当前位置:文档之家› 基于Fluent软件的旋流池分离效果数值模拟

基于Fluent软件的旋流池分离效果数值模拟

基于Fluent软件的旋流池分离效果数值模拟
基于Fluent软件的旋流池分离效果数值模拟

fluent 软件介绍

百科名片 Fluent是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%,凡是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮机设计等方面都有着广泛的应用。 简介 Fluent算例 CFD商业软件FLUENT,是通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转换与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。 基本特点 FLUENT软件具有以下特点: FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法; 定常/非定常流动模拟,而且新增快速非定常模拟功能; Fluent 前处理网格划分 FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而

且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题; FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术; FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的; FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)和V2F模型等。另外用户还可以定制或添加自己的湍流模型; 适用于牛顿流体、非牛顿流体; 含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射; 化学组份的混合/反应; 自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型; 融化溶化/凝固;蒸发/冷凝相变模型; 离散相的拉格朗日跟踪计算; 非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变); 风扇,散热器,以热交换器为对象的集中参数模型; 惯性或非惯性坐标系,复数基准坐标系及滑移网格; 动静翼相互作用模型化后的接续界面; 基于精细流场解算的预测流体噪声的声学模型; 质量、动量、热、化学组份的体积源项; 丰富的物性参数的数据库; 磁流体模块主要模拟电磁场和导电流体之间的相互作用问题; 连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题; 高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算; FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF); FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。 在CFD软件中,Fluent软件是目前国内外使用最多、最流行的商业软件之一。Fluent 的软件设计基于"CFD计算机软件群的概念",针对每一种流动的物理问题的特点,采用适合于它的数值解法在计算速度、稳定性和精度等各方面达到最佳。由于囊括了Fluent Dynamical International比利时PolyFlow和Fluent Dynamical International(FDI)的全部技术力量(前者是公认的在黏弹性和聚合物流动模拟方面占领先地位的公司,后者是基于有限元方法CFD软件方面领先的公司),因此Fluent具有以上软件的许优点 软件简介

除雾器设计

1 除雾器 1)除雾器功能简介[孙琦明湿法脱硫工艺吸收塔及塔内件的设计选型中国环保产业 2007.4 研究进展18-22] 除雾器用来分离烟气所携带的液滴。在吸收塔内,由上下二级除雾器(水平式或菱形)及冲洗水系统(包括管道、阀门和喷嘴等)组成。经过净化处理后的烟气,在流经两级卧式除雾器后,其所携带的浆液微滴被除去。从烟气中分离出来的小液滴慢慢凝聚成较大的液滴,然后沿除雾器叶片往下滑落至浆液池。在一级除雾器的上、下部及二级除雾器的下部,各有一组带喷嘴的集箱。集箱内的除雾器清洗水经喷嘴依次冲洗除雾器中沉积的固体颗粒。经洗涤和净化后的烟气流出吸收塔,最终通过烟气换热器和净烟道排入烟囱。 2)除雾器本体 除雾器本体由除雾器叶片、卡具、夹具、支架等按一定的结构形成组装而成。其作用是捕集烟气吕中的液滴及少量的粉尘,减少烟气带水,防止风机振动。除雾器叶片是组成除雾器的最基本、最重要的元件,其性能的优劣对整个除雾系统的运行有着至关重要的影响。除雾器叶片通常由高分子材料(如聚丙稀、FRP等)或不锈钢(如317L)2大类材料制作而成。除雾器叶片种类繁多。按几何形状可分为折线型(a、d)和流线型(b、c),按结构特征可分为2通道叶片和3通道叶片。 除雾器布置形式通常有:水平型、人字型、V字型、组合型等大型脱硫吸收塔中多采用人字型布置,V字型布置或组合型布置(如菱形、X型)。吸收塔出口水平段上采用水平型

