带性:水分为主导因子

垂直地带性:温度和水分,与水平地带谱对应(如山体的植被带) Glos结构:物种区系及多样性格局

1.物种区系分布

2.多样性梯度(多样性的三向梯度)

3.生态复杂性:全球生命系统中各组分间的关联:

生态系统间的关联

全球尺度的种间关系

Glos过程和功能:生物生产、能量流动、物质循环(真正意义上的循环是全球水平

上的)、信息传递、自我调节

生物地球化学循环类型:气体型循环、沉积型循环、水循环

Glos的功能群:生产者、消费者、分解者、流通者、调控者

Glos生产力格局:

地球上总的初级生产力是一定的,因此,生态系统中的能量分配和利用也是有限度的。

Glos的涨落与平衡:

全球生命系统的涨落主要表现在两方面:系统的物质总量、复杂性

多样性和复杂性的涨落:发生和灭绝(涨落是自组织系统固有特征,外界影响,自我调控)

Glos非生物组分的变化

【气候变化,原因、对策】

近200年全球气候变化:自然生态系统受强度改变、全球变暖、臭氧空洞、有毒有害气体的全球性污染、水资源受破坏,水循环受影响、生境破碎化。

原因:本次全球巨大变化是以人为主导因子产生的(农业文明、工业文明…)

对策:可持续发展…

【人口、资源环境,可持续发展】

人口增长和生态环境的人口承载容量:地球上的自然资源对于人口的供养是有限的

资源压力:土地资源、水资源、能源危机、森林资源

环境污染:大气污染、温室效应、化学物质影响食物链

可持续发展:既满足当代人的需要,又不对后代人满足其需要的能力构成危害的发展。

可持续发展的基本特征:人与自然协调;经济、社会、自然环境多因素共同发展;开放的社会;公民有社会整体观和地球责任感。

普通生态学复习资料

普通生态学复习资料 这份资料基于本人上课所做的笔记以及最后一节课上朱明德老师所给的重点和 本人的理解整理而成,并不是一份十分全面的复习参考资料,仅供参考。千万 不要过分依赖此复习资料,平时认真听课、勤做笔记、善于思考才是取得高分 的不二法门! 生态学:生态学是研究有机体及其周围环境相互作用关系,以及与社会、经济、人类相互作用关系的一门生物学分支学科。 生态学有方法论和层次观。 生态学的4个组织层次:个体、种群、群落、生态系统。 生态学的5个研究方法:野外考察、实验室分析、模拟实验、网络分析、多方 面整合。 生物圈:是指地球上的全部生物和一切适合于生物栖息的场所,它包括岩石圈 的上层、全部水圈和大气圈的下层。 环境:是指某一特定生物体或生物群体周围一切的总和,包括空间及直接或间 接影响该生物体或生物群体生存的各种因素。 大环境:大环境是指地区环境、地球环境和宇宙环境。 大气候:大环境中的气候称为大气候,是指离地面1.5m以上的气候,是由大范围因素所决定。 小环境:是指对生物有直接影响的邻接环境,即指小范围内的特定栖息地。 生态因子:是指环境要素中对生物起作用的因子,如光照、温度、水分、氧气、二氧化碳、食物和其他生物等。 生境:所有生态因子构成生物的生态环境,特定生物体或群体的栖息地的生态 环境称为生境。 生态因子的作用特征: ○1综合作用:环境中的每个生态因子不是孤立的、单独的存在,总是与其他因子相互联系、相互影响、相互制约的。因此,任何一个因子的变化,都会不同 程度地引起其他因子的变化,导致生态因子的综合作用。 ○2主导因子作用:对生物起作用的众多因子并非等价的,其中有一个是起决定性作用的,它的改变会引起其他生态因子发生变化,使生物的生长发育发生变化,这个因子称主导因子。

《普通生态学》教学大纲

《普通生态学》教学大纲 课程编号:01432450 课程名称:普通生态学学分/学时:2/32 课程层次:全校文化素质教育修读类型:选修考核方式:期末考试80%,平 时成绩20%。 开课学期:春季/秋季适用专业:全校各专业 教学目的:生态学是研究生物与环境相互关系的科学。随着人口的增加和工业、技术的进步,人类正以前所未有的规模和强度影响环境,环境问题的出现,诸如世界上出现的能源耗费、资源枯竭、人口膨胀、粮食短缺、环境退化、生态平衡失调等六大基本问题的解决,都依赖于生态学理论的指导。本课程从个体、种群、群落、生态系统、景观等各个层次了解生物与环境之间的关系,结合不同学科专业介绍环境保护、自然资源开发利用、可持续发展为重点的应用生态学内容,并对生态学各个研究方向的近代研究进展作简要介绍。教学中预期达到以下目标: 1. 建立生物与环境是相互依存、协同进化的概念,对现代生态学的新进展,新成就有基本了解。 2. 人类作用是造成环境破坏的最主要的原因,在未来社会经济发展过程中,保护环境,保护资源是可持续发展的重要保证。 教学基本要求:系统讲授教学大纲规定的内容,突出重点、难点,内容力求新颖;在课堂讲解课程内容的同时,充分利用现代化教学设备,播放相关的多媒体教学软件,提高学生对生态学基本概念的理解。 课程基本内容及学时分配: 第一章绪论(2学时) 本章的重点与难点:本章主要介绍生态学的研究对象、内容、范围、方法以及生态学的最新发展趋势。使学生了解学习生态学,不仅要掌握生物与环境相互作用的一般原理,更要关注人类活动下生态过程的变化以及对人类生存的影响。 第一节地球上的生命 第二节生态学的形成及发展 思考题: 1、试述生态学的定义、研究对象与范围。 2、试述生态学的发展过程。 第二章生物与环境(2学时)