除雾器从工作原理上可分为折流板和旋流板两种形式。在大湿法中折流板除雾器应用的较多。折流板除雾器中两板之间的距离为30~50mm,烟气中的液滴在折流板中曲折流动与壁面不断碰撞凝聚成大颗粒液滴后在重力作用下沿除雾器叶片往下滑落,直到浆液池,从而除去烟气所携带的液滴。折流板除雾器从结构形式上,又可分为平板式和屋顶式两种。屋脊式除雾器设计流速大,经波纹板碰撞下来的雾滴可集中流下,减轻产生烟气夹带雾滴现象,除雾面积也比水平式大,因 此除雾效率高,出口排放的液滴浓度≤50 3 mg。一般常规设计要求除雾器出 /m 口排放的液滴浓度≤753 mg。本工程吸收塔选择除雾效果相对好的屋脊式除 /m 雾器。 3).除雾器冲洗系统 除雾器冲洗系统主要由冲洗喷嘴、冲洗泵、管路、阀门、压力仪表及电气控制部分组成。作用是定期清除除雾器叶片捕集的液滴、粉尘,保持叶片表面清洁,防止叶片结垢和堵塞。除雾器堵塞后,会增加烟气阻力,结垢严重时会导致除雾器变形、坍塌和折断。对于正常的二级除雾器,第2级除雾器后端面仅在必要时才进行冲洗,避免烟气携带太多液滴。旁路取消后,为避免浆液在第2级除雾器上部沉积引起堵塞,要求厂家在除雾器设计时,增加了二级除雾器后端面手动冲洗系统,防止除雾器堵塞时无法进行清除。除雾器冲洗水阀门是动作十分频繁的阀门,应选择质量可靠的产品。除雾器冲洗水喷头距除雾器间距。按0.5 m~0.6m 计,两层除雾器之间还设有上下冲水的两层水管,其间隔应考虑到便于安装维修。加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差约3.4 m~3.5 m。以上尺寸适于平铺波纹板式除雾器。如用菱形除雾器,其空问高度将可降l m左右。 4)除雾器的主要性能及设计参数 ①烟气流速:烟气流速是以空床气速u表示,也有用空床气体动能因子F,它是一个重要技术参数,其取值大小会直接影响到设备的除雾效率和压降损失,也是设备设计或核算生产能力的重要依据。通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行,流速的增加将造成系统阻力增加,使得能耗增加。同时流速的增加有一定的限度,流速过高会造成二次带水,从而降低除雾效率。常将通过除雾器断面的最高且又不致二次带水时的烟气流速定义为临界气流速度,该速度与除雾器结构、系统带水负荷、气流方向、除雾器布置方式

分离原理

分离器工作原理.闪蒸原理 核心提示:气液分离器的工作原理是什么?饱和气体在降温或者加压过程中。一部分可凝气体组分会形成小液滴·随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。汽液分离罐是利用丝网除沫。... 气液分离器的工作原理是什么?饱和气体在降温或者加压过程中。 一部分可凝气体组分会形成小液滴·随气体一起流动。气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。一般气体由上部出口,液相由下部收集。汽液分离罐是利用丝网除沫。 或折流挡板之类的内部构件。 将气体中夹带的液体进一步凝结。 排放,以去除液体的效果。基本原理是利用气液比重不同。 在一个忽然扩大的容器中。 流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被入口高速气流甩到器壁上。 碰撞后失去动能而与转向气体分离。分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体.气液分离器。 根据分离器的类型不同,有旋涡分离。 折留板分离,丝网除沫器。 旋涡分离主要是根据气体和液体的密度。 做离心运动时,液体遇到器壁冷凝分离。基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的.使用气液分离器一般跟后系统有关。 因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。工厂里常见的气液分离器是利用闪蒸的原理。 闪蒸就是介质入渗入渗出一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水。 而游离的水和比重大的液滴会由于重力作用分离出来。 另外分离器一般带捕雾网。 通过捕雾网可将气相中部分大的液滴脱除。气液分离器无非就是让互相混杂的气相液相各自聚合成股。 液滴碰撞聚结,气体除去液滴后上升。 从而达到分离的目的。原理是利用气液比重不同,在一个忽然扩大的容器中,流速降低后,在主流体转向的过程中。

FLUENT算例 (5)搅拌桨底部十字挡板的流场分析

搅拌桨底部十字挡板的流场分析搅拌设备在各个行业运用的十分广泛,搅拌就是为了更够更快速更高效的将物质与介质充分混合,发生充分的反应,而搅拌中存在着许多不利于混合的情况,比如液体旋流。为了解决这个问题,之前很多人提出在罐体的侧壁上增加挡板,可以抵消大部分旋流,然后大部分都是研究侧挡板的,对于底部挡板的研究十分少,本文就在椭圆底部挡板增加十字型挡板,对罐体中进行流场分析。 1.Gambit建模 首先用Gambit建模图形如下: 图1:Gambit建立的模型 分为两个区域,里面的圆柱为动区域,外面包着的大圆柱设为静区域,静区域划分网格大,划分粗糙,内部动区域划分网格小,划分精细。边界条件主要设置了轴,搅拌桨,底部挡板,上层液面。以下就是fluent进行数值模拟。 2.fluent数值模拟 2.1导入case文件

2.2对网格进行检查 Minimum volume的数值大于0即可。 图2网格检查2.3调节比例 单位选择mm单位。 图3比例调节2.4定义求解器参数 设置如图4所示