普通生态学考试题习题库2016

《普通生态学》 一、Please explain the following terms (3 points each, 18 points totally). (1)I ntroduction Ecology habitat (2)a utoecology niche(生态位) fundamental niche(基础生态位) competitive exlusion principle(竞争排斥原理) fitness(适合度) environment(环境) Liebig?s law of minimum(利比希最小因子定律) Shelford?s law of tolerance (谢尔福德的“耐受性定律”)ecological valence or amplitude(生态价、生态幅、耐性限度) law of limiting factor(限制因子定律) Vant Hoff?s law(范霍夫定律或Q10定律) developmental threshold temperature(发育起点温度) law of effective temperature(有效积温法则) (3)population ecology Population(种群) ecological invasion(生态入侵) innate capacity of increase (or intrinsic rate of increase)[内禀增长率] density dependence(密度制约) density independence(非密度制约) age structure(年龄椎体或年龄金字塔) Survivorship curve(存活曲线) ecological natality(生态出生率) ecological mortality(生态死亡率) maximum natality(最大出生率) minimum mortality(最低死亡率) ecological strategy(生态对策) (4)community ecology pioneer species(先锋物种) climax (顶级群落) biotic community(生物群落) community succession(群落演替) growth form(生长型) life form(生活型) ectone(群落交错区): edge effect(边缘效应):

普通生态学试题

博士考试专业试题-普通生态学 一、名词解释 1、植物生活型 植物对其综合环境条件长期适应产生的外部表现形式,其形成是不同植物对相同环境产生趋同适应的结果。主要分为五种生活型,一年生植物、隐芽植 物、地面芽植物、地上芽植物、高位芽植物。这五种生活型之间的比例就是一 个地区的生活型谱。 2、内稳态机制 答:是生物控制自身的体内环境使其保持相对稳定的一种机制,是进化发展过程中形成的一种更进步的机制,能减少生物对外界条件的依赖性,大大提高了生物对生态因子的耐受范围。生物的内稳态是有其生理和行为基础的,如动物对体温的控制,即表现出一定的恒温性。 3、生态位:(ecological niche)是指一个种群在生态系统中,在时间空间上所占据的位置及其与 相关种群之间的功能关系与作用。 4、meta种群 答:即联种群,当一个大的兴旺的种群因环境污染、栖息地被破坏或其他干扰而破碎成许多 孤立的小种群的时候,这些小种群的联合体或总体就是一个联种群。 5、meta种群灭绝风险模型 答:pe: 单位时间的局部灭绝概率 若只有一个种群p1=1-pe p2=(1-pe)2 若存在两个种群则p2=1-(p e)(p e)=1-(pe)2 若区域内有x个种群则px=1-(pe)x 结论:多种群能分散灭绝风险,斑块越多,联种群灭绝风险越小 生命表:是按种群生长的时间,或按种群的年龄(发育阶段)的程序编制的,系统记述了种群的死亡或生存率和生殖率. 是最清楚、最直接地展示种群死亡和存活过程的一览表.最初用于人寿保险. 对研究人口现象和人口的生命过程有重要的意义. 静态生命表:又称为特定时间生命表,用于世代重叠的生物,在人口调查中也常用,根据某一特定时刻对种群年龄分布频率的取样分析而获得的,反映了某一特定时刻的剖面。 优点: ①容易使我们看出种群的生存、生殖对策; ②可计算内禀增长率rm和周限增长率λ ③编制较易. 缺点: ①无法分析死亡原因或关键因素 ②也不适用于出生或死亡变动很大的种群.

普通生态学期末考试六套试题和答案解析

WORD格式.整理版 一、解释下例术语(本题5小题,每题3分,共15分) 参考答案: 1、Ecological Amplitude:生态幅,每一种生物对每一种生态因子都有耐受一个范围,其范 围就称为生态辐。 2、Dominant Species:优势种,指群落中对群落的结构和群落环境的形成有明显控制作用的 物种。 3、Niche:生态位,指生物在群落或生态系统中的地位和角色,是物种所有生态特征的总和。 4、Biodiversity:生物多样性。生物多样性是指生命有机体及其赖以生存的生态综合体的多 样性和变异性。生物多样性可以从三个层次上描述,即遗传多样性、物种多样性、生态系统与景观多样性。 5、Biosphere:生物圈;地球上的全部生物和一切适合生物栖息的场所,包括岩石圈的上层、全部水圈和大气圈的下层。 评分标准: (1)英文需翻译成规范的中文名词,不能正确给出的扣1分; (2)要求给出概念的内涵和外延,只简单给出概念本义而未能扩展的扣1分。 二、比较分析以下各组术语(本题3小题,每题5分,共10分) 参考答案 1、趋同适应与趋异适应 趋同适应:不同物种在相似的大环境条件下,可能在生理、行为和形态等方面会表现出相似性。这样导致了不同物种相同的生活型。 趋异适效应:指在不同的环境条件下,同一个物种面对不同的生态压力和选择压力,在生理、行为和形态等方面会有不同的调节,这导致了生态型。 趋同适应与趋异适应都是物种为适应环境条件的而表现出的特性。 2、层片与层次 层片:每一层片均由相同生活型和相似生态要求的不同植物所构成的机能群落。 层片作为群落的结构单元,是在群落产生和发展过程中逐步形成的。层片具有如下特征: ⑴属于同一层片的植物是同一个生活型类别。 ⑵每一个层片在群落中都具有一定的小环境,不同层片的小环境相互作用的结果构成了群落 环境。 ⑶层片的时空变化形成了植物群落不同的结构特征。 层次:群落中植物按高度(或深度)的垂直配置,就形成了群落的层次,强调群落的空间 结构。群落的成层性保证了植物群落在单位空间中更充分地利用自然环境条件。陆生群落的优质.参考.资料

普通生态学名词解释

生态学:生态学是研究生物及环境间相互关系的科学 环境:是指某一特定生物体或生物群体以外的空间,以及直接或间接影响该生物体或生物群体生存的一切事物的总和。 生态因子:是指环境中对生物生长、发育、生殖、行为和分布有直接或间接影响的环境要素。 生态幅ecological amplitude:每一种生物对每一种生态因子都有一个耐受范围,即有一个耐受范围,既有一个生态上的最低点和最高点。在最低点和最高点之间的范围称为生态幅或生态价ecological valence。 大环境macroenvironment:指地区环境,地球环境和宇宙环境。 小环境microenvironment:指对生物有直接影响的邻接环境,即指小范围内的特定栖息地。 大气候 macroclimate:指离地面1.5m以上的气候,是有大范围因素所决定的。小气候 microclimate:小环境中的气候。 生存因子:在生态因子中凡是有机体生活和发育所不可缺少的外界环境因素。生态环境:研究的生物体或生物群体以外的空间中,直接或间接影响该生物体或生物群体生存和发展的一切因素的总和。 生境habitat:具有特定的生态特性的生态体或生态群体总是在某一特定的环境中生存和发展,这一特定环境叫生境。 密度制约因子density dependent factor:对动物种群数量影响的强度随其种群密度而变化,从而调节种群数量的因子,如食物天敌等生物因子。 非密度制约因子 density independent factor:影响强度不随种群密度而变化的因子如温度降水等气候因子。 限制因子limiting factor:任何生态因子,但接近或超过某种生物的耐受极限而组织其生存生长繁殖或扩散时,这个因素称为限制因子。 利比希最小因子定律:植物的生长取决于那些处于最少量状态的营养成分。 耐受性定律:任何一个生态因子在数量上或质量上的不足或过多都将使该种生物衰退或不能生存。 限制因子原理:一个生物或一群生物的生存和繁荣取决于综合的环境条件状况,任何接近或超过耐性限制的状况都可说是限制状况或限制因子。 似昼夜节律:动物在自然界所表现出来的昼夜节律除了由外界因素的昼夜周期所决定的以外,在内部也有自发性和自运性的内源决定,因为这种离开外部世界的内源节律不是24小时,而是接近 24小时,这种变化规律叫似昼夜节律。 多型现象:种群内的个体在形态、生殖力、体重及其他生理生态习性上产生差异,而出现种群内不同生物型. 这种不同不单表现在♀♂相异,同性个体也有不同.如飞虱长短翅; 社会性昆虫等 阿朔夫规律:对于夜出性动物处于恒黑的条件下,它们的昼夜周期缩短,对于夜出性动物处于恒光的条件下,它们的昼夜周期延长,并且这种延长的增强,这种延长越明显。对于日出性动物处于恒黑的条件下,它们的昼夜周期延长,对于日出性动物处于恒光的条件下,它们的昼夜周期缩短,并且这种缩短随着光强的增强,这种缩短越明显。 生物钟:是动物自身具有的定时机制。 临界温度:生物低于或高于一定的温度时便会受到伤害,这一温度称为临界温度。冷害:喜温生物在0℃以上的温度条件下受到的伤害。 冻害:生物在冰点以下受到的伤害叫冻害。

普通生态学重点

生态学重点 名词解释(10空10') 1、环境:是指某一特定生物体或生物群体以外的空间,以及直接、间接影响该生物体或生物群体生存的一切事物的总和,由许多环境要素构成。 2、环境因子:生物体外部的全部环境要素。 3、单体生物:个体清楚,基本保持一致的体形,每一个体来源于一个受精卵。个体的形态和发育都可以预测。如鸟类、兽类、昆虫等。 4、构件生物:由一个合子发育成一套构件,然后发育成更多的构件,形成分支结构。由这些构件组成个体。发育的形式和时间是不可预测,如水稻、浮萍、树木等。 5、同资源集(种)团:生物群落中,以同一方式利用共同资源的物种集合,即占据相似生态位的物种集合。 6、内禀增长能力:① 在种群不受限制的条件下,即能够排除不利的天气条件,提供理想的 食物条件,排除捕食者和疾病,我们能够观察到种群的最大增长能力(rm )。mm最大的瞬 时增长率,即内禀增长率或内禀增长能力。 ②在没有任何环境因素(食物、领地和其他生物)限制的条件下,又种群内在因素决定 的稳定的最大增殖速度称为种群的内禀增长率(intrinsic growth rate ),记作rm。) 7、生物群落:在同一时间聚集在同一地域或生境中的各种生物种群有规律的集合。 8、生态系统:指在一定的空间内,生物成分和非生物成分通过物质循环和能量流动互相作用、互相依存而构成的一个生态学功能单位,这个生态学功能单位称生态系统。 9、生态交错区:①不同的群落之间交错的不同群落中物种共存的地区就称为生态交错区。 ②生态交错区又称群落交错区或生态过渡带,是两个或多个生态地带之间(或群落之间) 的过渡区域。 10、边缘效应:① 群落交错区种的数目及一些种的密度增大的趋势称为边缘效应。 ②指缀块边缘部分由于受外围影响而表现出与缀块中心部分不同的生态学特征的现象。 11、次级生产:初级生产以外的生态系统生产,即消费者利用初级生产的产品进行新陈代谢, 经过同化作用形成异养生物自身的物质,称为次级生产(secondary production),或第二性 生产。 12、生物量:①某一特定观察时刻,某一空间范围内,现有有机体的量。用单位面积或体积的个体数量、重量(狭义的生物量)或含能量来表示,因此它是一种现存量。 ②单位空间内,积存的有机物质的量。 13、优势种:对群落的结构和群落环境的形成有明显控制作用的物种称为优势种,它通常指的是那些个体数量多,生物量高,生活能力较强,即优势度较大的物种。 14、关键种:生物群落中,处于较高营养级的少数物种,其取食活动对群落的结构产生巨大的影响,称关键种。/指的是其消失或削弱能引起整个群落和生态系统发生根本性的变化的物种,它是优势种或建群种中的一部分。 15、生态价:生态每种生物对一种生态因子都有一个生态学上的最低点和一个最高点,最高点和最低点之间的范围称为生态幅或生态价。 16、初级生产:生态系统中绿色植物通过光合作用,吸收和固定太阳能,从无机物合成、转 化成复杂的有机物。由于这种生产过程是生态系统能量贮存的基础阶段,因此,绿色植物的 这种生产过程称为初级生产(primary productio n),或第一性生产。 17、适应:① 生物对环境压力的调整过程。 ②生物所具有的有助于生存和生殖的任何遗传特征。