图4设置求解器参数2.5设置能量线 图5能量线 2.6设置粘度模型,选择k-e模型 k-e模型对该模型模拟十分实用。

图6粘度模型2.7定义材料 介质选择液体水。 2.8定义操作条件

由于存在着终于,建模时的方向向上,所以在Z轴增加一个重力加速度。 图8操作条件 2.9定义边界条件 在边界设置重,动区域如图所示,将材料设成水,motion type设成moving reference frame (相对滑动),转速设为10rad/s,单位可在Define中的set unit中的angular-velocity设置。而在在轴的设置中,如上图所示,将wall motion设成moving wall,motion设成Absolute,速度设成-10,由于轴跟动区域速度是相对的,所以设成反的。

旋流板式气液分离器的放大规律解读

第3卷第5期过程工程学报 Vol.3 No.5 2003年10 月 The Chinese Journal of Process Engineering Oct. 2003 收稿日期:2003–03–12, 修回日期:2003–05–06 基金项目:中国石油化工股份有限公司科技开发资助项目(编号: 300023 作者简介:魏伟胜(1962–, 男, 广东省五华县人, 硕士, 高级工程师, 主要研究催化反应工程, E-mail: weiws@https://www.doczj.com/doc/557022138.html,. 旋流板式气液分离器的放大规律 魏伟胜,樊建华,鲍晓军, 石冈 [石油大学(北京中国石油天然气集团公司催化重点实验室, 北京 102200] 摘要:对旋流板式气液分离器在3种规模、18种旋流板结构下进行了模型实验研究,考察了旋流板结构参数(径向角、仰角和叶片数量对分离效率和压降的影响,并建立了预测分离器压降的关联式,为旋流板结构参数的确定提供了依据. 工业应用的标定结果表明分离器压降预测式是准确的,它可用于工业气液分离器的放大设计. 关键词:气液分离;旋流板;分离效率;压降 中图分类号:TQ028.4 文献标识码:A 文章编号:1009–606X(200305–0390–06 1前言 旋流板式气液分离器是一种典型的基于离心分离原理的气液分离器[1,2]. 分离器的主体为一圆柱形筒体,上部和下部均有一段锥体,见图1. 在筒体中部放置的锥形旋流板是除雾的关键部件,其结构如图2所示(详细结构可参考文献[3]. 旋流板由许多按一定仰角倾斜的叶片放置一圈,当气流穿过叶片间隙时就成为旋转气流,气流中夹带的液滴在惯性的作用下以一定的仰角射出而被甩向外侧,汇集流到溢流槽内,从而达到气液分离的目的. 叶片在竖直方向的倾斜程度用仰角α表示,在径向的排列方式用径向角β表示. 叶片数量、仰角α和径向角β是旋流板的3个重要参数.

FLUENT算例 (9)模拟燃烧

计算流体力学作业FLUENT 模拟燃烧 问题描述:长为2m、直径为0.45m的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为0.0005 m,高0.05 m的薄板,以利于甲烷与空气的混合。燃烧火焰为湍流扩散火焰。在燃烧器中心有一个直径为0.01 m、长为0.01 m、壁厚为0.002 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。空气从喷嘴周围以0.5 m/s的速度进入燃烧器。总当量比大约是0.76(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为5.7×103。 假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O 反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。 1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件 2、使用非耦合求解器求解燃烧问题 3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果 4、利用分布云图检查反应流的计算结果 5、预测热力型和快速型的NO X含量 6、使用场函数计算器进行NO含量计算 一、利用GAMBIT建立计算模型 第1步启动GAMBIT,建立基本结构 分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的

二维结构就可以了,几何结构如图2所示。 (1)建立新文件夹 在F盘根目录下建立一个名为combustion的文件夹。 (2)启动GAMBIT (3)创建对称轴 ①创建两端点。A(0,0,0),B(2,0,0) ②将两端点连成线 (4)创建小喷嘴及空气进口边界 ①创建C、D、E、F、G点