普通生态学试题

《普通生态学》试题 一、名词解释: 1 环境(中科院-中国科技大学,) 2生态因子(华东师大/98) 3 生态幅(中科院植物所/2003) 4 生态环境 5 生境 6 限制因子 7 驯化 8 协同进化(华东师大/2000) 9 内稳态(华东师大/2001;西双版纳/2003) 10休眠(西双版纳/2003) 11生物学零度 12临界温度 13冷害 14冻害(中科院植物所/2003) 15霜害 16适应组合(中科院地化所) 17辐射适应 18趋同适应(中科院植物所/2001) 19光补偿点(华东师大/2004、中科院植物所/2003) 20光周期现象(中科院地化所) 二、填空题: 1.研究_生物_与_环境__之间相互关系的科学叫做生态学。 2.环境中影响生物的_形态__、_生理__和_分布_等的因素叫生态因素。生态因素可分为_生物因素__和_非生物因素_两类。 3.阳光对植物的_生理_和_分布_起决定作用,另外对植物的__开花时期____也有影响。 4.阳光对动物的___体色___、___视觉___、__繁殖活动____、__生长发育____和___生活习性___也有影响。 5.在海平面20m以下红藻很难生存,这是受非生物因素中的__阳光_的影响。 6.光的生态作用表现在生长、发育、形态建成。 7.在生态学上通常把生物生存的.最适温度、最高温度和最低温度称为温度的三基点。 8.水生植物有三类,分别是沉水植物、浮水植物和挺水植物。 9.陆生植物有三类,分别是湿生植物、中生植物和旱生植物。 10.根据土壤质地可把土壤区分为砂土、壤土和黏土三大类。 三、选择题:(建议将所有题选项按照第一题尽可能排列整齐) 1、环境中影响生物的形态、生理和分布等的因素叫做(D ) A.环境因素B.生物因素C.非生物因素D.生态因素 2、非生物因素不包括下面的(D )

普通生态学复习资料

一 1 .生态因子: 指环境中对生物的生长、发育、生殖、行为和分布有着直接或间接影响的环境要素,如温度、湿度、食物、氧气、二氧化碳和其他相关生物等。 2. 环境:生物赖以生存的外界条件的总和。它包括一定的空间以及其中可以直接或间接影响生物生活和发展的各种因素。 3 .生境:特定群落的生态因子的总和(无机环境)称为生境(Habitat)。生境是生物生活的具体场所,对生物具有更实际的意义。 4. 限制因子:限制生物生长和生存繁殖的任何因子 5. 生态幅:每一种生物对每一种生态因子都有一个耐受范围,指生物控制自身体内环境,使其保持相对恒定状态。即有一个生态上的最低点和最高点。在最低点和最高点之间的范围,称为生态幅。 6 .内稳态:是指生物控制自身体内环境,使其保持相对恒定状态。 7 .适应组合:生物对一组特定环境条件的适应表现出彼此之间的相互关联性,这一整套协同的适应特性,就称为适应组合。 8 .光补偿点:植物光合作用达到最大值时的光照强度,称为该种植物的光饱和点。 9.生态系统;在一定空间中共同栖居着的所有生物(生物群落)与其环境之间由于不断进行物质循环和能量流动过程而形成的统一整体。 10 .有效积温法则:植物和某些变温动物完成某一发育阶段所需总热量(有效积温)是一个常数。 11 .阿伦(Allen)规律:恒温动物身体的突出部分,如四肢、尾巴

和外耳等在低温环境中有变小变短的趋势,以减少散热量。 12 .贝格曼定律(十分之一法则):恒温动物在寒冷地区个体有增大的趋势; 13. 生物圈:指地球上存在生命的圈层。它包括岩石圈的上层、全部水圈和大气圈的下层。 14.种群:是指特定空间内能自由交配、繁殖后代的同种生物个体的集合。 15. 生态对策:各种生物所特有的生活史(一生中生长和繁殖的模式),被视为生存对策。 16. k-选择:密度制约性自然选择(density-dependent natural selection),种群稳定于K附近。 17. r-对策:是生物对不稳定环境的进化适应, r-对策者向着小型化、发育快速、繁殖能量分配高、产生数量多的后代的方向发展,以量取胜。扩散能力极强,大多数先锋生物属于这类种群。 18.倒数产量法则:植物单株平均重量(w)的倒数与密度(d)呈线性关系,即 1/ w = Ad + B。 19. -3/2幂定律:自疏,导致生物个体大小(干重)与种群密度之间的关系,在双对数图上表现为典型的-3/2斜率,这种关系也叫-3/2自疏法则。 20. 种间竞争:具有相似生态要求的物种(两种或多种种群)为了争夺空间和资源,相互抑制,彼此给对方带来不利影响,被称为竞争。 21.高斯假说:生态习性相近(食物、利用资源的方式等相同)的两

普通生态学考试题习题库-有答案tostudent

普通生态学》复习大纲 I . PleaSe explain the following terms.[名词解释] (1)Introduction ecology (生态学):是有关生物与环境(栖息地)相互关系的科学。或者,生态学是研究生物与环境相互关系的科学。 (2)autoecology niche (生态位):生物在环境中占据的位置。 fun dame ntal niche (基础生态位):在生物群落中能够为某一物种所栖息的理论最大空间。realized niche (实际生态位):物种实际所能占有的生态位空间。 competitive exclusion principle (竞争排斥原理):生态位相同的两个物种不可能共存。habitat (栖息地):生物生活的地方。 fitness (适合度):是衡量一个个体存活和生殖成功机会的一种尺度。个体存活的机会和生殖成功的可能性越大,适合度越大。 environment (环境):生命有机体周围一切的总和,包括空间以及可以直接或间接影响有机体生活、生长与繁殖的各种因素。 Liebig?s law of minimum (利比希最小因子定律):在稳定状态下,当某种物质的可利用量最接近于该物种所需的临界最小量时,生物生长就会受到这种最小量因子的限制。 Shelford?s law of tolerance (谢尔福德的“耐受性定律”):当任何一个生态因子在数量上或质量上不足或过多,超过某种生物能够耐受的极限时,均会使该种生物不能生存,甚至灭绝。 ecological valence or amplitude (生态价、生态幅、耐性限度):每一种生物对每一种环境因素都有一个能耐受范围,即有一个生态上的最低点和一个生态上的最高点,在最低点和最高点(或称为耐受性下限和上限)之间的范围,这个能耐受的范围称为生态幅。 law of limiting factor (限制因子定律):在众多环境因子中,任何接近或超过某种生物的耐受性极限而阻止其生存、生长、繁殖或扩散的因素,这个因子称为限制因子。 Vant Hoff?S law (范霍夫定律或Q10定律):在一定范围内,变温动物的体温每增加10C ,生理过程速率加快2倍,我们把这种关系称为范霍恩定律或Q10定律。 developmental threShold temperature (发育起点温度):动物的生长发育是需要一定温度范围的,低于某一温度,动物就停止生长发育,高于这一温度,动物才开始生长发育,这一温度阈值就叫做发育起点温度或生物学零度。 law of effective temperature (有效积温法则):外温动物完成其发育史需要一定的时间和温度的组合,或者说它需要的是一定的总积温(Sum of heat)。 (3)population ecology Population (种群):在一定时间内占据同一空间的同种个体所组成的集合。ecological invasion (生态入侵):生物在人类有意识或无意识情况下带入到一个适宜于其生存或繁衍的地区,致使其种群不断增加,分布区稳步扩大的过程,称为生态入侵。 innate capacity of increase (or intrinsic rate of increase)[内禀增长率]:当食物量和空间条件不受限制并排除同种个体竞争或敌害时,在特定温度、湿度和食物质地等条件下,种群所达到的瞬时最大增长率。 denSity dependence (密度制约):种群参数如出生率、死亡率随着密度的改变而改变。 denSity independence (非密度制约):出生率和死亡不随密度的改变而改变。

普通生态学试题答案

云南大学生命科学学院期末考试 《普通生态学》试卷(GC001)参考答案 一、解释下例术语(本题5小题,每题3分,共15分) 1、Ecological Amplitude:生态幅,每一种生物对每一种生态因子都有耐受一个范围,其范围就称为生态辐。 2、Dominant Species:优势种,指群落中对群落的结构和群落环境的形成有明显控制作用的物种。 3、Niche:生态位,指生物在群落或生态系统中的地位和角色,是物种所有生态特征的总和。 4、Biodiversity:生物多样性。生物多样性是指生命有机体及其赖以生存的生态综合体的多样性和变异性。生物多样性可以从三个层次上描述,即遗传多样性、物种多样性、生态系统与景观多样性。 5、Biosphere:生物圈;地球上的全部生物和一切适合生物栖息的场所,包括岩石圈的上层、全部水圈和大气圈的下层。 二、比较分析以下各组术语(本题2小题,每题5分,共10分) 1、趋同适应与趋异适应 趋同适应:不同物种在相似的大环境条件下,可能在生理、行为和形态等方面会表现出相似性。这样导致了不同物种相同的生活型。 趋异适效应:指在不同的环境条件下,同一个物种面对不同的生态压力和选择压力,在生理、行为和形态等方面会有不同的调节,这导致了生态型。 趋同适应与趋异适应都是物种为适应环境条件的而表现出的特性。 2、层片与层次 层片:每一层片均由相同生活型和相似生态要求的不同植物所构成的机能群落。 层片作为群落的结构单元,是在群落产生和发展过程中逐步形成的。层片具有如下特征: ⑴属于同一层片的植物是同一个生活型类别。 ⑵每一个层片在群落中都具有一定的小环境,不同层片的小环境相互作用的结果构成了群落环境。 ⑶层片的时空变化形成了植物群落不同的结构特征。 层次:群落中植物按高度(或深度)的垂直配置,就形成了群落的层次,强调群落的空间结构。群落的成层性保证了植物群落在单位空间中更充分地利用自然环境条件。陆生群落的成层结构是不同高度的植物或不同生活型的植物在空间上的垂直排列结果。例如,发育成熟的森林中,通常划分为:乔木层、灌木层、草本层和地被层。成层结构是自然选择地结果,它显著提高了植物利用环境资源的能力。 一般层片比层次的范围要窄,因为一个层次的类型可由若干生活型的植物组成。 三、不定项选择题(本题10小题,每题1.5分,共15分) 1、r-对策生物的主要特点有AC 。