低温分离器用于天然气井口气脱水脱烃装置选型和设计方案

高效低温分离器用于天然气井口气脱水脱烃装置选型和设计方案 诺卫能源技术(北京)有限公司 在井口天然气项目中,均建设有天然气脱水脱烃橇块装置。脱水脱烃橇块装置,主要作用是脱除原气携带的易凝析液,包括水和多碳烃。关于井口天然气脱水脱烃橇块装置原气分离核心设备,主要涉及到前冷分离器和后冷分离器,尤其是后冷分离器的选型和设计。设计院了解诺卫能源技术公司在国内外不少天然气项目上设计提供过诸多类型的天然气分离器,故而向诺卫能源技术公司请求提供技术方案。 这里,提供一套天然气处理厂脱水脱烃单元简易流程图,供大家一起分享,分 析和讨论。 附天然气脱水脱烃单元简易流程图: 从流程图可知,前冷分离器,即原料气分离器,主要用于脱除原料天然气中经 前冷器后形成的凝析油液滴液沫。后冷分离器,即低温分离器,主要用于脱除天然气经乙二醇喷淋脱水后气相挟带的乙二醇/水液滴液沫。 原料气分离器和低温分离器,均用于高效脱除气流中携带的液滴液沫。相对而言,原料气经前冷形成的液滴液沫量相对较少,而低温分离器则需要处理带液量高的乙二醇喷淋洗涤的天然气。从处理气流中不同带液量工况来看,原料气分离器宜采用立式结构,而低温分离器则宜采用卧式结构。 故建议设计院和天然气处理厂在今后的新项目中,将原来采用的立式结构的低 温分离器调整为卧式结构。卧式结构的分离器,在相同壳体尺寸的分离器储液能力要大不少。

由于天然气原气来自于集气单元,天然气不仅含有凝析油和水,还含有高粘性 凝胶质和颗粒物,脱水脱烃装置这种工况下的分离器内件,建议采用多因子旋流子母分离除沫器或羽叶高效除沫除雾分离器等高稳定分离效率和高抗堵塞性能的动 力学高效气液除沫分离技术设备,不宜采用传统的丝网式、滤网式、滤芯式除沫分离内件设备。后者的内件很容易堵塞,运行压降高,内件更换维护频繁,运行维护费用高,且还需设置备机以便在滤芯更换期间切换使用。 并且,由于上游集气单元及更前端工况变化,工况波动大。且工艺设计工况, 与设备实际运行工况差别较大。因而,必须选用操作弹性大、分离效率高、运行稳定性高的动力学高效气液除沫除雾分离器,如G50型羽叶除沫除雾分离内件或G54型多因子旋流子母分离除沫内件。上世纪中叶以来的第一代雪弗龙简易光板折流板、旋流板、大直径旋风分离器等,都不太适应大幅波动的工况。 大型特大型天然气处理厂往往采用TEG脱水工艺。TEG脱水工艺装置属于塔 系脱水,包含吸收塔、闪蒸塔、再生塔、汽提塔等塔系混成处理,适于大型、特大型天然气生产和集输处理,比如20亿立方以上规模项目,即采用TEG脱水方式,我们为客户在SNG项目提供的脱水技术即为TEG法。TEG脱水塔系,操作压力 不能太高,否则,塔体设备壁厚太大,投资太高。而乙二醇法脱水工艺适于井口高压超高压工况尤其是井口天然气脱水脱烃,装置易于小型橇块化,国内外不少井口气处理工艺均沿用该工艺。不排除未来的TEG改进工艺用于这类工况压力很高的 井口气项目。 关于动力学分离技术及其内件设计计算,需要提醒大家如下: 国内外有的厂家也开始模仿采用诺卫能源技术公司公司的羽叶除沫除雾分离内件。但是,羽叶除沫除雾分离技术,是基于其精准动力学分离系统平台设计技术获得的设计结果和组态形式。必须根据不同温度和压力工况下的气相组成和平均分子

大涡模拟的FLUENT算例2D

Tutorial:Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Introduction The purpose of this tutorial is to provide guidelines and recommendations for the basic setup and solution procedure for a typical aeroacoustic application using computational aeroacoustic(CAA)method. In this tutorial you will learn how to: ?Model a Helmholtz resonator. ?Use the transient k-epsilon model and the large eddy simulation(LES)model for aeroacoustic application. ?Set up,run,and perform postprocessing in FLUENT. Prerequisites This tutorial assumes that you are familiar with the user interface,basic setup and solution procedures in FLUENT.This tutorial does not cover mechanics of using acoustics model,but focuses on setting up the problem for Helmholtz-Resonator and solving it.It also assumes that you have basic understanding of aeroacoustic physics. If you have not used FLUENT before,it would be helpful to?rst review FLUENT6.3User’s Guide and FLUENT6.3Tutorial Guide. Problem Description A Helmholtz resonator consists of a cavity in a rigid structure that communicates through a narrow neck or slit to the outside air.The frequency of resonance is determined by the mass of air in the neck resonating in conjunction with the compliance of the air in the cavity. The physics behind the Helmholtz resonator is similar to wind noise applications like sun roof bu?eting. We assume that out of the two cavities that are present,smaller one is the resonator.The motion of the?uid takes place because of the inlet velocity of27.78m/s(100km/h).The ?ow separates into a highly unsteady motion from the opening to the small cavity.This unsteady motion leads to a pressure?uctuations.Two monitor points(Point-1and Point-2) act as microphone points to record the generated sound.The acoustic signal is calculated within FLUENT.The?ow exits the domain through the pressure outlet.