扬州大学普通生态学重点

扬州大学普通生态学重点 刘芳杨益众 1.1生态学与昆虫生态学的基本概念 什么是生态学ecology? 研究生命系统与其环境之间相互关系的学科。(马世骏,著名生态学家) 环境又包括非生物环境和生物环境。 Levels of biological organization? Five levels:个体、种群、群落、生态系统、生物圈。 1869年,生态学由德国生物学家恩斯特·海克尔首次描述“研究生物有机物与其周围环境相互关系的科学。” 几个重要概念: Species 种生物个体间相近似而能够交配,产生可育(fertile)的后代; population群,种群指在一定时间内占据一定空间的同种生物的所有个体。Community 群落具有直接或间接关系的多种生物种群的有规律的组合,具有复杂的种间关系。包含一定的空间。 Ecosystem 生态系统指由生物群落与无机环境构成的统一整体。 个体生态学autecology = ethology 群体生态学synecology 生态学的三个主要研究步骤: 1、野外观察与调查。这是基本方法; 2、室内实验测定。进一步完善,检验科学理论和假设。这是重要途径; 3、理论分析。是前两者的升华,可用于解释现象和结果,指导生产实践。 田间昆虫取样调查的方法: A.五点取样:适用于较小或近方形的田块,样点可稍大; B.对角线取样:分单对角线和双对角线,样点可稍大,取样数较少; C.棋盘式取样将田块划分等距、等面积方块,每隔一个中央取点; D.单行线取样适用于成形的作物田; E.“Z”字形取样样点分布沿田边较多,田中较少。主要针对在田间分布不均的昆虫,如红蜘蛛。 昆虫的观测方法: 1、直接肉眼观察; 2、拍打或抖动法(拍离法) 3、抽吸法 4、网捕法 2.1种群生态学 昆虫种群生态学(population ecology of insect)的概念:研究种群,环境和时间、空间,性比、出生率、存活率、迁移率、年龄结构、分布、种内竞争、种间竞争、生态对策、种群模型以及种群调节和数量波动原因等。 种群生态学的首个重要的理论贡献者Thomas Malthus 托马斯·马尔萨斯。他发表了《人口学原理》。 2.1.1 什么是种群?

普通生态学笔记

(课堂笔记) 普通生态学 2012年12月01日 肇庆学院生命科学学院2010级生物科学(师范) 普通生态学

第一章绪论 1 生态学 生态学是研究生命系统与环境系统之间相互作用规律及其机制的科学。 2 生态学的形成与发展 2.1生态学的形成与发展时期 生态学的萌芽时期、建立时期、巩固时期、现代生态学时期。 ▲四大学派:英美学派、法瑞学派、北欧学派、前苏联学派。 2.2总体而言,现代生态学发展趋势:★ (1)从野外转向室内; (2)从定性走向定量; (3)研究重点从个体转向种群和群落; (4)从自然生态转向污染生态(或非自然生态),进而发展到对社会生态系统的研究; (5)从理论走向应用。 第二章生物与环境 要点:生物的环境,环境因子及生态因子,生态因子之间作用特征及生物对环境的适应与改造。 1 物种 1.1 物种的概念 物种 功能单元。 1.2 物种的特点 (1)物种是由内聚因素(生殖、遗传、生理、行为、相互识别系统等)联系起来的个体集合;(2)物种是自然界真实存在的; (3)物种是一个可随时间进化改变得个体集合; (4)物种是生态系统中的功能单位。 2 环境 2.1 环境★ 环境是指某一特定生物体或生物群体意外的空间, 物的总和,由许多环境要素构成,这些环境要素成为环境因子。

2.2 生境★ 生境是不同于环境的另一个重要的生态学概念,生境又称栖息地, 的综合体,即生物生活的具体场所。 2.3 条件和资源★ 环境因子可分为条件和资源两类,不可消耗的称为条件,可被消耗的成为资源。 3 生态因子 3.1 生态因子★ 环境中对生物的生长、发育、生殖、行为和分布有着直接或间接影响的环境要素。 生物起作用的因子,环境因子则是指生物外部的全部环境要素。) 3.2 生态环境 所有生态因子构成生物的生态环境。 3.3 生态因子的分类★ (1)通常分类: ①生物因子:有机体(同种和异种); ②非生物因子:温度、光、湿度、pH、氧气等。 (2)有的学者分为五类:气候因子、土壤因子、地形因子、生物因子、人为因子。 (3)Simith等将其分为:密度制约因子和非密度制约因子。 3.4 生态因子的空间分布特征★ (1)维度地带性 从赤道到两级,整个地球表面具有过渡状的分带性规律,受太阳辐射引起的温度变化影响。(2)垂直地带性 因太阳辐射和水热状况随着地形高度的不同而不同,生物和气候 自山麓至山顶呈垂直地带分布的规律性变化。受海拔高度引起的温度变化影响。 (3)经度地带性 地球内在因素如大地构造形成地貌和海洋分异引起经度地带性分布。受水分分布不均匀影响。

普通生态学

普通生态学作业 固体废物污染 固体废物污染 定义:固体废物排入环境所引起的环境质量下降而有害于人类及其他生物的正常生存和发展的现象。

固体废物按来源大致可分为生活垃圾、一般工业固体废物和危险废物三种。此外,还有农业固体废物、建筑废料及弃土。固体废物如不加妥善收集、利用和处理处置将会污染大气、水体和土壤,危害人体健康。 概述 生活垃圾是指在人们日常生活中产生的废物,包括食物残渣、纸屑、灰土、包装物、废品等。一般工业固体废物包括粉煤灰、冶炼废渣、炉渣、尾矿、工业水处理污泥、煤矸石及工业粉尘。危险废物是指易燃、易爆、腐蚀性、传染性、放射性等有毒有害废物,除固态废物外,半固态、液态危险废物在环境管理中通常也划入危险废物一类进行管理。 固体废物具有两重性,也就是说,在一定时间、地点,某些物品对用户不再有用或暂不需要而被丢弃,成为废物;但对另些用户或者在某种特定条件下,废物可能成为有用的甚至是必要的原料。固体废物污染防治正是利用这一特点,力求使固体废物减量化、资源化、无害化。对那些不可避免地产生和无法利用的固体废物需要进行处理处置。 固体废物还有来源广、种类多、数量大、成分复杂的特点。因此防治工作的重点是按废物的不同特性分类收集运输和贮存,然后进行合理利用和处理处置,减少环境污染,尽量变废为宝。 固体废物污染现状 2003年,全国工业固体废物产生量为10.0亿吨,比上年增加6.3%;工业固体废物排放量为1941万吨,比上年减少26.3%。工业固体废物综合利用量为5.6亿吨,综合利用率为55.8%,比上年增加3.8个百分点。危险废物产生量1171万吨,比上年增加17.1。 2003年,全国生活垃圾清运量为14857万吨,比上年增加8.8%;其中生活垃圾无害化处理量为7550万吨,比上年增加2.0%,生活垃圾无害化处理率为50.8%。 固体废物污染的危害 对土壤的污染 固体废物长期露天堆放.其有害成分在地表径流和雨水的淋溶、渗透作用下通过土壤孔隙向四周和纵深的土壤迁移。在迁移过程中,有害成分要经受土壤的吸附和其他用。通常,由于土壤的吸附能力和吸附容量很大,随着渗滤水的迁移,使有害成分在土壤固相中呈现不同程度的积累,导致土壤成分和结构的改变,植物又是生长在土壤中,间接又对植物产生了污染,有些土地甚至无法耕种。例如,德国某冶金厂附近的土壤被有色冶炼

普通生态学知识点

1、生态学概念:是研究生物生存条件、生物及其群体与环境相互作用的过程及其相互规律的科学,其目的是指导人与生物圈(即自然资源与环境)的协调发展。 2、生态环境问题:在全球变化中,比较严峻的,最引人关注的是全球变暖、臭氧层破坏、生物多样性的丧失、酸雨、荒漠化及生态安全等生态问题。 3、可持续性发展:是指既满足现代人的需求,以不损害后代人满足需求的能力,换句话说,就是指经济、社会、资源和环境保护协调发展,它们是一个密不可分的系统,既要达到发展经济的目的,又要保护好人类赖以生存的大气、淡水、海洋、土地和森林等自然资源和环境,使子孙后代能够永久持续发展和安居乐业。 4、系统分析的概念:是在明确研究目的和系统边界的基础上,分析系统组成要素、层次结构及各组分间相互影响的定量关系,建立系统的数学模型,并利用计算机对系统结构优化,使系统具有功能整合作用的研究过程。 5、系统分析的途径: 黑箱法:完全忽略系统的内部结构,只通过输入或输出的信息来研究系统的转化特征和反应特征的研究途径。 白箱法:建立在对系统的组分、构成及其相互联系,有透彻了解的基础上的系统研究方法。灰箱法:对系统的内部结构、功能只了解一部分,来研究其整体功能。 6、生态系统:是在一定时间内、空间范围内,生物与生存环境、生物与生物之间的密切联系、相互作用,通过能量流动、物质循环、信息传递构成的具有一定结构的功能整体。 7、生态系统按人类对生态系统影响程度分为:自然生态系统、人工生态系统、半自然生态系统。(表:不同生态系统的比较) (3)、防尘固沙,保护农田;(4)、净化空气,防治污染; (5)、降低噪音,美化环境;(6)、提供燃料,增加肥源。 9、农业生态系统的特点: ①、为提高农业生态系统的生产力而加入大量非自然资源; ②、人的管理使农业生态系统多样性大为降低,从而使生态系统中特定的食物产量达到最大; ③农业生态系统的主要植物和动物并非完全是自然选择下形成的,而是在人工选择下形成的 ④、农业生态系统收到来自外部有目的地调控,并非向自然生态系统那样,通过内部亚系统

2017普通生态学重点

2017普通生态学复习要点 绪论 1、生态学: ①美国生态学家E. Odum(1985):生态学是研究生态系统的结构和功能的科学,并著有《生态 学基础》 ②经典定义:生态学是研究生物与环境、生物与生物之间相互关系的一门生物学基础学科 2、生态学的研究方法:野外研究(首先产生的、第一性的)、实验研究(分析因果关系的一种有用的 补充手段)、模型研究(高度的抽象、理论生态学)。 3、现代生态学发展的特点和主要趋势:①研究层次向宏观和微观方向发展。现代生态学一方面向区域性、全球性乃至宇宙性方面发展;另一方面是向微观方向发展,与分子生物学、分子遗传学等结合。②研究范围的扩展。一是生态学的研究内容和任务扩展到人类社会,渗入到人类的经济活动,成为自然科学与社会科学相接的桥梁之一;二是应用生态学得到迅速发展。③研究方法手段的更新。野外自计电子仪器、遥感与地理信息系统、生态建模等现代化测试技术、设备和手段得到广泛应用;系统分析方法以及系统生态学的发展,进一步丰富了本学科的方法论。④生态学研究的国际性日益增强。 第一章.生物与环境 生态因子生物与环境的相互作用最小因子、限制因子和耐受限度生态位 1.生态因子:环境要素中对生物起作用的因子,如光照,温度,水分,氧气,二氧化碳,食物和其他生物等。 1