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

以溢流锥降液旋流板技术原理及应用简况

一、旋流板技术的原理及应用简况 1970年代我们为浙江松门盐场海水提溴装置的设计、开车而进行Φ300湍球塔试验时,发现空塔气速大于3m/s后,雾沫夹带愈来愈严重,以至无法坚持实验。我们分析:一般的除雾方法不能适应或结构复杂,另一方面,气速高,正好利用离心原理除雾。于是制作了形状像风车叶轮的旋流除雾板(参看图2顶部),放在塔的近顶部,它本身不动,而是使气流通过它以后发生旋转,其中夹带的雾滴在离心力的作用下甩向塔壁,能得到分离。试用下来效果良好,保证了湍球塔试验的进行。 72年初对旋流板除雾器的性能及结构作了进一步的试验和改进,在空塔气速3~5m/s下,测得其除雾效率在99%以上,压降约10~30mm水柱【1】。对应于板的开孔率约30%,穿孔气速约10~17m/s,相当于旋风分离器内的中、低速。它比旋风器简单,阻力也较小。试验中还观察到:由于旋流叶片的折流作用,一小部分雾滴直接碰撞到叶片上而被分离。 在除雾试验取得成功的基础上,考虑到旋流板负荷高(空速大)、压降低的特点,如用于气液接触,有可能突破一般塔板的负荷上限: (1)雾沫夹带。从旋流板良好的除雾性能,可以估计到它的夹带限应比一般塔板高很多。 (2)淹塔或液泛。气、液在塔板上接触以后,由于离心力的作用,不仅气流内的液滴易于分离,而且液流内的气泡也易于分离,应能提高溢流管的通过能力 及淹塔限。 (3)压降。旋流板因开孔率大而自身的阻力压降相当小,作塔板使用时属喷射型,液层薄,湿板压降也应当比较小。 从传质、传热的角度看,喷射型塔板的效率一般较低,而且旋流板现为片型结构,片与片间的距离较大,这是不利的因素;但在离心力场内,液滴与气流间有附加的相对运动,这是有利因素。板效率究竟有多大?有关因素的影响如何?是它能否实际应用的关键之一,需通过试验考察。 还考虑到用作塔板时,有利于除雾板的主要特征是: (1)通过塔板的液滴负荷要大得多。 (2)不仅要求除雾,更主要的是提供尽可能良好的气液接触机会。 1975年仍在Φ300塔中,对不同结构的旋流塔板用空气—水系统进行了流体力学及传

大涡模拟的fluent算例

Introduction:This tutorial demonstrates how to model the2D turbu-lent?ow across a circular cylinder using LES(Large Eddy Simula-tion),and compute?ow-induced noise(aero-noise)using FLUENT’s acoustics model. In this tutorial you will learn how to: ?Perform2D Large Eddy Simulation(LES) ?Set parameters for an aero-noise calculation ?Save surface pressure data for an aero-noise calculation ?Calculate aero-noise quantities ?Postprocess an aero-noise solution Prerequisites:This tutorial assumes that you are familiar with the menu structure in FLUENT,and that you have solved or read Tu-torial1.Some steps in the setup and solution procedure will not be shown explicitly. Problem Description:The problem considers turbulent air?ow over a2D circular cylinder at a free stream velocity U of69.19m/s. The cylinder diameter D is1.9cm.The Reynolds number based on the?ow parameters is about90000.The computational do-main(Figure3.0.1)extends5D upstream and20D downstream of the cylinder,and5D on both sides of it.If the computational domain is not taken wide enough on the downstream side,so that no reversed?ow occurs,the accuracy of the aero-noise prediction may be a?ected.The rule of thumb is to take at least20D on the downstream side of the obstacle. c Fluent Inc.June20,20023-1

LPG气液分离器原理

气液分离器的工作原理 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 汽液分离罐是利用丝网除沫,或折流挡板之类的内部构件,将气体中夹带的液体进一步凝结,排放,以去除液体的效果。 基本原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。 QQ截图未命名.gif (93.74 KB) 分离器的结构与原理相辅相成,分离器不止是分离气液也分离气固,如旋风除尘器原理是利用离心力分离气体中的固体. 气液分离器,根据分离器的类型不同,有旋涡分离,折留板分离,丝网除沫器, 旋涡分离主要是根据气体和液体的密度,做离心运动时,液体遇到器壁冷凝分离。 基本都是利用沉降原理的,瞬间扩大管道半径,造成压降,温度等的变化,达到分离的目的. 使用气液分离器一般跟后系统有关,因为气体降温减压后会出现部分冷凝而后系统设备处理需要纯气相或液相,所以

主反应后装一个气液分离器静止分离出气相和液相给后系统创造条件。。。 工厂里常见的气液分离器是利用闪蒸的原理,闪蒸就是介质进入一个大的容器,瞬间减压气化并实现气液分离,出口气相中含饱和水,而游离的水和比重大的液滴会由于重力作用分离出来,另外分离器一般带捕雾网,通过捕雾网可将气相中部分大的液滴脱除。 气液分离器无非就是让互相混杂的气相液相各自聚合成股,液滴碰撞聚结,气体除去液滴后上升,从而达到分离的目的。 原理是利用气液比重不同,在一个突然扩大的容器中,流速降低后,在主流体转向的过程中,气相中细微的液滴下沉而与气体分离,或利用旋风分离器,气相中细微的液滴被进口高速气流甩到器壁上,碰撞后失去动能而与转向气体分离。算过一个气液分离器就是一个简单的压力容器,里面有相应的除沫器一清除雾滴。 气液分离器其基本原理是利用惯性碰撞作用,将气相中夹带的液滴或固体颗粒捕集下来,进而净化气相或获得液相及固相。其为物理过程,常见的形式有丝网除雾器、旋流板除雾器、折板除雾器等。 单纯的气液分离并不涉及温度和压力的关系,而是对高速气流(相对概念)夹带的液体进行拦截、吸收等从而实习分离,旋流挡板等在导流的同时,为液体的附着提供凭借,就好像空气中的灰尘要有物体凭借才能停留下来一样。而不同分离器在设计时,还优化了分离性能,如改变温度、压力、流速等 气液分离是利用在制定条件下,气液的密度不同而造成的分离。 我觉得较好的方法是利用不同的成分其在不同的温度或压力下熔沸点的差异,使其发生相变,再通过不同相的物理性质的差异进行分离 饱和气体在降温或者加压过程中,一部分可凝气体组分会形成小液滴·随气体一起流动。 气液分离器作用就是处理含有少量凝液的气体,实现凝液回收或者气相净化。 其结构一般就是一个压力容器,内部有相关进气构件、液滴捕集构件。 一般气体由上部出口,液相由下部收集。 化工厂中的分离器大都是丝网滤分离气液,这种方法属于机械式分离,原理就是气体分子小可以通过丝网空隙,而液态分子大,被阻分离开, 还有一种属于螺旋式分离,气体夹带的液体由分离器底部螺旋式上升,液体被碰撞“长大”最终依靠重力下降,有时依靠降液管引至分离器底部 气液分离器,出气端一般在上,因为比重低,内部空气被抽离,或在出气端连气泵 而液体经旋转,再次冷凝下降从下部排出 利用气体与液体的密度不同。。从而将气体与液体进行隔离开来 1、气液分离器有多种形式。 2、主要原理是:根据气液比重不同,在较大空间随流速变化,在主流体转向的过程中,气相中细微的液滴

羽叶分离器用于加氢脱硫单元循环氢脱硫塔严重带液问题解决方案

羽叶分离器用于加氢脱硫单元循环氢脱硫塔严重带液问题解决方案 诺卫能源技术(北京)有限公司罗力 最近,有企业咨询其加氢脱硫单元循环氢脱硫塔严重带液,寻求解决之道。其实,塔顶气相带液严重的问题,不仅在石化行业加氢装置胺法脱硫塔上存在,在低温甲醇洗脱硫塔、焦炉气钛箐钴湿法脱硫塔、LNG项目MDEA脱碳塔、天然气TEG 脱水塔、粉煤气化水洗塔、硫酸磷酸尾气洗涤塔、化工蒸馏塔、闪蒸塔等装置均不同程度存在,严重者塔内跑液超过300升/小时,企业运行成本居高不下。大家一起来从工艺原因和设备原因进行分析。 先从工艺上看,塔内操作温度波动、压力波动和气体流量波动因素,可以从显示仪表上查证。温度升高、压力降低,即便压缩机显示的流量不变,塔内实际工况气体体积流速、线速度已经增大,这可是仪表无法直接显示的。实际上,工况波动往往难免,则需要从设备技术上对症下药加以预防。 再从技术设备工装上分析。目前,不少行业技术革新很慢,还在沿用上世纪中叶技术,只有近年发展起来的一些新兴行业试图挑战传统行业而采用新技术设备。多数传统行业企业前述塔系气相采出口气液分离内件,仍然在采用十分简陋的丝网除沫器、筛网除沫器、鲍尔环填料除沫器等分离介质搭桥形成的“孔格”阻挡拦截式分离。先不说这些内件本身易于腐蚀断碎堵塞过流通道,单就入口原料气携带的包括催化剂破碎颗粒物和反应形成的凝胶质也会堵塞过流通道。其次,这类传统阻挡拦截式气流除沫分离技术内件,其操作弹性上限为额定负荷110%;而实际运行工况中,由于温度升高、压力降低、气流增速,以及前述因素导致的气流带液量增