2.利比希最小因子定律:低于某种生物需要的最小量的任何特定因子,是决定该种生物生存和分布的根本因素。(每种植物都需要一定种类和数量的营养物,如果其中有一种营养物完全缺失,植物就会死亡。如果这种营养物数量极微,植物的生长就会受到限制。) 3、(谢尔弗德)耐受性定律:任何一个生态因子在数量上或质量上不足或过多,即当其接近或达到某种生物耐受限度时,会使该种生物衰退或者不能生存。 注:两个定律的异同(重点):(先答定义)最小因子定律不太完善,而耐受性定律较为完善,主要表现在以下三个方面:①耐受性定律不仅考虑了因子过少,同时也考虑了因子过多的因素;②耐受性定律不仅估计了环境因子量的变化,还估计了生物本身的耐受限度;③耐受性定律可以允许生态银子之间的相互作用。 4.生态幅/ 生态价(选择):每一种生物对每一种生态因子都有一个耐受范围,即有一个生态上的最低点和最高点,在最低点和最高点(或者称耐受性的下限和上限)之间的范围。(了解在什么条件下发生变化,代表什么?生殖、生长、存活,选择即可) 5.适应组合(名词解释):生物对非生物环境表现出的一整套的协同适应特性。例如:骆驼对炎热干燥的环境的适应;含露水的植物嫩叶,多汁的植物; 6.协同进化(名词解释):生物之间复杂的相互作用以及伴随的两种生物特有的形态、生理和生态的适应性特征,是通过自然选择,适者生存法则而形成的。是一个物种的性状作为对另一个物种性状的反应而进化,而后一个物种的这一性状又是作为前一个物种的反应而进化。 7.生态位:有机体在环境中占据的地位和角色。是某一物种的个体与环境(包括非生物和生物的环境)之间特定关系的总和。 (1)基础生态位:生物群落中能够为某一物种所栖息的理论最大空间 (2)实际生态位: 2

普通生态学重点整理

1绪论 【生态学的定义】 研究生物与生物\生物与环境相互作用规律的科学 【学科发展简史】 1869年德国生物学家E.Haeckel第一次提出。英文名Ecology起源于两个希腊字:Oikos(住所、家庭)和Logos(学科),即“生境的学科” 【分支学科】 按组织水平划分 按研究对象划分 按研究对象的 生境类型划分 按主要交叉学科 按应用领域划分 全球(生物圈)生态 植物生态学 陆地生态学 生理生态学 农业生态学 景观生态 动物生态学 海洋生态学 数学生态学 工业生态学 生态系统群落生态 微生物生态学 淡水生态学 化学生态学 城市生态学 种群生态 昆虫生态学 湿地生态学 物理生态学 环境生态学 个体生态 苔藓生态学 岛屿生态学 地理生态学 恢复生态学 细胞生态 荒漠生态学 进化生态学 污染生态学 分子生态 冻原生态学 遗传生态学 渔业生态学 湖泊生态学 2生命系统及其环境 【生态因子】 构成生态环境的各种因素称生态因子,是指环境中对生物生长、发育、生殖、行为和分布有直接或间接影响的环境要素(影响生物生长发育的环境变量) 生态因子的类型: 【限制因子】 生物的生存和繁殖依赖于各种生态因子的综合作用,其中限制生物生存和繁殖的关键性因子就是限制因子(各生态因子中对生物生长发育起限制作用的因子)

【生态幅(生态阈)】 生物正常生长发育的生态因子范围(生命系统在某一生态因子维度上分部的最低点和最高点间的跨度) 【生态位】 由各生态幅构成的某生物生存的生态定位or一个生命系统在某一个因子梯度上的生态幅,即系统在空间、食物以及环境条件等资源谱中的位置or在自然生态系统中一个种群在时空、空间上的位置及其与相关种群之间的功能关系 3 分子生态学 【分子生态定义】 是分子生物学与生态学融合而成的新的生物学分枝学科。是研究生物活性分子在其显示与生命关联的活动中所牵连到的分子环境问题。其定义有两层含义:1、运用现代分子生物学技术研究传统生态学问题;2、生物活性分子表现其生命活动时的分子生态条件的规律性 【理论基础】 一、分子进化的中性理论 1.理论核心:分子水平上的绝大多数突变是选择上中性的,因而他们在进化中的命 运是随机漂变的,而不是由自然选择决定的。 2.中性理论对种内遗传变异的解释:分子水平上的绝大部分种内遗传变异(即遗传 多态现象)是选择上中型的,突变速率和遗传漂变速率决定遗传多态性的变化速率。 3.中性突变与自然选择的辨证统一:少量突变的非中性。 4.中性理论在分子生态中的应用:排除假设的基础。种群遗传进化:选择、突变、 随机遗传漂变、迁移、自然灾害、社会结构等。 二、Hardy-Weinberg principle (哈德-温伯格原理) 1.内涵:在满足下列假设的条件下,生物种群的等位基因频率和基因型频率保持不 变(1)有性繁殖并随机交配;(2)等位基因在雌雄两性中随机交配;(3)种群足够大; (4)世代不重叠;(5)没有自然选择、突变和迁移。 2.分子生态意义:作为基本判别假设和理论基础。 三、种群分化是生物进化的必要途径 1.种群分化的结果:新种形成、种群的杂合度降低 2.Wright’s F统计方法: F近似地代表等位基因被固定的可能性,又称固定系数。 亚种群相对于整个种群的近交系数:F ST= (H T-H S)/H T 个体相对于所属亚种群的近交系数:F IS= (H S-H I)/H S 个体相对于整个种群的近交系数:F IT= (H T-H I)/H T H I ,H S ,H T分别表示个体、亚种群和种群的平均杂合度;(1- F IS)(1- F ST)=(1- F IT) 四、随机遗传漂变是种群进化的重要动力 1.小种群比大种群发生漂变的速度快,所以等位基因在小种群中被固定的平均时间 比大种群短。2.一个等位基因被固定的概率等于其此时在种群中的频率,所以稀有基因更易被淘汰。3.随机遗传漂变降低种群的遗传多样性。4.因为新突变被固定的概率等于其此时在种群中的频率,所以,新突变在小种群中被固定的可能性大于在大种群中。5. 在种群中,局部种群越小其遗传多样性丧失的越快,局部种群间的遗传分化就越大。6. 对所有中性等位基因的作用一致,因此,在没有其它进化动力的条件下,不同的中性位

相关主题
文本预览
相关文档 最新文档