加,往往会突破110%额定负荷上限,造成分离内件间或“液涌”,塔内液随气流逃出塔系。再者,如果塔系出口管线下游设备还设置有分离器,再如果分离器内件与塔内除沫分离内件同属一代设备,分离器只能起到缓冲罐储存段塞流作用,而较难实现对气相中液沫拦截捕集。 我们把视线切换到国内近年新兴行业上,如煤制烯烃、煤制油等新型煤化工项目,其气液分离多采用羽叶式分离技术,又如国外甲醇合成四大工艺包戴维、鲁奇、卡萨利、拓普索,均被推荐或指定采用。羽叶气液分离技术及设备,较上述传统 分离技术设备体现出的技术经济优势有:1、羽叶分离器属于动力学分离技术,不 是象传统分离技术通过介质表面孔径阻挡拦截方式实现分离,从而其抗堵塞能力很优秀、定量分离能力和效率也很强。2、不需要备机,分离内件可以在大修期间简 易维护,不需更换新内件,运行成本极低。3、羽叶气液分离技术,其操作弹性区 间为10%~125%,G50型羽叶叶片专利技术内件操作弹性上限超过额定负荷140%,较上述传统分离技术大幅提升。4、从内件组态结构上看,气流通过内件组时,分 离下来的液体与分离纯化后的气流分别处于两个独立的流道、且分离后的液体和气体在独立的两个流道中以相互垂直的方向流动,两者不见面、不在形成“二次挟带和返混”;不像传统丝网分离内件分离出来的液滴又如下暴雨般落回上升的气流,被气流重新带回丝网内件进行分离,如此反复。羽叶叶片专利技术内件结构,决定其性能远优于传统分离技术。我方已为国内外诸多项目直接或间接提供分离技术方案设计和核心设备制造供货,该设备在中国大型项目上的应用,如中石化中天合创煤制烯烃项目、GE承包的邯钢焦化厂焦炉气改造项目、神华宁煤煤制油项目等, 已有十分成功应用。 国内传统项目数量多、规模也不小,在当下经济技术转型时期,建议国内类似项目业主和设计院,可抓住机会实现技术升级换代,形成我国类似项目新的技术升

FLUENT算例 (3)三维圆管紊流流动状况的数值模拟分析

三维圆管紊流流动状况的数值模拟分析 在工程和生活中,圆管内的流动是最常见也是最简单的一种流动,圆管流动有层流和紊流两种流动状况。层流,即液体质点作有序的线状运动,彼此互不混掺的流动;紊流,即液体质点流动的轨迹极为紊乱,质点相互掺混、碰撞的流动。雷诺数是判别流体流动状态的准则数。本研究用CFD 软件来模拟研究三维圆管的紊流流动状况,主要对流速分布和压强分布作出分析。 1 物理模型 三维圆管长2000mm l =,直径100mm d =。 流体介质:水,其运动粘度系数6 2 110m /s ν-=?。 Inlet :流速入口,10.005m /s υ=,20.1m /s υ= Outlet :压强出口 Wall :光滑壁面,无滑移 2 在ICEM CFD 中建立模型 2.1 首先建立三维圆管的几何模型Geometry 2.2 做Blocking 因为截面为圆形,故需做“O ”型网格。

2.3 划分网格mesh 注意检查网格质量。 在未加密的情况下,网格质量不是很好,如下图 因管流存在边界层,故需对边界进行加密,网格质量有所提升,如下图

2.4 生成非结构化网格,输出fluent.msh等相关文件 3 数值模拟原理 紊流流动

当以水流以流速20.1m /s υ=,从Inlet 方向流入圆管,可计算出雷诺数10000υd Re ν ==,故圆管内流动为紊流。 假设水的粘性为常数(运动粘度系数62 110m /s ν-=?)、不可压流体,圆管光滑,则流动的控制方程如下: ①质量守恒方程: ()()()0u v w t x y z ρρρρ????+++=???? (0-1) ②动量守恒方程: 2()()()()()()()()()()[]u uu uv uw u u u t x y z x x y y z z u u v u w p x y z x ρρρρμμμρρρ??????????+++=++??????????'''''????+---- ???? (0-2) 2 ()()()()()()()()()()[]v vu vv vw v v v t x y z x x y y z z u v v v w p x y z y ρρρρμμμρρρ??????????+++=++??????????'''''????+- ---???? (0-3) 2 ()()()()()()()()()()[]w wu wv ww w w w t x y z x x y y z z u w v w w p x y z z ρρρρμμμρρρ??????????+++=++??????????'''''????+- ---???? (0-4) ③湍动能方程: ()()()()[())][())][())]t t k k t k k k ku kv kw k k t x y z x x y y k G z z μμρρρρμμσσμμρεσ????????+++=+++????????? ?+ ++-?? (0-5) ④湍能耗散率方程: 212()()()()[())][())][())]t t k k t k k u v w t x y z x x y y C G C z z k k εεμμρερερερεεεμμσσμεεεμρσ??????? ?+++=+++??????????+++-?? (0-6) 式中,ρ为密度,u 、ν、w 是流速矢量在x 、y 和z 方向的分量,p 为流体微元体上的压强。 方程求解:采用双精度求解器,定常流动,标准ε-k 模型,SIMPLEC 算法。 4 在FLUENT 中求解计算紊流流动 4.1 FLUENT 设置 除以下设置为紊流所必须设置的外,其余选项和层流相同,不再详述。

旋流板除雾器计算

旋流板除雾器计算 3.3.2.4除雾板 本设计中采用旋流板除雾器,其工作原理是使烟气通过旋流板,气流旋转将液滴抛向塔壁,从而聚集落下。 (1)除雾板盲板直径:除雾板盲板直径可大些,即Dm/D?0.4,可使雾滴易于甩上塔壁。本设计中取Dm=0.6D=2940mm, (2)除雾板叶片数: 叶片数可适当减少,即m,12,18左右。本设计中取m=16. (3)径向角:径向角为20?,用作除雾板的塔板要求为“外向板”,即叶片外端的钝角翘起,使气流朗向塔酸方向,可将带上的液墒抛向培壁,从而聚集落下。 (4)叶片仰角:25? (5)除雾板叶片外径:叶片外端直径径和塔径之间的距离可减小,D,1.1Dx。故本设计中Dx=D/1.1?4454.5454取整得Dx=4500mm。 (6)除雾板塔段高度:除雾板塔段的高度按经验可不超过(0.8,1)(D-Dm)。故本设计中除雾板塔段高度h=0.8(D-Dm)=1568,取整1600mm(即除雾板到下层旋流板的塔板间距为1600mm)。 3.3.2.5塔高计算: (1)吸收区高度h0的计算: 根据文献资料的经验值,旋流板塔的停留时间常在2.5s-5.5s之间,由于本设计采用NaOH吸收,故停留时间取4.5s。故吸收区的高度h0=u*t=3×4.5=13.5(m).由于每层的塔板间距hx取860mm,故塔板数n=h0/hx=13500/860=16段。 (2)椭圆封头高度h1的计算: 由于塔径为4900mm,按照椭圆封头长短轴之比为2:1的比例计算得,椭圆封头高度h1=0.5*2500=1225mm。

(3)塔顶空间高度h2的计算: 根据经验,本设计中塔顶空间高度h2取2500mm (4)除雾段高度h3的计算 除雾板塔段的高度按经验可不超过(0.8,1)(D-Dm)。故本设计中除雾板塔段高度h=0.8(D-Dm)=1600mm(即除雾板到下层旋流板的塔板间距为1600mm)。 (5)塔底空间高度 塔底空间既最后一层旋流板到椭圆封头的距离。由于气体进口的直径为 1750mm,人孔直径为800mm,最后一层旋流板到人孔中心线的距离为2300,气体进口接管到人孔中心线的距离为2050mm,气体进口接管到椭圆封头的高度为 2500mm。塔底空间的总高度为6850mm。 (6)塔底椭圆封头高度 计算同塔顶椭圆封头高度,故塔底封头高度h5=h1=1225mm (7)支座高度的计算支座高度取1900mm, 塔高的计算结果见下表2-3 3.3.2.8烟囱计算 根据《烟囱设计手册》,烟囱设计需考虑的主要因素有: 1. 烟囱的平面位置。 2. 烟囱高度。 3. 烟囱上,下口的内直径。 4. 烟道平面布置。 5. 烟道剖面尺寸。 6. 烟道与烟囱的连接位置。 7. 烟囱上安装设备的有关资料。 8. 烟气的成分,浓度,湿度,最高温度和流速。

相关主题
文本预览
相关文档 最新文档